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Abstract. The growing importance of batteries in the delivery of primary energy, for example in 
electric vehicles and isolated off-grid electricity systems, has added weight to the demand for 
simple and reliable measures of a battery’s remaining stored energy at any time. Many approaches 
to estimating this battery state-of-charge exist, ranging from those based on a full appreciation of 
the chemistry and physics of the storage and delivery mechanisms used, and requiring extensive 
data on which to base an estimate, to the naïve and simple, based only, for example, on the terminal 
voltage of the battery. None, however, is perfect, and able to deliver a simple percentage-full figure, 
as in a fuel gauge. The shortcomings are due to a range of complicating factors, including the 
impact of rate of charge, rate of discharge, battery aging, and temperature, to name just some of 
these. 

This paper presents a simple yet effective method for tracking state-of-charge in an off-grid 
electricity system, where batteries are in continuous use, preventing static parameter measurements, 
and where charge/discharge cycles do not necessarily follow an orderly sequence or pattern. A 
reliable indication of state-of-charge is, however, highly desirable, but need be only of fuel gauge 
precision, say to the nearest 12-20%. The algorithm described utilises knowledge of the past, and 
constantly adapts parameters such as charge efficiency and total charge capacity based on this 
knowledge, and on the occurrence of specific identifiable events such as zero or full charge. 

 
Keywords: state-of-charge·battery·time series data·lead-acid·off-grid 

 
 
1 Introduction 
 
A confident estimate of the state of charge (SoC) of lead-acid batteries is highly desirable, yet often 
elusive. The increasing use of such batteries as a primary energy supply, in particular in electric 
vehicles, but also in off-grid electricity systems, has heightened awareness of this situation. A range of 
techniques exist for predicting the energy stored (see, for example [1, 2, 3]). Many of these take full 
account of a detailed knowledge of the chemistry and physics involved in energy storage and retrieval, 
but are dependent on multiple parameters, such as voltage, impedance, charge/discharge rates, open 
circuit voltage, and temperature, some of which can be measured effectively only when the battery is at 
rest. As Scott et al [3] have commented, “While these methods are powerful they require significant 
training, and the training data must include the output variable—the remaining capacity—that is 
typically only available as an estimate with hindsight.” 

Yet this information is important. For the driver of an electric vehicle, it is imperative to be able 
to answer such questions as “Do I have enough charge in the battery to get me home?” or “Do I need to 
re-charge the battery overnight so I can drive to work tomorrow?” For the person living in an off-grid 
dwelling, there are similar questions: “Is there enough charge in the batteries for me to use the electric 
saw to cut firewood?” or “Was it sunny enough today to fully charge the batteries, or do we need to 
start the back-up generator now to provide enough energy to last us through the night?” But to answer 
questions like these we do not need to know the precise residual charge in the batteries, even if it was 
possible to calculate, but rather, we need an estimate, something like the fuel gauge in a car (see Figure 
1), to say the nearest 12.5%. 

Typically, the basic battery status information available for an off-grid power installation is a 
volt-meter, similar to that shown in Figure 2. While this example meter does include green (OK) and 
red (problem) bands, and indicates ranges for low battery and on charge, the pointer could be in the 
low battery range with a fully charged battery under heavy load, and a battery that is almost completely 
discharged will show a voltage well into the green band as soon as charging commences. Voltage alone 
is not a reliable indicator of state of charge unless the battery is at rest, a situation rarely experienced in 
an off-grid system. In fact, this never-at-rest phenomenon makes the off-grid state-of-charge estimation 
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more difficult than that for an electric vehicle, where the battery will normally have been at rest for a 
period prior to each use of the vehicle. 
 

 
Figure 1: The example of a car fuel gauge, which 
gives a rough indication of the fuel remaining, 
sufficient for most purposes. 

 
Figure 2: A typical off-grid installation battery 
voltage meter. 

 

If a full history of past charging and discharging of a battery is available, then it is possible to base a 
state-of-charge estimate on this history, using the so-called “ampere hour counting” or “Coulomb 
counting” method to maintain a total charge figure [1], [4]. With this approach, it is possible to account 
for losses in the battery using a charge-efficiency factor, which can be experimentally determined. 
However, there are a variety of other factors which such a “black-box” approach overlooks, and 
consequently significant drift errors can accumulate over time, rendering the calculated state-of-charge 
grossly in error. An approach to minimising such drift is to recalibrate the calculations whenever 
possible using known events. Typically such events are indications of either full-charge, or full 
discharge, often flagged by other components in the battery system. If a battery is regularly charged 
until it is “full”, as is often the case, for example, with an electric vehicle, then when the charging 
system indicates this full state, the SoC calculation can be recalibrated at this point. Less common, but 
still occurring, are battery empty events, typically triggered by auto-protect systems which shut off the 
load when the battery charge level is observed to be so low that further discharging may cause long-
term damage to the battery. These are referred to as low-voltage shut-down events (LVSDs). 

However, there are a number of confounding factors that arise with the potentially continuous 
use nature of batteries in an off-grid installation, which add to the challenge of determining an accurate 
estimation of state-of-charge.  
 
1.1 While there are system events that might be used to flag 0% and 100% battery charge as 

indicated above, these events, which are triggered by other sensing hardware that forms part of 
the off-grid installation, are neither fundamental nor deterministic, and there may sometimes be 
conflict between different components. Section 2 describes a typical off-grid installation (the 
one from which the data used in this study was derived) which includes separate solar controller 
and inverter/charger modules, each of which independently senses and interprets the battery 
state for its own purpose. 
a) The inverter/charger in the installation shuts down if the battery voltage falls below 23.2 

volts for more than 2 minutes [5]. While this is a proxy for 0% charge level, it can occur 
well above 0% SoC during the application of a heavy load. 

b) The solar controller in the installation, and the inverter/charger, both (independently) 
switch to absorption charging mode [5, 6, 7] when the battery is nearing full charge, 
indicated by a particular combination of voltage and current. However, each module 
assumes that there is no other current demand on the battery, so in normal operation both 
can give false indications (see Figure 3). The inverter/charger will have a false impression 
of the actual battery current if there is also input from the solar controller, as will the solar 
controller if the inverter is applying a load to the batteries, which is commonly the case. 

 

 
Figure 3: Neither the inverter/charger nor the solar controller can independently determine the actual 
battery current, ib. 

Solar&
controller&

Inverter/
charger&

is# ic#
ib#
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c) Battery voltage under charge is dependent on charge rate, and a high charge rate can give 
rise to a false impression of 100% SoC at a significantly lower charge level [8,9]. 

 
1.2 Battery characteristics are not constant, with changes arising for a number of reasons [8]: 

a) As a battery ages, its full charge capacity will decrease. 
b) Temperature is a factor in battery behaviour, and many complex battery monitors do 

incorporate temperature sensors. 
c) Charging behaviour changes with charging current. A fast charge rate may appear to have 

fully charged a battery (from voltage/current behaviour) well before 100% charge is 
achieved; a lower charge rate may ultimately deliver a fuller charge [10]. 

d) Discharging behaviour varies with load. Under a high current load, battery voltage will 
drop, and not just because of internal resistance. It will also take time to recover voltage 
after the load is removed. 

e) Left unattended and unused for a period of time, lead-acid batteries do self-discharge, 
continuously losing a small proportion of their charge [4]. 

 
1.3 Not all of the energy delivered to a battery during a charge cycle is stored. Some of it is released 

as heat. Although this lost energy can be accounted for by an overall charge efficiency, this is 
typically not constant, and varies with temperature, charge rate, and SoC [4], [8], [11]. 

 
1.4 Batteries in an off-grid installation do not undergo a regular or cyclic full charge/discharge 

sequence. For example, with a PV array, if sunshine coincides with a high load, then the 
potential solar charge is delivered directly to the load, and not to the batteries. If wind 
generation is included, then this is generally non-deterministic, and not cyclic. During any 24-
hour interval, there may be several periods in which the batteries are charging from one source 
or another, at varying rates of charge, depending on the source and any loads present at the time, 
and these may not always culminate in a full charge [4]. 

 
The challenge addressed in this paper is to develop a time series-based [12] algorithm (B3SOC – Black 
Box Battery State Of Charge) that will reliably provide an estimate of the state-of-charge of the 
batteries in an off-grid electricity installation, where the system is in continuous use. Section 2 
describes the characteristics  and technical details of a typical off-grid system, and identifies the 
parameters that might be used by such an algorithm. In Section 3, detailed data derived from this 
system is examined and analysed, and an algorithm developed which has the potential to calculate SoC 
to an appropriate accuracy. The application of the algorithm to a three-week data set is then described 
in Section 4, with an equivalent real-time state-of-charge calculated. The effectiveness of the approach 
in delivering a solution to the challenge is reviewed in Section 5. 
 
 
2 Overview of the Off-Grid System 
 
A representative off-grid electricity system is shown in Figure 4. This diagram describes the off-grid 
installation at Pauaeke, which has been used to provide the data analysed in this paper. Pauaeke, which 
is fully off-grid, utilises a solar PV array and a small wind turbine to provide a continuous 230v ac 
supply to a permanently occupied house and outbuildings. The key features of the system are as 
follows: 

(i) A 1080 watt solar PV array of six panels is configured as a nominal 72-volt source, and supplies 
the input to a MPPT (maximum power-point tracking) solar controller [7], which provides a 24-
volt dc output, and is the primary energy source. 

(ii) Energy is stored in a 24-volt deep-cycle lead-acid battery set.1 These batteries are nominally 
rated at 670 amp-hours, or 16.08 kwh for the 24-volt set. 

(iii) A small wind turbine provides a secondary energy source. This is a 24-volt three phase ac 
turbine, the output of which is connected via a three-phase bridge rectifier directly to the 
batteries. The turbine has a nominal rating of 400 watts, but provides this level of power only in 
very strong wind conditions. 

                                                
1 Henceforth referred to as the batteries. 
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(iv) The 24-volt dc supply from the batteries is converted to a standard 230-volt 50-hertz ac supply 
for the house by a sine-wave inverter/charger. This unit is rated at 1600 watts continuous, and at 
2200 watts peak for up to 30 minutes [5]. 

 
 

Figure 4: An overview of the Pauaeke off-grid electricity system, showing the two voltages (Vs and 
Vb) and the three currents (Is, Ib and Iv) measured by the Pentametric monitor. 

 
(v) A back-up petrol powered generator is available when needed. It generates 230-volts ac 

(inverter stabilised) and connects to the inverter/charger unit. When the generator is running, the 
inverter/charger switches automatically to charge mode, and charges the batteries from the 
generator input, while at the same time switching the generator input directly through to the 
230-volt house supply. The maximum charge rate through the inverter/charger is set to 1600 
watts. Typical usage of the generator is ~ 4-5 hours per week, on average over a year. 

(vi) Average daily electricity consumption is ~ 5kwh. Most common appliances and power tools are 
used from the inverter 230-volt supply. This includes lighting, TV/entertainment, computers, 
refrigerator, freezer, vacuum cleaner, washing machine, iron, microwave, toaster, etc., but other 
than for the few exceptions in this list, electricity is not used for heating and cooking. 

(vii) On relatively rare occasions when equipment consuming more than 2.2kw needs to be used, for 
example, sheep-shearing machinery, this is powered directly from the back-up generator. 

 

Figure 4 also shows the monitoring facilities which have been installed in the off-grid system. Of 
principal interest here are those sensors for monitoring the 24-volt sub-system; the battery voltage and 
the currents associated with the batteries. For this function, a Pentametric Battery Monitor has been 
used [13]. This unit is able to continuously sample up to two dc voltages and up to three dc currents, 
which it then outputs via an RS232 communications port. In the Pauaeke installation, the five 
quantities which are monitored (see Figure 4) are: 
• The battery voltage, Vb, nominally 24 volts; 
• The solar array voltage, Vs, nominally 72 volts; 
• The battery current, Ib, which is normally in the range from -90 amps (maximum discharge rate 

at 2200 watts) to +67 amps (maximum charge rate at 1600 watts); 
• The solar charge current, Is, which is normally in the range from 0 to 45 amps (maximum panel 

output at 1080 watts); 
• The inverter/charger current, Iv, which is normally in the range from -90 amps to +67 amps. 

 

The current shunts are arranged so that the polarity of the three monitored currents are all positive for 
battery charging mode. In other words, with reference to Figure 4 and Formula 1, Ib is positive when 
the battery is charging; Is is positive when the solar array is active and the battery is charging; and Iv is 
normally negative when the inverter/charger is drawing current. Iw is not a directly monitored current, 
but can be calculated from the other three, and represents the charging contribution of the wind turbine. 

 

  Ib = Is + Iv + Iw                                                       (1) 
    

The output from the Bogart monitor is connected to an Intense PC [14] via an RS232-to-USB 
conversion cable. The Intense PC, a low-power consumption display-less computer ideally suited to 
off-grid data logging applications such as this, is programmed to sample the Pentametric outputs at 10-
second intervals, and to record these, making them available for periodic download via an Internet 
connection. Alahmari [15] provides a more detailed description of the data logging software, and of the 
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other off-grid system parameters (those on the 230 volt side) which are recorded in addition to the 
Pentametric outputs described. 
 

 
Figure 5: Detail of power in and out of the Pauaeke batteries over two days, showing the cyclic nature of both 
consumption and generation. 
 
It is worth noting typical behaviour of the off-grid system in operation. Figure 5 provides a detailed 
view of just two day’s data of power in and out of the batteries, together with the difference between 
these two values shown as the net power flow to the batteries. There are several points worthy of note 
in this diagram; the numbers refer to the corresponding reference points on the graph: 
 

1. Power in is dominated by the daily solar cycle, on this occasion seen to start seriously at around 
11am.  

2. The sudden drop-off from the solar panels at around 2.30pm is the result of a charger back-off; 
the solar controller interpreted the battery behaviour as showing near full charge, so switched to 
absorption mode [6]. 

3. On the second day there was some cloud cover, causing the solar input to fluctuate 
continuously. The fact that there is no charger back-off later on this day indicates that because 
of the cloud cover, the batteries did not reach full charge. 

4. That indication is further supported by the fact that the back-up petrol generator was activated at 
around 7.30pm for approximately 90minutes. Note that the power out of the batteries drops to 
zero during this charge phase, because the 230 volt house supply is provided directly from the 
generator when it is running (refer to (v) above). 

5. The low-level background generation of ~ 50-100 watts represents the output from the wind 
turbine. 

6. Consumption is characterised by heavier evening usage of ~ 300 watts average from 6pm to 
10pm. 

7. The characteristic signature of a thermostatically controlled load, around 100 watts regularly 
switching on for 12 minutes at approximately 1 hour intervals, is due to a refrigerator. 

8. The base load of approximately 100 watts represents devices on standby, clocks, and the Intense 
PC. 

 

In summary, from this short observation, it is clear that there are regular charge/discharge cycles on a 
daily basis, although the solar charge cycle may not occur on a cloudy day, and specific but irregular 
loads may interfere with this. Although not every day sees a full charge event nor a battery empty 
event, there is a regular daily ebb and flow of charge to the batteries, and every day sees some charging 
and some discharging activity. 

The next section examines the monitored data in more detail, and develops an approach to 
calculating the state-of-charge of the batteries, and for recalibrating the parameters used in this 
calculation on a regular basis. 
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3 Ampere-Hour Counting and Recalibration 
 
The approach taken in the proposed B3SOC algorithm is to treat the batteries effectively as “black 
box” with a small number of characteristics and attributes, but to exploit a full historical record of these 
parameters. Some of these attributes are accepted as being dynamic, and from time to time, and on the 
occurrence of certain events, their values will be modified to fit the currently known facts 
(recalibration). The model itself is to be kept as simple as possible, but the notion of adaptive 
parameters exploits the relatively detailed knowledge of the past system history implicit in the 10-
second sampling. It is a passive model that is based solely on data and observation rather than complex 
chemistry and physics, and one which does not involve specific intervention in the 
charging/discharging process. 

In terms of monitoring the battery SoC, the data obtained from the Pentametric monitor 
provides detailed records of battery voltage and current; from these there are several important battery 
parameters and events which it is possible to calculate or identify, and which potentially play a part in 
the SoC calculations. 
 

• The present value of the power in or power out of the battery set can be calculated at each 10-
second increment, using the monitored battery voltage and battery current, and from this, an 
accurate record of total energy in and total energy out can be maintained. This is effectively 
using the integration of the battery power flow to maintain a total stored energy figure, the 
“ampere counting” or “Coulomb counting” approach to SoC estimation [1], [4]. Figure 6 shows 
this power in/out data over a 12-day period for Pauaeke, very clearly revealing the overall daily 
cycles in both, and the continuous use nature of the installation. 

 

 
Figure 6: Power in and out of the Pauaeke batteries sampled at 10-second intervals over the 12-day period 
23/07/13 to 03/08/13. 

 
• Charge and discharge rates at each 10-second interval can be calculated, as these may influence 

the interpretation of full charge or zero charge events. 
• Inverter/charger low voltage shut-down events (LVSDs) can be inferred from the data when the 

inverter load current suddenly drops to zero and the battery voltage is low. 
• Charger back-off events, which may indicate full-charge, can also be inferred when the charge 

current drops for no apparent reason at a higher battery voltage. These events are, however, not 
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a reliable indicator, because the SoC at which they occur is very dependent on the charge 
current. 

Three other parameters are potentially useful in determining SoC. These are: 
 

• Battery temperature; while this can be readily monitored, it is not presently available for the 
Pauaeke installation, so has not been used at this stage in the algorithm development. 

• Battery charge efficiency is not known a priori, and is variable, dependent on a range of factors 
[8], [11]. It is suggested, however, that it should be possible to approximate this with a constant, 
provided that its value is frequently recalibrated. Typical operational patterns, as indicated in 
Figure 5, suggest that recalibration events will occur in a scale of days, rather than weeks, 
lending support to this concept. 

• Auto-discharge rate – the rate at which the batteries lose charge when not being used. Given the 
continuous use aspect of the Pauaeke installation (refer to Figure 5), and the suggestion that 
typically the rate is as small as 0.2%/day [4] this parameter has not been included at this stage of 
the algorithm development. 

 

On the basis of these parameters and assumptions, the B3SOC black box model has been developed as 
follows. 
• The batteries are assumed to be a simple energy storage system with a charging efficiency Ceff 

(≤ 1). If energy J watt-hours is delivered into the batteries, then the actual energy stored is 
Ceff x J watt-hours, which can be recovered in full at a later time (the discharge efficiency is 
assumed to be 100%). B3SOC assumes an appropriate initial value of Ceff 

2, but adapts this 
value continuously on the basis of observation and history. In Figure 7 the energy in and out 
data shown earlier in Figure 6 has been combined assuming 100% efficiency (7(a)) and 80% 
efficiency (7(b)). These graphs represent the net energy into the batteries, and show the integral 
of the difference between the power in and power out of Figure 6, taking into account the 
relevant charge efficiency value.  

In Figure 7(a) it is evident that the maximum and minimum charge levels established by 
day 3 of the observation are quickly overtaken as the apparent charge level escalates on a daily 
basis. However, Figure 7(b) gives strong support for an initial value of Ceff of 80%; the 
maximum and minimum values established in the first three days provide a stable operating 
range over the remainder of the observation of around 4500 watt-hours, consistent with the 
known daily use of ~ 4500 watt-hours, and the regular cycling of the batteries between 0% and 
100% as revealed by observed charger back-off and LVSD events. 

 

   
 

             (a)               (b) 
Figure 7: Net energy into the batteries (effectively energy stored) from the data of Figure 6, assuming (a) an 
overall charge/discharge efficiency (Ceff) of 100%, and (b) an efficiency of 80%. 
 
• The batteries can be characterised by a maximum capacity for recoverable energy.3 This full 

charge capacity (or 100% charge level) is represented by E100 in watt-hours. This is not the same 

                                                
2  Ceff is initially set to 80%, a value which has proven to be remarkably accurate. Suggestions in the literature 

are that this composite charge/discharge efficiency typically varies from 60% to 90%, depending on a variety 
of other factors [11]. 

3  Note that the more common approach to recoverable battery energy is to work with two parameters – 
maximum and minimum charge levels, recognising that most charging control systems protect the batteries 
from unwarranted damage by not allowing the actual charge level to fall below some minimum (often 60 – 
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as the nominal rating of the batteries; it represents the amount of energy that can be extracted 
without damaging the batteries. Even for deep-cycle batteries, this will typically be less than 
40% of their rating, and it also decreases with battery age [16]. The value of E100 is continuously 
modified to align with observation and history. Initially, at time t0, its value is assumed to be 
zero, but as will be seen later, its real value is relatively quickly established. 

• At any time t, the battery is assumed to hold deliverable energy Et. Normally Et will have a 
value between zero and E100. If during a given time interval, energy Ein is delivered to the 
battery set and energy Eout is extracted, then the change in  energy stored in the battery can be 
described as: 

   ΔEt = Ceff x Ein – Eout               (2) 
 

Since the algorithm has no knowledge of history at time t0, the initial value of Et is assumed to 
be zero, and is then modified on the basis of observation. 

• The battery state-of-charge can then be calculated at any time t as: 
 

   SoC = Et / E100           (3) 
 

Following the initial assumption of values for the three key parameters (Ceff = 0.8; E100 = 0; Et = 0), 
observation, as in Figure 7(b), would suggest that after a few charge/discharge cycles (in this case 3 
days proves adequate), a value for E100 can be readily established (the difference between the upper and 
lower dotted lines – ~ 4300 watt-hours) and an origin or base value for Et (the lower dotted line – 
~ -1500 watt-hours on the original axis, implying that the actual initial value was 1500). Subsequent 
events then need to be interpreted and the information used to recalibrate these three parameters as time 
progresses. Recalibration is vital for several reasons that have already been discussed, but principally 
that (i) charge efficiency is not in fact a constant, and varies, for example, with temperature and charge 
level, and (ii) events which imply either full or empty may occur over a range of charge levels, so that 
our initial, and subsequent estimates of maximum charge and instantaneous charge may be in error. 
The cumulative effect of erroneous calculations on the value of Et, and consequently on the SoC 
estimate, is very evident from Figure 7(a). As pointed out by Piller et al [1] in relation to ampere 
counting, “…the method is easy and reliable as long as the current measurement is accurate and 
enough recalibration points are available.” 

There are four situations which occur reasonably frequently with a continuous use off-grid 
system which both imply that recalibration is required, and provide sufficient information to perform 
this recalibration. These are: 

a. A battery empty event occurs when the calculated SoC is above 0%; 
b. The calculated SoC falls below 0% without a battery empty event occurring; 
c. The calculated SoC rises to greater than 100% without a battery full event occurring; 
d. A battery full event occurs when the calculated SoC is less than 100%. 

 

The following paragraphs and diagrams describe these four situations, and in each case show which of 
the parameters need(s) to be modified. In order to avoid frequent minor adjustments which are of little 
consequence, tolerance bands of ±5% have been introduced around the 0% and 100% values. It should 
be noted that errors in charge efficiency Ceff are the most serious issue, since their effect is cumulative, 
whereas errors in maximum charge E100 simply give a (constant) proportional error in the SoC 
calculation (if E100 is 20% too high, then the calculated SoC will be 20% too high). Given the critical 
nature of Ceff, then the more reliable or deterministic events are used to recalibrate this value, the 
battery empty events. Battery full events, which as suggested earlier are a less reliable indication, are 
used to recalibrate the less critical E100 value. In either case, if an inappropriate adjustment is made to 
one of these parameters, this will be revealed and corrected in subsequent recalibration opportunities. 

Figure 8 describes recalibration situation (a), where an overall upward drift of calculated SoC is 
revealed by a battery empty event (LSVD) occurring when the calculated SoC is greater than +5%. 
Although this situation could be ignored if the power draw over the previous two minutes (for 
example) was considered to be unusually high (say >50% Pmax), since this may have inadvertently 
triggered the LSVD, it will generally indicate that the charge efficiency value Ceff is too high. 
Recalibration requires the following steps (refer to Figure 8): 

1. The Et and SoC values should both be reset to zero; 
2. The Ceff value is recalculated over the previous 7 days, using the Et value from that point (Et-7), 

together with the total energy in (Ein) and total energy out (Eout) over that 7 day period: 
 Ceff = (Eout – Et-7) / Ein        (4) 

                                                                                                                                      
70%). This algorithm, based solely on observation, is aware only of the delivered charge, and not of any 
residual but unobtainable energy. Hence the use of a single parameter to represent the maximum deliverable 
charge. 
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3. The E100 value remains unchanged. 
 

 
Figure 8: Upward drift of calculated charge level caused by the charge efficiency value, Ceff, being too high, and 
the correction of this drift. 
 
This recalibration is based on the assumptions (i) that the LVSD is a valid battery empty event, and (ii) 
that any erroneous drift in the Et value is confined to the past 7 days. The latter assumption is 
reasonable if recalibration opportunities generally occur at less than 7 day intervals. 
 

 
Figure 9: Downward drift of calculated charge level caused by the charge efficiency value, Ceff, being too low, 
and the correction of this drift. 
 
Downward drift of the Et (and hence SoC) calculations is shown in Figure 9, and will flagged by the Et 
value falling below -5% without a battery empty event (LVSD) occurring. This situation, 
corresponding to (b) above, can be interpreted as resulting from a Ceff value which is too low, and the 
required recalibration is exactly the same as for the previous case. 

It is possible that a more radical adjustment of Ceff will be required, since the battery may 
continue to discharge without a battery empty event occurring, but if this is the case then a sequence of 
these recalibrations will be triggered until either battery discharge ceases, or a battery empty event does 
occur. 

Figures 10 and 11 describe situations which provide an opportunity to recalibrate the total 
battery capacity  parameter, E100. In Figure 10, the calculated SoC has reached a value of 105% 
without a battery full event occurring (recalibration situation (c) above). As SoC is calculated as the 
ratio Et / E100, this situation suggests that the E100 value is too low, and needs to be adjusted upwards to 
be equal to Et. This is the only adjustment required in this situation, as a recalculated SoC will now be 
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exactly 100%. Of course, as suggested in the previous paragraph, the battery charge level may continue 
to rise without a battery full event, in which case there may result a sequence of these recalibrations 
until charging ceases, or a battery full event does occur. 
 

 
Figure 10: Battery full-charge estimate, E100, proves to be too low when the battery reaches 105% charge and the 
charging module does not recognize a full-charge state. 
 

 
Figure 11: To ensure an isolated high charge level does not continue to distort SoC calculations, the full-charge 
estimate, E100, can be reduced by 2% each day until a full-charge estimate too low situation (see Figure 10) occurs. 
This ensures a reasonably frequent (~ <10 days) recalibration of the E100 value. 
 
Recalibration situation (d) is treated in a different way, as shown in Figure 11. It is generally preferable 
that the E100 estimate is too high rather than too low, since the former will provide a conservative value 
for SoC. Because battery full events (flagged by charger back-off) are less reliable, and may commonly 
occur at any SoC >70%, it was decided not to automatically adjust E100 downwards when situation (d) 
occured – battery full at SoC < 100% – but instead to provide a different mechanism for ensuring that 
E100 is recalibrated downwards if its value is too high. This approach, illustrated in Figure 11, exploits 
the concept of data aging [17]. Every 24 hours (at midnight) the existing value of E100 is reduced by 
2%. This means that, left untouched, E100 would reduce to ~85% of its initial value over a week. 
However, during this time it is inevitable that a high charge level will occur, taking Et above the 
current day’s value of E100, so creating situation (c) which will adjust the E100 value upward from its 
downward declining path, as indicated in Figure 11. This technique exploits the fact that the absence of 
a battery full event is a more trustworthy situation (the battery is genuinely not yet full) than the 
occurrence of a battery full event (the battery is probably at some level above 70% SoC). 
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This section has described the development of the B3SOC algorithm, covering the “Coulomb 
counting” method, the general “black-box” approach requiring little or no detail knowledge of the 
actual installation and its specification, and the use made of recalibration opportunities. The following 
section traces the application of the algorithm to a real 3-week Pauaeke data set, identifying notable 
and critical points in this data. 
 
 
4 Application of the B3SOC algorithm 
 
The operation of the B3SOC algorithm is best explained with reference to the graphs and notable 
points of Figure 12. This shows the algorithm in operation, and plots the changes in calculated Et 
(energy stored in the batteries), as well as changes in the estimate of E100 (maximum capacity), and the 
resulting calculated state-of-charge (SoC) at each data point, over the 21-day sample period. 
 

 
Figure 12: Algorithm and parameter development based on the 3 week sample data, showing battery stored 
energy Et, battery maximum capacity E100, and state-of-charge SoC. The overlayed numbers indicate notable 
points which are described in the text. 
 
With reference to this graph, and the discussion of Section 3, the following general points should be 
noted: 
• At the outset, all three plotted parameters are assumed to be zero, as there is no prior knowledge 

of their actual values; ie actual energy stored, maximum capacity, and state-of-charge. 
• The initial assumed value of the charge efficiency Ceff is 80%; ie on average only 80% of the 

energy delivered to the battery is actually stored and available for re-use. 
• Within the first 3 days of the algorithm’s operation, the maximum capacity figure, E100, 

becomes well established (at around 4400 watt-hours) meaning that from this point onwards, the 
SoC figures are valid. 

• Any error in the charge efficiency (Ceff) value shows up as a general upward (Ceff too high) or 
downward (Ceff too low) drift in the Et and SoC values, as described in detail in Section 3. 
However, provided the maximum (E100) value is established relatively quickly (say in 5 days) 
then the impact of any Ceff drift on this value will be minimal.  

 

A more detailed understanding of the operation of the algorithm is provided with reference to the 
numbered points/events on the graph, as follows: 

1. At this point, E100  is increasing because Et was assumed to have an initial value of zero, but it is 
getting less (ie tending negative), so E100 is being increased in order that Et does not go below 
zero (ie Et is held at zero while the batteries continue to discharge). E100 represents the highest 
value of Et seen so far. 

2. E100 continues to increase in this region, following the rise of Et as charging commences. 
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3. As the true E100 value has not yet been established, the SoC value shows as 100% for the 
highest charge level (Et) so far seen. 

4. E100 continues to track the maximum value of Et so far, but is also driven up if Et tries to go 
negative, as in (1) above. 

5. Five days have passed, so the algorithm freezes E100 at this point, assuming a “stable” value has 
been established (4430 watt-hours). (The daily 2% drop in its value is also introduced at this 
stage.) From this point onwards SoC values should be considered valid, and battery full and 
battery empty events (or their absence) can be used to recalibrate the parameters. 

6. SoC goes over 100% at this point, but not as high as 105% (the tolerance region), so no 
recalibration occurs. 

7. SoC drops to -5% with no battery empty event occurring, suggesting that Ceff is too low, in that 
the batteries hold more charge than the parameters predict (Figure 9). A new value of Ceff is 
calculated from the power in and out of the battery over the previous 7 days (81%), and Et is 
reset to zero. Although Et (and hence SoC) continues to fall for a period, it does not fall to -5%, 
so no further recalibration action occurs here. 

8. SoC again drops to -5% with no battery empty event, so Ceff is recalculated, this time to 82%. 
Very shortly afterwards SoC again drops to -5% and Ceff is recalculated to 82.5%; this is 
repeated once again giving a value for Ceff of 83.2%. Shortly afterwards a battery empty event 
(LVSD) does occur, but as SoC is at 0%, no action from the algorithm is required; the 0% value 
has been confirmed. 

9. Here the SoC rises up to 105% without a battery full event, so E100 is increased to bring SoC 
down to 100% (Figures 10 and 11). The new value (4020 watt-hours) is lower than that set in 
step 5, as a result of the 2% drop in the original value each day. At this stage, the net effect is a 
correction downwards from that original value. Although the SoC continues to rise, it goes only 
to 101% before falling again, so no further action is triggered. 

10. Here a battery empty event (LVSD) did occur at SoC = 11% (> 5%), but as the power draw was 
high (~1.3kw = 59% Pmax) over the previous two or more minutes, no recalibration action was 
carried out. 

11. The SoC again rises to 105%, so E100 is increased to bring this down to 100%, as shown in 
Figures 10 and 11. Subsequently SoC continues to rise, and reaches 105% again, with E100 
adjusted up again, and then a third time as well, before SoC starts to fall. The final adjusted 
value of E100, 4407 watt-hours, is close to the original estimate from step 5. 

12. At peak solar time the following day, there are again a sequence of three 105% SoCs, as in step 
11, with each resulting in an increase to E100, and producing an ultimate value of 4930 watt-
hours. 

13. A battery empty event (LVSD) event occurs at 20% SoC, the situation described in Figure 8. 
The average power draw over the previous two minutes was ~380watts ( = 17% Pmax), so this is 
acknowledged as requiring recalibration of Ceff. Et is reduced to 0, and Ceff is recalculated using 
the previous 7 days data (down to 81.7%). 

14. SoC rises to 104% as solar charge peaks for the day, but as this is within the ±5% tolerance 
range, no recalibration occurs. 

15. SoC rises to 105%, so E100 is recalibrated upwards, to 4472 watt-hours. 
 

This section has described the algorithm in operation, and shown the SoC values produced in real-time 
by the algorithm. In the following review section, these values are analysed with hindsight, to establish 
the accuracy of the approach. 
 
 
5 Analysis and Conclusion 
 
The aim of this work has been to develop a black box approach to estimating in real-time the state-of-
charge (SoC) of the batteries in a continuous use off-grid electricity system. It was suggested at the 
outset that the required accuracy for this SoC estimate was similar to that of the fuel gauge in a car 
(±12.5%). It was also established that under the circumstances (particularly continuous use), SoC 
calculations at best are not precise, nor deterministic, and even with hindsight, the “true” value of the 
SoC at any point in history can still only be estimated, but with the advantage of knowing about 
subsequent recalibrations which may have rendered the original SoC in error. 
 
5.1 Errors in the Calculated State-of-Charge 
In order to assess the accuracy of the B3SOC algorithm, retrospective analysis has been applied to the 
original calculations shown in Figure 12, and the consequent error in the real-time SoC value has been 
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calculated. The calculated error is shown in Figure 13. Before discussing this graph, it is necessary to 
describe the means by which the “true” SoC has been calculated. 

There are three key parameters in the B3SOC algorithm which with hindsight may need to be 
modified, and consequently those modifications may have an impact on the historical value of SoC. 

1. The charge efficiency, Ceff. This value is subject to recalibration, for example at points 7, 8 and 
13 in Figure 12. When it is recalibrated, data from the previous week is used (this assumes that a 
week ago the old value was correct, but since then has been incorrect). In retrospect, this new 
value should be applied to all energy into the batteries over the previous week, and consequently 
will impact those historical values of SoC. 

2. The maximum charge level, E100. This value is also subject to recalibration, in the case of the 
data under discussion, at points 9, 11, 12 and 15 (Figure 12). Although there is the 2% reduction 
in this value every midnight, this is not a recalibration per se, but is intended ultimately to 
initiate one. For the retrospective calculation, a straight line interpolation of the E100  value is 
carried out between actual recalibration points. 

3. The deliverable energy in the batteries, Et. Although this value is not directly subject to 
recalibration, this is implicit in the low charge situations illustrated by Figures 8 and 9. In those 
cases (7, 8 and 13), as mentioned in (1) above, as the Ceff value is modified for the previous 
week, then so too will a recalculation of Et over this period be required. 

For completeness, for the initial 5-day settling-in period, the values of the three parameters at the end 
of that period have been retrospectively applied to the full period. 
 

 
Figure 13: A comparison of the retrospectively established SoC with the real-time estimate produced by the 
B3SOC algorithm. The data shown is the percentage point difference between the two values, and the overlaid 
numbers refer to specific points shown in Figure 12. 
 
From Figure 13 it can be seen that once the initial 5-day settling-in period has passed (point 5 in Figure 
13), the real-time calculated SoC provides an indication of charge level typically within ±5% of the 
“true” SoC (actually, it is within ±5% after only 3 days). There are three exceptions to this, all 
occurring at recalibration points (11, 12 and 13 in Figures 12 and 13). Each of these departures is 
characterised by a single point on the graph (Figure 13) where data points are at 1-hour intervals, 
indicating that an error of this magnitude persisted for less than 2 hours. Each of the points 11 and 12 
represents an upward recalibration of the E100 value, which has the effect of a step reduction in SoC 
(formula 3). In fact, in both of these cases the error is exactly 12%, the difference between the real-time 
SoC (105%) and the retrospectively calculated “true” SoC (93%). The more significant error, and the 
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only one falling outside the specification of ±12.5%, is that occurring at point 13. Note that the error is 
small immediately before and after the recalibration event, suggesting (i) that the gross recalibration, 
triggered in this case by an LVSD at an SoC greater than zero, was an over-reaction, and (ii) that even 
so, the consequences of that over-reaction diminish quickly. It is likely that refinement of the algorithm 
in relation to this could be achieved. 
 
5.2 Summary 

In summary, this paper has described an algorithm for estimating in real-time the state-of-charge 
of lead-acid batteries in an off-grid electricity system, where they are effectively in continuous use, 
making it impossible to use approaches which require “at rest” measurements. The technique which is 
based solely on battery voltage and current measurement, with frequent automatic recalibration of 
critical parameters using this data, has produced results which with few exceptions are within ±12.5% 
of the “true” state-of-charge, sufficient for fuel-gauge accuracy. 

A detailed pseudo-code description of the B3SOC algorithm is included as an appendix to this 
report. 
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Appendix 
 

Detailed B3SOC Algorithm Description 
	
  
	
  
	
  
	
  
1. Initialise:	
  1	
  

Total	
  power	
  into	
  battery:	
  	
   Pin	
  	
  0;	
  
Total	
  power	
  out	
  of	
  battery:	
   Pout	
  	
  0;	
  
Energy	
  stored	
  in	
  battery:	
   	
   Et	
  	
  0;	
  
Maximum	
  battery	
  capacity:	
   E100	
  	
  0;	
  
Charge	
  efficiency:	
   	
   Ceff	
  	
  0.8;	
  
	
  
	
  

2. For	
  the	
  first	
  five	
  days	
  the	
  following	
  sequence	
  will	
  establish	
  the	
  value	
  for	
  E100:	
  
	
  

a) Take	
  next	
  data	
  record	
  to	
  get	
  values	
  for	
  battery	
  voltage	
  Vb,	
  battery	
  current	
  Ib,	
  and	
  inverter	
  current	
  Iv;	
  
	
  

b) Calculate	
  power	
  increment	
  Pinc,	
  actual	
  battery	
  increment	
  Binc,	
  and	
  update	
  Pin	
  and	
  Pout:	
  
i. Power	
  increment:	
  Pinc	
  	
  Vb	
  x	
  Ib	
  x	
  time	
  increment;	
  
ii. If	
  Pinc	
  	
  >	
  0	
  then	
   	
   /power	
  flow	
  into	
  battery	
  

Pin	
  	
  Pin	
  +	
  Pinc	
  
Binc	
  	
  Ceff	
  x	
  Pinc	
   /Ceff	
  determines	
  how	
  much	
  of	
  Pin	
  actually	
  stored	
  in	
  battery	
  
	
  

else	
   	
   	
   /power	
  flow	
  out	
  of	
  battery	
  
Pout	
  	
  Pout	
  –	
  Pinc	
  	
   /keep	
  Pout	
  as	
  a	
  positive	
  value	
  
Binc	
  	
  Pinc;	
  

	
  
c) Calculate	
  the	
  actual	
  stored	
  energy	
  Et,	
  recognising	
  that	
  in	
  this	
  settling-­‐in	
  phase	
  it	
  may	
  be	
  trying	
  to	
  go	
  

below	
  zero	
  or	
  above	
  E100;	
  in	
  either	
  case	
  need	
  to	
  adjust	
  E100	
  upwards:
2	
  

If	
  (Et	
  +	
  Binc)	
  <	
  0	
  then	
  	
   /new	
  value	
  would	
  be	
  less	
  than	
  zero	
  
E100	
  	
  E100	
  –	
  (Et	
  +	
  Binc)	
  
Et	
  	
  0	
  
	
  

else	
  	
  
Et	
  	
  Et	
  +	
  Binc	
   	
   	
  
If	
  Et	
  >	
  E100	
  then	
   /new	
  value	
  is	
  greater	
  than	
  E100	
  

E100	
  	
  Et	
  
	
  
d) Calculate	
  the	
  state-­‐of-­‐charge	
  at	
  this	
  sample	
  point:	
  

SoC	
  	
  Et	
  ÷	
  E100	
  
	
  

e) continue	
  looping	
  from	
  2(a)	
  
	
  

	
  
3. After	
  5	
  days,	
   the	
  algorithm	
  moves	
  to	
   its	
  steady	
  state,	
  assuming	
  that	
  an	
  appropriate	
  E100	
  value	
  has	
  now	
  

been	
   established	
   and	
   that	
   the	
   initial	
   charge	
   efficiency	
   estimate	
  was	
   approximately	
   right.	
   At	
   each	
   data	
  
point	
  the	
  SoC	
  is	
  calculated,	
  and	
  checks	
  are	
  made	
  for	
  opportunities	
  to	
  recalibrate	
  the	
  E100	
  and	
  Ceff	
  values:	
  

	
  
a) Take	
  next	
  data	
  record	
  to	
  get	
  values	
  for	
  battery	
  voltage	
  Vb,	
  battery	
  current	
  Ib,	
  and	
  inverter	
  current	
  Iv;	
  

	
  
b) Calculate	
  power	
  increment	
  Pinc,	
  update	
  Pin	
  and	
  Pout,	
  and	
  calculate	
  new	
  value	
  for	
  stored	
  charge	
  Et:	
  

i. Power	
  increment:	
  Pinc	
  	
  Vb	
  *	
  Ib	
  *	
  time	
  increment;	
  
ii. If	
  Pinc	
  	
  >	
  0	
  then	
   	
   /power	
  flow	
  into	
  battery	
  

Pin	
  	
  Pin	
  +	
  Pinc	
  
Et	
  	
  Et	
  +	
  Ceff	
  *	
  Pinc	
   /Ceff	
  determines	
  how	
  much	
  of	
  Pin	
  actually	
  stored	
  in	
  battery	
  
	
  

else	
   	
   	
   /power	
  flow	
  out	
  of	
  battery	
  
Pout	
  	
  Pout	
  –	
  Pinc	
   /keep	
  Pout	
  as	
  a	
  positive	
  value	
  
Et	
  	
  Et	
  +	
  Pinc	
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c) Calculate	
  the	
  state-­‐of-­‐charge	
  at	
  this	
  sample	
  point:	
  
SoC	
  	
  Et	
  ÷	
  E100	
  
	
  

d) Check	
  for	
  upward	
  drift:3	
  
If	
  (LVSD4)	
  and	
  (SoC	
  	
  >=	
  5%)5	
  and	
  (2	
  minute	
  load	
  >	
  	
  500watts)6	
  then	
   /upward	
  drift	
  occurring:	
  

/Ceff	
  is	
  too	
  low	
  
Et	
  	
  0	
  
SoC	
  	
  0%	
  
Calculate	
  ΔEt,	
  ΔPout	
  and	
  ΔPin	
  using	
  values	
  from	
  7	
  days	
  back,7	
  and	
  use	
  these	
  to	
  calculate	
  a	
  

new	
  value	
  for	
  Ceff:	
  
Ceff	
  	
  (ΔEt	
  +	
  ΔPout)	
  ÷	
  ΔPin	
  

	
  
e) Check	
  for	
  downward	
  drift:8	
  

If	
  (not	
  LVSD4)	
  and	
  (SoC	
  	
  <=	
  -­‐5%)5	
  then	
   /downward	
  drift	
  is	
  occurring:	
  Ceff	
  is	
  too	
  low	
  
Et	
  	
  0	
  
SoC	
  	
  0%	
  
Calculate	
  ΔEt,	
  ΔPout	
  and	
  ΔPin	
  using	
  values	
  from	
  7	
  days	
  back,7	
  and	
  use	
  these	
  to	
  calculate	
  a	
  

new	
  value	
  for	
  Ceff:	
  
Ceff	
  	
  (ΔEt	
  +	
  ΔPout)	
  ÷	
  ΔPin	
  

	
  
f) Check	
  for	
  E100	
  too	
  low:

9	
  
If	
  (SoC	
  >=	
  105%)5	
  then	
   /E100	
  is	
  too	
  low	
  

E100	
  	
  Et	
  
SoC	
  	
  100%	
  

	
  
g) Check	
  for	
  E100	
  too	
  high:

10	
  
If	
  (time	
  is	
  end	
  of	
  day11)	
  then	
   /E100	
  is	
  too	
  high	
  

E100	
  	
  0.9811	
  x	
  E100	
  
	
  

h) continue	
  looping	
  from	
  3(a)	
  
	
  
	
  
Notes:	
  

1. The	
  values	
  of	
  these	
  parameters	
  need	
  to	
  be	
  stored	
  at	
  each	
  time	
  increment,	
  since	
  reference	
  to	
  them	
  in	
  
history	
  is	
  at	
  times	
  required	
  (see	
  note	
  7	
  for	
  example)	
  

2. These	
  calculations	
  differ	
  from	
  the	
  steady	
  state	
  ones	
  covered	
  in	
  (3)	
  because	
  of	
  the	
  need	
  to	
  maintain	
  Et	
  
between	
   0	
   and	
   E100,	
   until	
   the	
   initial	
   Et	
   and	
   E100	
   values	
   are	
   established.	
   Refer	
   to	
   Figure	
   7(b)	
   in	
  main	
  
report.	
  

3. Upward	
  drift	
  is	
  characterised	
  by	
  Figure	
  8	
  in	
  the	
  main	
  report.	
  
4. A	
   low	
  voltage	
  shut-­‐down	
  event	
   (LVSD)	
  will	
   typically	
  be	
  characterised	
  by	
   the	
   inverter	
   load	
  current	
   (Iv)	
  

suddenly	
  dropping	
  to	
  zero	
  when	
  the	
  battery	
  voltage	
  is	
  low.	
  
5. A	
  ±5%	
  tolerance	
  zone	
  is	
  established	
  around	
  0%	
  and	
  100%	
  SoC,	
  as	
  suggested	
  by	
  Figure	
  8,	
  9,	
  10	
  and	
  11	
  in	
  

the	
  main	
  report.	
  A	
  different	
  tolerance	
  could	
  be	
  used;	
  this	
  provision	
  simply	
  reflects	
  the	
  fact	
  that	
  precise	
  
values	
  for	
  zero	
  and	
  full	
  charge	
  are	
  elusive.	
  

6. This	
  third	
  clause	
  reflects	
  the	
  fact	
  that	
  an	
  LVSD	
  event	
  can	
  occur	
  above	
  zero	
  charge	
  level	
  if	
  there	
  is	
  a	
  high	
  
sustained	
  load.	
  In	
  this	
  implementation	
  of	
  the	
  algorithm	
  a	
  load	
  of	
  >	
  0.33	
  maximum	
  load	
  for	
  a	
  period	
  of	
  
two	
  or	
  more	
  minutes	
  defines	
  a	
  high	
  sustained	
  load.	
  Experience	
  with	
  a	
  specific	
  installation	
  may	
  lead	
  to	
  a	
  
refinement	
  of	
  these	
  values.	
  

7. Recalibration	
  of	
  Ceff	
  under	
  these	
  conditions	
  uses	
  the	
  ratio	
  total	
  energy	
  out	
  to	
  the	
  total	
  energy	
  in	
  of	
  the	
  
batteries	
  over	
   the	
  previous	
  7	
  days	
   from	
   the	
  current	
  data	
  point.	
  The	
   stored	
  values	
   for	
  Et,	
  Pout	
   and	
  Pin	
  
from	
  that	
  7	
  day	
  history	
  point	
  are	
  required	
  for	
  this	
  calculation.	
  

8. Downward	
  drift	
  is	
  characterised	
  by	
  Figure	
  9	
  in	
  the	
  main	
  report.	
  
9. The	
  E100	
  too	
  low	
  situation	
  is	
  characterised	
  by	
  Figure	
  10	
  in	
  the	
  main	
  report.	
  
10. The	
  E100	
  too	
  high	
  situation	
  is	
  characterised	
  by	
  Figure	
  11	
  in	
  the	
  main	
  report.	
  
11. The	
   E100	
   too	
   high	
   check	
   involves	
   a	
   daily	
   reduction	
   in	
   the	
   E100	
   value	
   until	
   an	
   E100	
   too	
   low	
   event	
   is	
  

triggered,	
   as	
   shown	
   in	
   Figure	
   11.	
   This	
   aging	
   process	
   is	
   quite	
   arbitrary,	
   but	
   a	
   daily	
   reduction	
   (at	
  
midnight)	
  of	
  2%	
  produces	
  results	
  consistent	
  with	
  recalibration	
  intervals	
  of	
  days	
  rather	
  than	
  weeks.	
  

 


