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Abstract 

A range of circumstances and physical conditions exist in New Zealand that 

strongly motivates the adoption of off-grid electricity systems. However, there 

is scant detailed knowledge and understanding of many aspects of their use, 

including their effectiveness and economics. Moreover, the availability of 

detailed data on their use, which could produce this knowledge and potentially 

help to more effectively control these systems, is likewise lacking. Along with 

an interest in such systems in New Zealand, attention on the developing world, 

particularly the Pacific region, is also evident. 

This research first involves a review of off-grid systems in New Zealand, 

particularly in terms of scale and form, along with related monitoring work 

performed within and outside the country, and the monitoring hardware and 

software used for that task. Second, the installation of precision monitoring 

equipment and associated communications are evaluated in terms of available 

off-grid residential systems of genuine off-grid systems, full-time permanently 

occupied residencies, and non-grid connections. Third, the commissioning and 

testing of the above-related equipment, and the storing of the data in a 

database, is conducted. Fourth, the development of real-time monitoring 

dashboards and data analysis techniques that provide short-, medium-, and 

long-term information on installation operations is performed. Finally, 

opportunities for improvement, including controls leading to improvement, are 

identified. 
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Chapter 1: Introduction 

This thesis involves the study of off-grid electricity systems. Many homeowners, 

particularly in remote locations, are concerned about fossil fuel exploration and 

extraction, which contribute to environmental damage. Motivated by this concern, 

many homeowners are transitioning to off-grid means of generating energy, 

despite the initial costs of establishing these systems (Canada Mortgage and 

Housing Corporation, 2001). To contribute towards the overall success and 

usability of these renewable energy sources, an awareness of energy usage 

patterns, efficient energy-saving appliances, and non-electrical forms is required 

(Wind and Sun, n.d.). As the number of homeowners using solar and other 

alternative energy sources continues to grow, awareness of the need for energy 

management strategies has become essential (Banerjee, Rollins, & Moran, n.d.). 

To address this need, this thesis focuses on monitoring and gathering detailed data 

from an off-grid system to develop an understanding of usage patterns and to 

optimise them. 

1.1 Motivation 

In the past, a large amount of electricity in New Zealand was produced from 

renewable resources, which were derived from geothermal and hydro supplies. 

However, in 2008, a severe drought caused an increase in the use of gas and coal 

for energy. Although 65% of energy in New Zealand that year came from 

renewable sources (New Zealand Ministry of Economic Development, 2009), the 

drought fostered a heightened awareness of the need for additional sources of 

renewable energy. Since that time, the New Zealand government has 

commissioned several studies on the viability of transitioning the country’s energy 

consumption to reach a 90% level from renewable sources by 2025 (see Figure 

1.1) (New Zealand Ministry of Economic Development, 2009).  
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Figure  1.1 : Plan for renewable resource use by 2025 (reproduced from the New 

Zealand Ministry of Economic Development, 2009) 

A steady interest in more sustainable electricity sources has meant an increase in 

the demand for off-grid photovoltaic (PV) systems and the need for monitoring 

the amount of power being used and generated. ‘The first rule of off-grid living’, 

as one researcher notes, ‘is that the electricity you produce must be equal to or 

greater than the electricity you consume’ (Energy Solutions Centre and Natural 

Resources Canada, 2005). Therefore, using a monitor can enable users to 

determine how much power is remaining in the system before the power runs out, 

which thereby assists them in maintaining a level of available energy sufficient to 

their needs. Moreover, monitor use can help users manage their PV systems so 

they run at an optimal level. 

Living off-grid involves an increased awareness of what appliances draw the most 

electricity and when the peak electrical demands are for the system. This 

awareness can help on-grid users as well; knowing sources of electricity 

consumption in a household and their timing can enable users to monitor, control, 

and reduce their electrical power consumption and costs. An understanding of 

household usage patterns has enabled some users to change their lighting, heating, 
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communication, and entertainment devices to reduce their energy needs (Energy 

Solutions Centre and Natural Resources Canada, 2005). 

Although there has been a growing interest in electricity-monitoring consumer 

devices over the past few years, systems that provide the required level of detail—

and which are suitable for off-grid environments—are not readily available. 

Consumer device hardware and software systems must be developed to provide 

the necessary information. 

1.2 Objective 

This research focuses on off-grid systems because these systems are critical for 

their users in the long term, particularly in terms of effectiveness and economic 

factors. The research results are applicable to the above and to emerging nano-grid 

systems (small communities, such as in the Pacific region), off-grid farms, and 

off-grid businesses. In these cases, the economics of power distribution have 

made off-grid systems an increasingly attractive option, which even electricity 

providers have promoted. 

1.3 Approaches 

The proposed research involves the following: 

1. A review of (a) existing off-grid systems in New Zealand, particularly in 

terms of scale and form; (b) related monitoring work being done in New 

Zealand and internationally; and (c) monitoring hardware and software 

suitable for the task. 

2. The installation of precision monitoring equipment and associated 

communications in an available off-grid residential system. 

3. The commissioning and testing of the above equipment, which includes 

data entering an off-grid monitoring database. 

4. The development of real-time monitoring dashboards and data-analysis 

techniques for providing short-, medium-, and long-term information on 

installation operations. 

5. The analysis of this data and the initial identification of opportunities for 

improvement or for controls leading to improvement. 
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1.4 Research questions 

The objective of this research is to describe the monitoring-equipment installation 

process in a sample off-grid residential system. In addition, the research involves 

developing software to collect the power monitoring data from the equipment 

used and to store it in a database. It further includes building a monitoring 

dashboard to display the real-time data with analysis techniques that provide 

short-, medium-, and long-term information. This information is intended to 

enable identification of opportunities for improvement, or controls leading to 

improvement.  

To inform this research, potential questions to be addressed include the following: 

• Can scheduling of appliances improve efficiency and reduce the need for 

back-up generation? 

• Is it possible to gain a sound understanding of a battery’s state of charge, 

health, and life expectancy? 

• Is it possible to perform ‘smart’ load dumping with wind, solar or hydro 

energy generation, which would use surplus energy rather than waste it? 

• What are the opportunities for utilising storage capacity in other 

appliances? 

• What are the benefits from installing solar panels, and are they worth the 

initial costs? 

1.5 Thesis structure  

In Chapter 2, off-grid systems in New Zealand are presented with a focus on their 

forms and scales. Related monitoring projects in New Zealand and other countries 

are then reviewed. Examples of monitoring hardware and software available in 

New Zealand are outlined. In Chapter 3, the off-grid residential system used for 

this research and its environment are described. In Chapter 4, installation of 

precision monitoring equipment, equipment commissioning and testing, and data 

flow into the database are presented. In Chapter 5, examples of data visualisations, 

the development of real-time monitoring dashboard designs, and descriptions of 

their implementation are provided. Battery state-of-charge monitoring is discussed 
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in Chapter 6. In Chapter 7, the thesis conclusion and suggestions for future 

research are presented.  
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Chapter 2: Background  

In this chapter, New Zealand off-grid systems, with a focus on their forms and 

scales, are presented. Related monitoring projects within and outside New 

Zealand are then reviewed, and examples of monitoring hardware and software 

available in New Zealand are outlined.  

2.1 Off-grid systems in New Zealand 

For those who live ‘on-grid’, an awareness of the amount of electrical energy they 

are consuming, its source, and whether it is being used at peak times is typically 

not critical information. However, those who live ‘off-grid’ must be acutely aware 

of all electricity consumption, its source, and when peak usage occurs (Apperley, 

2013). For example, using the oven will increase both the energy generated and 

the power usage, while using the kettle will consume less energy but still require a 

high amount of power. These types of considerations are important for off-grid 

energy users. Other factors that off-grid energy users must be aware of include the 

energy consumption of each appliance, both per use and daily total; this 

information guides users on the limits of their inverter or battery capacity. In 

addition, load matching is helpful to the off-grid user when multiple energy 

sources are used, such as by employing solar energy on sunny days and non-solar 

sources on cloudy days. This selective approach may also inform issues that off-

grid users must consider—with the aim of balancing their energy use with the 

comforts that appliances add to their daily lives (Apperley, 2013). 

Most off-grid residential systems in New Zealand fit in three categories of users: 

full-time off-grid, part-time off-grid, and grid-tie. 

2.1.1 Full-time off-grid users 

Users in this category live their lives fully off the grid. Most of them are full-time 

off-grid users because they live in a remote location where there is no municipal 

electricity supply. However, in some cases, it may be a lifestyle choice to be 

disconnected from the grid, even though a connection may be available. For 

example, one high-country new homeowner made this lifestyle choice when she 

was quoted that it would cost her between $24,000 and $30,000 to have electricity 
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run to her house being built on a 3.9 acre bush block because of the remote 

property location (EECA, 2013). She considered other means of obtaining 

electricity, and ultimately chose to be independent and to never again receive a 

power bill: she set up a solar system with a gas back-up to save electricity in the 

long-term. Her home uses the top range of energy-saving appliances, is fully 

insulated, and has minimal energy requirements, all of which make being off-grid 

an affordable and manageable option. This option enables her everything that she 

would have had on a grid-tied system, including comfort and a good standard of 

living, as well as cost-savings with no monthly power bill. Her off-grid system 

has a nominal battery storage capacity of 36 kWh, 800 W solar PV panels, and an 

inverter capable of delivering 230 V AC up to 3 kW (EECA, 2013). 

2.1.2 Part-time off-grid users 

The users in this category are those, for example, who have an off-grid weekend 

home or house boat, where they typically stay for short periods. The rest of their 

lives are lived on the grid. For example, a family with a Motukiekie Island holiday 

home that is used only for ten to twelve weeks a year find that having a solar 

power system provides them with all the home comforts. Moreover, the electricity 

needs in their holiday home remain high because of the number of modern 

conveniences they have (EECA, 2013). Their system was developed over time to 

meet their needs and those of a caretaker, who lives full-time on the property in an 

apartment and who maintains the system. The overall consumption when their 

home is occupied is approximately 8 kWh per day. The system includes an 

extensive PV array, micro wind turbine, large battery bank, and small diesel 

generator that charges the batteries once a day for an hour and a half; additionally, 

it provides power under high loads, such as for the clothes dryer (EECA, 2013). 

2.1.3 Grid-tied users 

The users of this category have both a grid connection and their own power-

generation system, such as solar PV, which fulfils some of their electricity needs. 

When additional electricity is required, these users can draw from the grid; or, 

when their own power generation exceeds their requirements, they can feed the 

surplus back to the grid. Taurikura Lodge is an example of this system working 
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well. Renewable energy is generated there, and the surplus is sold back to the grid. 

The lodge owners receive monthly payments for the surplus (EECA, 2013). For 

the approximately 2,100 kWh that they exported to the grid one summer month, 

they received a $380 credit on their power bill. With their energy generation 

system and energy-efficient adaption of their lodge, they intend to maintain this 

exchange dynamic to never again receive another power bill (EECA, 2013). 

2.2 Off-grid system technology and characteristics 

2.2.1 Electricity generation 

Electricity generation in off-grid systems primarily relies on PV systems with a 

backup source, such as a diesel generator or another renewable source, such as 

wind or hydro. The effectiveness of these PV systems relies on correct panel 

placement and system modulation to control energy input and output (Canada 

Mortgage and Housing Corporation, 2001). 

2.2.2 Storage 

The energy harnessed from solar panels is typically stored in a series of batteries 

(Murphy, 2012). However, this storage method has several limitations, such as the 

requirement of knowing how much electricity is available at a given time. To 

determine this information, a calculation of amp hours (Ah) is performed by 

multiplying incoming current by time. The result is the measurement rate on 

remaining power in the battery. For example, if 100 Ah are entering the battery 

from the solar panel, fewer Ah will be available as output. It has been reported 

that battery storage delivers 83% of input (Murphy, 2012). This loss of power can 

be explained by how the battery stores the energy inputted during the day and then 

discharges it at night; over time, this erratic charge and discharge causes a loss in 

battery life (Murphy, 2012). 

2.2.3 Inverters 

‘A power inverter…is an electrical power converter that changes direct 

current (DC) to alternating current (AC). The input voltage, output voltage, and 

frequency are dependent on design’ (Wikipedia, 2013). The inverter changes the 

energy from DC to AC energy form, which enables it to be used in a domestic 
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house (Caamaño-Martín, Masa, Gutiérrez, Monasterio, Castillo,  Jiménez-Leube, 

&  Porro, 2009). The inverter can be programmed to operate in specific periods in 

which it is charging from the PV system or discharging into the house to support 

peak time usage (Caamaño-Martín et al., 2009). 

2.2.4 Required information 

Knowing about energy management systems is an essential part of successfully 

running a self-contained off-grid system (Zelazo, Dai, & Mesbahi, 2012). Many 

complex approaches can be used—including dynamic programming, mixed- 

integer linear programming (MILP), and direct load control (DLC)—to regulate 

energy combined with the factors above for completing the balance of system 

equipment required. However, the user must find an approach that they 

understand and can effectively manage (Zelazo et al., 2012). The providing of 

real-time information to users is possibly the most important method for enabling 

them to understand and independently manage their usage. 

2.3 Related monitoring research 

The objective of a study based in the US by Rollins and other researchers on off-

grid monitoring devices is similar to the present research (Banerjee et al., n.d.). 

Their system measured both the energy generated by an off-grid house powered 

by a renewable source and its overall energy consumption. Their monitoring 

system was comprised of a single device, a MATE1 remote, which collected data 

through an RS232 interface from an inverter at a rate of one sample per minute. 

Instantaneous residual battery life in volts and household energy consumption in 

kilowatt hours were stored on a Fit PC2 through a customized software tool in an 

append-only log. 

The researchers stated that an awareness of the increased need to gauge low and 

high energy demand times would be helpful to users of these off-grid systems. 

They observed that users held a reactive stance to energy saving when battery 

levels became low, rather than an informed stance to conserve energy before 

                                                 

1 http://www.outbackpower.com/downloads/documents/1401103031817mate.pdf  
2 http://www.fit-pc.com/web/  

http://www.outbackpower.com/downloads/documents/1401103031817mate.pdf
http://www.fit-pc.com/web/
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critical levels were reached. The monitoring devices Rollins discussed provide 

off-grid system users with an increased awareness (Banerjee et al., n.d.). 

Another study conducted in Canada on the energy consumption of off-grid houses 

focused on manually recording data from 12 local houses to determine the energy 

used as well as the lifestyle the home owners developed to contend with the 

fluctuating energy supply (Canada Mortgage and Housing Corporation, 2001). 

Each house in the study was assessed for its energy source, system size, storage 

system used, and potential electrical load. Many users employed a simple PV 

setup with a diesel-powered backup generator, while others used a complex 

hybrid system to obtain their energy from wind, micro-hydro, and PV (Canada 

Mortgage and Housing Corporation, 2001). 

Murphy (2013) discussed two independent data recording systems he built to 

collect data over two and a half years from PV panels powering his home 

(Murphy, 2012). One system was used in parallel with a grid connection. The 

average daily energy used from the grid amounted to 1.8 kWh each day, which 

contributed to total electricity use of 4.5 kWh per day. Energy storage in his four 

batteries resulted in 1,686 kWh being available over 30 months, with a de-rated 

value of 1.5 kWh per battery. The results showed high and low peak times over 

the given period, various seasons, and each day. However, his research was 

limited in that he was not able to monitor the accurate amount of power entering 

the system because the batteries were full over the summer period. Nevertheless, 

as a research document, his results represent one of the longest periods of 

consistent recording of this type of data. Moreover, the results presented in his 

graphs enable the present study to project similar findings as if the research were 

run for a longer time period (Murphy, 2012).  

In addition, Lee and other researchers proposed the use of a smart metering 

system to access data from a PV renewable energy system. They described their 

smart meter as an advanced version of a conventional meter with the added ability 

of detailed measuring. It is equipped with the ability to send/receive data and 

detect outages, along with a communication device, remote control, power quality 

reader, meter tampering detector, meter synchronizer, and a large amount of 

memory to store the data (Lee & Lai, 2009). Their smart meter is very similar to 
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the one designed by the present researcher for this study. Their research and 

studies like it are good informational resources for those designing a meter to 

measure PV energy systems; they provide a sound framework that can be adjusted 

to suit the researcher (Lee & Lai, 2009). 

2.4 Monitoring systems 

2.4.1 Available monitoring devices and software  

Professor Sami Rollins of the University of San Francisco believes that knowing 

how much power the grid solar panels in their homes are producing can help 

homeowners provide a transition to the grid whenever their solar power is 

depleted (Riddell, 2011). Professor Rollins is developing tools to enable this 

capability for those living in off-grid homes (Riddell, 2011).  

Several devices and related software have been developed to monitor power 

consumption. They can be categorized in two groups: those that monitor power 

consumption, and those that collect and display data from the monitoring devices. 

Both are relevant to the present project, which involves collecting data from 

different monitoring devices and using software to display the data online. 

2.4.2 Monitoring devices 

Several commercial solutions have been developed to monitor power 

consumption. These can be separated into two groups. The first focuses on 

monitoring DC power consumption; the second focuses on monitoring AC power 

consumption. 

DC monitoring devices  

Numerous commercial products in this group are available. These devices can 

monitor electrical power for homes, motor homes, and boat batteries (Sun Power 

Plus, 2013), while providing information on energy usage, battery state, and 

system issues when they occur (Sun Power Plus, 2013). Three of these devices are 

highlighted in this section. From Bogart Engineering and Sun Power Plus, these 

devices offer a range of functions (Bogart Engineering, 2010). 
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Figure  2.1: TriMetric TM2020 Battery Monitor (reproduced from Sun Power Plus, 

2013) 

The TriMetric TM2020 Battery Monitor, shown in Figure 2.1, can monitor DC 

power consumption. It can measure battery voltage, charge percentage, amps, amp 

hours, and five other data functions (Sun Power Plus, 2013). When the batteries 

are registered as being charged by the TriMetric monitor, the device resets the 

amp hours to zero and the battery charge is set to 100% if required by the user. It 

can also inform the user of charge voltage at any programmed time within the 

charging process, which helps the user know its efficiency. In addition, when 

power is not connected to it, the TriMetric monitor retains all information prior to 

shutdown. When operational, it has a low current draw and clear display.  

 

Figure  2.2: TriMetric TM2020 Battery Monitor accessories (reproduced from Sun 

Power Plus, 2013) 
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The monitor comes with an adapter that enables the monitor to operate on a 48 V 

system, as well as lightening protection for systems from 12 to 48 V. Two shunts 

are available for this monitor, which are required to monitor amps and amp hours, 

(see Figure 2.2) (Sun Power Plus, 2013).  

 

 

 

 

 

 

 

 

 

Figure  2.3 : TriMetric TM2025-RV / TM2025-A Battery Monitor (reproduced from 

Sun Power Plus, 2013) 

The TriMetric TM2025-RV / TM2025-A Battery Monitor, shown in Figure 2.3, 

operates with 12 to 48 V battery systems (Bogart Engineering, 2010). This device 

can measure the following in the battery: 

• Charge percentage: To verify level of charge and gauge whether it 

requires more charge.  

• Voltage: To determine that the correct voltage is entering the battery.  

•  Energy input/output: Amps and watts can be measured. 

• Days since last full charge: Information to help maximize the battery life 

by reminding the user to charge them.  

• Voltage-only data for second battery: When more than one battery is 

operating, full data is available for the first battery, while voltage-only 

data is available for the second. 
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Figure  2.4: PentaMetric Battery Monitor (reproduced from Sun Power Plus, 2013) 

Another device that monitors DC power consumption is the PentaMetric Battery 

Monitor, shown in Figure 2.4. It can measure two batteries with a common 

negative and two loads (Bogart Engineering, 2010). This device includes an input 

unit, display unit, and RS232, USB, and Ethernet/Internet interfaces. The input 

unit and one of the interfaces are required to collect the data from this device, 

while the remaining components are optional (Bogart Engineering, 2010). The 

components used in this project include only the input unit and USB interface. 

This device can measure the following: 

• Volts: From 8 to 100 V and two-channel voltage. 

• Amps: ±0.01 to 200 A and three-channel amps. 

• Temperature: –20°C to 65°C. 

• Amp Hour: Up to ±83,000 Ah and three channels. 

• Cumulative (Negative) Battery Amp Hours: Up to –1,000,000 Ah 

and two channels. 

• Smoothed (Time-filtered) Amps: From ±0.01 to 200 A 

(100A/100mV shunt), or from ±0.1 to 1,000 A (500A/50mV shunt), 

and three channels with time constants of 0.5, 2, or 8 min. 

• Smoothed (Time-filtered) Volts: From 0 to 100 V and two channels. 

• Watts: From ±0.1 to 20,000 W and two channels. 

• Watts (Hours):  ±21,000 kWh and two channels. 
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• Battery % Full: From 0 to 100% and two channels. 

• Days Since Charged: From 0.01 to 250 days and two channels. 

• Days Since Equalised: From 0.01 to 250 days and two channels (Sun 

Power Plus, 2013). 

AC monitoring devices  

In addition, there several available commercial products that can measure AC 

power consumption. 

 

Figure  2.5: Smart Circuit 20 (reproduced from Watts Up?, n.d.) 

One device that can monitor voltage and current and switch loads on/off is the 

Smart Circuit 20, shown in Figure 2.5 (Inverters R Us, 2013). This device can 

send data every second. Its specifications include the ability to measure 100 to 

250 V, 50/60 Hz, 20 A, and with USB and Ethernet interfaces (Watts Up?, n.d.).  

This device measures and records current watts, minimum/maximum watts, power 

factor, volt amp (apparent PWR), cumulative watt hours, average monthly kWh, 

elapsed time, duty cycle, frequency (Hz), cumulative cost, average monthly cost, 

line voltage, minimum/maximum volts, current amps, and minimum/maximum 

amps (Inverters R Us, 2013).  
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Figure  2.6: Current Cost ENVI Energy Monitor (reproduced from EnviroGadget, 

2010) 

Another solution for monitoring AC power consumption is the Current Cost 

ENVI Energy Monitor, shown in Figure 2.6 (EnviroGadget, 2010). This device 

provides homeowners with their electricity usage data through a wireless display 

unit. It includes a sensor, transmitter, and display unit. When installing the device, 

users must connect the sensor at one end of the transmitter and clamp the other 

end to the live energy supply (typically the cable exiting the home electricity 

meter). All electricity usage data is sent from the transmitter to the display unit 

through a wireless connection up to 30 m from it. The display unit provides 

homeowners with many details regarding their electricity usage. For example, the 

cost of the current electricity drain can be communicated. This information can be 

provided by the display unit in graph form, showing day, evening, and night 

consumption. In addition, the display unit notifies homeowners how the new 

information differs from previous consumption, it can use stored information, and 

the stored information can be used to calculate daily, weekly, and monthly 

consumption and costs. 

The Current Cost ENVI Energy Monitor system can track up to nine individual 

appliances and show the energy usage of each one. For this function, individual 

appliance modules are required. The appliance to be monitored must be plugged 

into the individual appliance module, which in turn must be plugged into the wall 

socket (EnviroGadget, 2010). 



17 

 

2.4.3 Software 

Numerous software have been developed for monitoring AC power consumption. 

The software is categorized in two groups: web-based and desktop. 

Web-based software 

 

Figure  2.7: Google PowerMeter (reproduced from Google, n.d.) 

Google PowerMeter, shown in Figure 2.7, is a free, web-based energy-monitoring 

tool that was launched to raise awareness about the importance of accessing and 

being informed about one’s energy usage (Google, n.d.). Unfortunately, this 

software service has not been active since September 16, 2011 (Google, n.d.).  

 

Figure  2.8: Watts Up? software (reproduced from Foster et al., 2010) 
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The Wattson energy monitor uses the Watts Up? web-based Facebook application 

to monitor user energy consumption, as shown in Figure 2.8. Users can display 

their usage data and compare it with their friends’ data on Facebook. The data is 

displayed in bar graphs and tables by weekly consumption. The application fosters 

energy conservation awareness and support among friends (Foster, Lawson, 

Blythe & Cairns, 2010). 

Desktop software  

Numerous software in the desktop category have been developed to help 

homeowners monitor their energy data. Some users prefer desktop over web-

based software so they can locally store their usage data and it is readily available 

to them.  

 

Figure  2.9: Energy@DeskTop software (reproduced from Energy Tracking, 2005-

2013) 

Figure 2.9 provides an image from Energy@DeskTop software, which is an 

‘advanced and powerful application that presents real-time energy data from our 

meters and loggers’ (Energy Tracking, 2005-2013). For analysis, data is stored 

and displayed by Energy@DeskTop software in a local database. To make power 

management easy, this application enables users to customize a range of features, 

including the names and colours for grids and charts. Data sharing capability is 

not a part of this software; it is therefore suitable for people seeking a low-volume 

solution. Energy consumption, load profile, and energy requirement data can be 

sent by FTP from each meter, or by emailing the energy measurements to the user. 

The current monthly energy requirement and consumption data acquired by 
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energy measurement meters is sent to the user by email, while it can also be sent 

by FTP or HTTP from the meters. Data from the last 24 hours is available in chart 

format, and the load profile information is available as a spreadsheet, which 

includes the data received by FTP or email (Energy Tracking, 2005-2013). 

 

Figure  2.10  : Techtoniq Energy Station software (reproduced from Current Cost, 

2013) 

Techtoniq Energy Station is another application that presents both historical and 

real-time information, as shown in Figure 2.10. This application was made by 

independent software developers who specialize in producing real-time data 

solutions for Microsoft Windows (Techtoniq, 2009-2013). The application license 

is currently €9 and enables users to view their information live from any version 

of a Current Cost device. The application displays historical data charts, live data 

displays and charts cost, and usage analysis. When specific conditions are met, 

alerts can be sent to the user about the status of an individual appliance or the 

entire house (Techtoniq, 2009-2013).  

2.5 Battery state-of-charge algorithms 

Measuring the state-of-charge of a lead-acid battery is not simple. The charge 

depends on a range of factors, including history, present load, temperature, and so 



20 

 

on; moreover, many of these parameters are difficult to measure while the battery 

is in use (Pop, Bergveld, Notten & Regtien, 2005).  

Several methods have been developed to predict battery state-of-charge (Scott, 

Pennington, Schwarz & Rowe, 2011). Some of these methods measure only 

terminal voltage, while some measure current (charge) conducted or cell 

impedance. Many of them use a combination of these techniques (Scott et al., 

2011). Scott et al. constructed a meter to accurately read and monitor the power 

level in an electric-powered-vehicle battery. Their objective was to enable the user 

to correctly gauge how much charge the battery held before using the vehicle. 

They acknowledged that several types of meters that estimate charge already exist. 

However, none of the meters that electric-powered vehicle manufacturers were 

prepared to install at the time of manufacturing could measure the amount of 

remaining charge to a degree similar to fossil-fuel vehicle gauging of the amount 

of fuel left. Therefore, Scott et al. developed an algorithm and circuitry for a 

gauge that they bench-tested. Their research is of interest to the present study 

because the accurate measurement of electrical current is an issue that many 

researchers in this area have encountered.  

2.6 Summary 

In this chapter, some off-grid systems in New Zealand were presented, 

particularly in terms of scale and form. Related monitoring work within and 

outside New Zealand were reviewed, and examples of monitoring hardware and 

software available in New Zealand were presented. The next chapter describes the 

components and specifications of the off-grid system and outlines off-grid system 

monitoring requirements. 
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Chapter 3: Off-grid system environment 

To provide an understanding of the overall off-grid system, Section 3.1 describes 

its components and specifications and Section 3.2 describes its monitoring 

requirements. 

The off-grid system is intended to be the sole electricity source for a small house. 

The house was designed to be self-sufficient and had originally depended on a 

generator. The present system delivers approximately 5 kWh of electricity per 

day. The power is used for lights and the refrigerator, television, and computers; 

it is generally not used for heating. The house is equipped with gas for cooking, 

a gas-boosted solar hot water heater, and a wood-burning stove for space heating. 

 

Figure  3.1: Schematic diagram of the overall off-grid power system 

3.1 System components and specifications 

Figure 3.1 shows a schematic diagram of the overall off-grid power system. The 

system is centred on a 24 V battery storage system, and a 24 V DC/230 V AC 

inverter, which provides the main power source for the installation. The batteries 
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are charged by solar PV panels through a maximum power point tracking 

(MPPT) controller, two small wind turbines, and a backup petrol generator that 

is connected to the inverter, and that when the generator is running it is switched 

through automatically and directly to provide the 230 V AC, and at the same 

time acts as a battery charger through the inverter  

3.1.1 Battery bank 

The system includes four batteries (Exide 6RP670T 3  purchased in February 

2006); each unit contains 3 cells for a total of 12 cells in a series (=> 24 V 

nominal). The battery ‘nameplate’ rating capacity is for 670 Ah. As of August 

2013, this capacity was recorded as being reduced to 190 Ah because of the end-

of-use charge cycling affect.  

3.1.2 Inverter/charger 

The system inverter converts 24 V DC input to 230 V AC output, has a true sine 

wave, and serves as a charger from the backup generator. Its output frequency is 

50 Hz ± .05%, and its power is 1600 VA continuous and 2200 VA for 30 min 

maximum. The current setting of the inverter is low 23.2, float 27.0, absorb 28.8, 

equalise 31.2, low voltage, and auto shutdown. Low refers to shutdown voltage, 

float and absorb relate to a normal charging cycle, and equalise refers to a 

periodic (every 30) ‘blast’. The system automatically powers down if a low 

voltage state occurs for more than 2 min. It is a Studer XP Compact 2200-244 

purchased in February 2006. 

3.1.3 Petrol back-up generator 

The petrol back-up generator is connected to the inverter, and that when the 

generator is running it is switched through automatically and directly to provide 

the 230V AC, and at the same time acts as a battery charger through the inverter. 

It has an electric starter and four-stroke, 240 V, 50 Hz, 5500 VA continuous 

                                                 

3 http://www.allabout12volt.com.au/pdfinfo/ENERGYSTORE%20LEAFLET.PDF  
4 http://www.mysolarshop.co.uk/pdf/studer_products_xpc_en.pdf  

http://www.allabout12volt.com.au/pdfinfo/ENERGYSTORE%20LEAFLET.PDF
http://www.mysolarshop.co.uk/pdf/studer_products_xpc_en.pdf
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power, and it is inverter-stabilized. The generator model is 390cc EU65IS5 made 

by Honda Company and purchased in March 2008. 

3.1.4 Solar controller 

The MPPT controller requires that the PV panels are configured at a 

significantly higher voltage than the batteries. The recommended panel 

nameplate input is 2000 W (MPPT). It is an Outback Flexmax 80 6  solar 

controller that was purchased in January 2009. 

3.1.5 Solar panels 

The system has six solar panels; each panel has 50 cells in a series and open 

circuit power of 30.4 V. They are connected as two sets of 3 panels in a series (=> 

91.2 V nominal). The panels are Electric 180W PV-AD180MF57 solar panels 

made by Mitsubishi Company and purchased in January 2009. 

3.1.6 Wind turbines 

The energy input for wind turbine A (wind tower) is 24 V. It has three phases of 

AC output, which can generate 400 W of power at a wind speed of 12.5 meters 

per second. It has three blades and a rotor diameter of 1,400 mm. This turbine 

model is an HWG-4008 purchased in February 2006. 

The energy input for wind turbine B (barn end roof mount) is 24 V. It has three 

phases of AC output, which can generate 300 W of power at a wind speed of 

12.5 meters per second. It has four blades and a rotor diameter of 1,040 mm. 

This turbine model is a Wintek 3009. Installed in January 2007, it is currently 

decommissioned and scheduled for replacement. 

                                                 

5 http://campaigns.hondampe.com.au/Power%20Equipment/ownersmanuals/generator/eu65isown
01.pdf 
6 http://www.outbackpower.com/index.php/outback-products/charge-controllers/item/flexmax-80  
7 http://www.mitsubishi-electric.co.nz/product/nlaproduct.aspx?item=754103 
8 http://ehochedez.free.fr/documents/eole/divers/hwg400.pdf  
9 http://www.naturalenergy.co.nz/wintek.jpg  

http://campaigns.hondampe.com.au/Power%20Equipment/ownersmanuals/generator/eu65isown01.pdf
http://campaigns.hondampe.com.au/Power%20Equipment/ownersmanuals/generator/eu65isown01.pdf
http://www.outbackpower.com/index.php/outback-products/charge-controllers/item/flexmax-80
http://www.mitsubishi-electric.co.nz/product/nlaproduct.aspx?item=754103
http://ehochedez.free.fr/documents/eole/divers/hwg400.pdf
http://www.naturalenergy.co.nz/wintek.jpg
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Figure  3.2: Home off-grid system setup 

3.2 Off-grid monitoring system requirements 

The off-grid monitoring system has several requirements, including determining 

the battery charge state and the source of the charge. The type of power used and 

where it flows in the off-grid system should also be known. The Bogart 

PentaMetric Battery Monitor (explained in Chapter 2) performs the monitoring 

with two DC voltages and three DC currents, which suits the present purpose 

because it enables monitoring of the battery voltages, solar PV voltages, and 

currents of the battery, solar PV, and inverter. It therefore provides a 

comprehensive view of the DC aspect of the system. Figure 3.1 shows where the 

Bogart PentaMetric connects to the off-grid system: (V1) battery voltage, (V2) 

solar PV voltages, (I1) battery current, (I2) solar current, and (I3) inverter 

current.  

In an off-grid system, there is no guarantee that the voltage and frequency will 

always be the ones specified. Therefore, both voltage and frequency must be 

monitored. In addition, as power flows within the system, an important aspect of 

monitoring is having accurate power data with correct power factors. Of the 

monitoring devices available (described in Chapter 2), the SC20 was determined 

to be best suited to the present requirements because it provides data on voltage, 
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current, frequency, and power factor. Figure 3.1 shows the SC20 units connected 

to the system: (1) inverter AC output, (2) generator input, and (3) house load. 

Additionally, in an off-grid system, it is necessary to monitor how much power 

each appliance uses; therefore, an inexpensive device is needed that can report 

appliance power levels. The Current Cost EnviR monitor (explained in Chapter 2) 

is suited to the present requirements because it reports the power level of each 

appliance and is inexpensive. Another important requirement for effective 

monitoring is having the correct software to collect the data and store it in the 

database, while using a real-time web page to display it.  

3.2.1 Bogart PentaMetric Battery Monitor 

The Bogart PentaMetric Battery Monitor measures two voltages and three 

currents through a USB interface (explained in Chapter 2). It was installed in the 

system in July 2013. 

3.2.2 Smart Circuit 20 Monitors 

The Smart Circuit 20 230 V Monitor measures voltage, current, watts, frequency, 

and power factor through a USB computer interface (explained in Chapter 2). 

Three of them were installed in the system in July 2013. 

3.2.3 Current Cost EnviR Monitor 

The Current Cost EnviR 230V appliance monitor uses clamp sensors to measure 

current and a wireless connection to the display unit through a USB computer 

interface (explained in Chapter 2). The Current Cost EnviR 230 V appliance 

monitor and six sensors were installed in the system in July 2013. 

3.3 Summary 

In this chapter, the requirements, components, and specifications of the off-grid 

system were described. The following chapter provides an overview of the 

monitoring system in terms of its design, the laboratory set-up for evaluating and 

testing its design, and installation and commissioning of the monitor at the off-

grid site. 
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Chapter 4: Monitoring system, installation, and 

commissioning 

The monitoring system described in this chapter was designed to monitor and 

record operational information about the off-grid electricity system in real time. 

Monitoring is performed at the DC level of the battery system, solar panels, and 

inverter input, and at the AC main level of the inverter output and auxiliary 

generator input followed by the individual appliance level. Section 4.1 provides 

an overview of the monitoring system and its design, Section 4.2 describes the 

laboratory setup used to evaluate and test the design, and Section 4.3 describes the 

installation and commissioning of the monitor at the off-grid site. 

4.1 Monitoring system 

Details of the monitoring system, including an overview of the system, system 

architecture, software, and database, are covered in the following sections. 

4.1.1 Off-grid power monitoring system overview  

The system contains two main parts: hardware and software. The hardware aspect 

includes three types of monitoring device: a Bogart PentaMetric battery monitor, 

three Smart Circuit 20 controller monitors, and a Current Cost EnviR appliance 

monitor. The Bogart PentaMetric measures DC level data of the battery voltage, 

PV voltage, battery current, PV current, and inverter current. The Smart Circuit 20 

and Current Cost EnviR monitors measure the 230 V AC level data. The three 

Smart Circuit 20 controller monitors measure the inverter, generator, and house 

voltages, frequency, current, power factor, and watts. The Current Cost EnviR 

monitor measures the watts for six different appliances using six sensors. Each 

sensor uses a current clamp attached to the appliance and a wireless connection to 

the Current Cost EnviR display unit. All of these devices connect to a computer 

through USB cables. The software component includes the off-grid power 

monitoring software, which collects the data from all devices every ten seconds 

and stores it in the off-grid power monitoring database. It includes a web page that 

displays the data from the off-grid power monitoring database in real time. 
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4.1.2 System Architecture 

A general overview of the architecture of the monitoring system is provided in 

Figure 4.1. The terms used in this figure are explained below.  

                                                   

 

 

 

 

 

   

 

  

 

 

                  

       

 

 

 

 

 

 

 

 

Figure  4.1: Overview of off-grid power monitoring system architecture 

C#: C sharp: ‘A new programming language from Microsoft, it was created so 

that programmers can make a variety of applications’ (ComputerUser, 2013). 

HTTP: Hypertext Transfer Protocol: ‘The protocol used to transmit and receive 

all data over the World Wide Web’ (ComputerUser, 2013).  
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HTML: Hypertext Markup Language: ‘HTML is a collection of formatting 

commands that create hypertext documents—Web pages, to be exact’ 

(ComputerUser, 2013). 

IIS: Internet Information Server: ‘Also known as Internet Information Service, 

IIS is a Microsoft developed system that provides a set of Internet-based services 

for servers using Microsoft Windows’ (ComputerUser, 2013). 

Entity Framework: ‘Entity Framework (EF) is an object-relational mapper that 

enables .NET developers to work with relational data using domain-specific 

objects. It eliminates the need for most of the data-access code that developers 

usually need to write’ (Data Developer Center, 2013). 

ASP: Application Service Provider: ‘An Application Service Provider refers to a 

model where an application is hosted on a central facility’ (ComputerUser, 2013). 

JavaScript: ‘JavaScript is a scripting language developed by Netscape to enable 

Web authors to design interactive sites’ (ComputerUser, 2013). 

JQuery: ‘The JQuery library provides a general-purpose abstraction layer for 

common web scripting, and is therefore useful in almost every scripting situation’ 

(Chaffer & Swedberg, 2009). 

Highstock: ‘Highstock lets you create stock or general timeline charts in pure 

JavaScript, including sophisticated navigation options like a small navigator series, 

preset date ranges, date picker, scrolling and panning’ (Highcharts JS, 2013). 

 

The project system has two main processes, which independently operate. The 

first process involves requesting and storing all device data in the off-grid power 

monitoring database. The second process involves retrieving and presenting the 

data in a web page.  

In the first process, each device connects to the computer using a USB cable and it 

then runs the off-grid power monitoring software. The software requests the data 

needed from each device every ten seconds and then stores it in the off-grid power 

monitoring database.  

In the second process, when the off-grid power monitoring web page is opened, 

an HTTP request is sent to the computer server. The web page then uses the Entity 
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Framework to query all data from the off-grid power monitoring database. The 

database sends all data to the off-grid power monitoring web page. The data is 

processed by the Entity Framework, which sends the data in C#, ASP, JavaScript, 

JQuery, Highcharts, and HTML format to the computer server; it is then 

forwarded by the computer server to the browser. This process is described in 

Chapter 5.  

4.1.3 Off-grid power monitoring software 

The off-grid power monitoring software was developed for this study. The steps 

involved in building this software are detailed below.  

Market software installing and testing  

Understanding the concepts and features of other software is important to building 

new software. Several applications related to the devices used in this study were 

installed and tested prior to building the present software. Requirements for our 

software included collecting data from all devices every ten seconds and obtaining 

specific data from all devices. Not all device data could be gathered from the three 

different devices used in this study with a single application. 

Understanding device data format 

Each device has a different data format. Several documents are available that 

describe the data format of each device. Bogart Engineering has provided all 

documentation necessary to understanding the data format of its PentaMetric 

monitor (Bogart Engineering, 2010). The Smart Circuit 20 monitor 

communication protocol documentation provided by Watts Up? can be used to 

understand the data format and assist programmers (Watts Up?, n.d.). The Current 

Cost data format documentation provided by Current Cost is likewise very useful 

and easy for programmers to understand (Current Cost, 2009). 

Programming language and developer tool 

There are many programming languages, such as Java, C++, and C#, that can be 

used to build software. C# was selected for building the present software because 

of the researcher’s knowledge of the language, and Microsoft Visual Studio 2010 

was the developer tool used. 
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Writing the software code 

The informative device data format documents provided by each device company 

made writing the software code easier. The objective at the start of writing the 

software code was to write each device code in separate Visual Studio 

applications, which would make it easier to test the devices and ultimately 

combine all device code in a single application. 

Initialization  

Before each device could be accessed from the code, their interface parameters 

(data format, baud rate) had to be defined.  

First, in each device code, the device was defined to enable communication with 

it. The device definition is different for each device. The few lines of code below 

show how to define each device. 

The Serial Port Constructor was used to set up the property values to open the port 

to receive the data from it.  

#region Constructor 

public Pentametric(string port) 

  { 

    mInBuffer = new List<byte>(); 

 

    mSp = new SerialPort(port, BAUD_RATE, PARITY, DATA_BITS); 

    mSp.Open(); 

    mSp.DataReceived += new SerialDataReceivedEventHandler(mSp_DataReceived);            

    } 

#endregion 

 

The Serial Port Number was set up for each device in the app.config file. The 

code below shows one of the device serial port numbers. 

 
<setting name="PentametricPort" serializeAs="String"> 

   <value>COM4</value> 

</setting> 
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One of the requirements of this software is to set up a ten-second interval to 

collect data from each device. A few lines of code, shown below, were written to 

establish this interval.  

System.Timers.Timer tmrSmart Circuit1 = new System.Timers.Timer(); tmrSmart 

Circuit1.Interval = 10000; // 10000 = 10 seconds 

tmrSmart Circuit1.Elapsed += new System.Timers.ElapsedEventHandler(tmrSmart 

Circuit1_Elapsed); tmrSmart Circuit1.SynchronizingObject = this; //Synchronize 

with the current form... 

tmrSmart Circuit1.Start(); 

Reading the data 

The devices read numerous parameters; however, in this study, only some of these 

parameters are required. In the code for each device, two methods were written: 

DataReceived and ReadValue. The DataReceived method is used to receive all data 

from the device; the ReadValue method reads from the device the specific required 

parameters. For example, the Smart Circuit 20 device can read 18 parameters; 

however, only 5 of them are needed for this study.  
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Figure  4.2: Bogart PentaMetric parameter 
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Figure 4.2 outlines all parameters received from the Bogart PentaMetric device. 

As mentioned above, only five of these parameters are required for this study. The 

code below shows how to read these parameters. 

public int ReadValue(byte address, byte bytes) 

 { 

  byte[] toSend = new byte[] { 0x81, address, bytes, 0 }; 

  byte checksum = 0; 

  foreach (byte b in toSend) 

  checksum += b; 

  toSend[toSend.Length - 1] = (byte)(255 - checksum); 

  mInBuffer.Clear(); 

  mSp.Write(toSend, 0, toSend.Length); 

  for (int i = 0; i < TIMEOUT * 100; i++) 

 { 

  int toRead = mSp.BytesToRead; 

  byte[] received = new byte[toRead]; 

  mSp.Read(received, 0, received.Length); 

  mInBuffer.AddRange(received); 

  if (mInBuffer.Count == bytes + 1) 

 { 

   //Make sure the checksum is correct 

   byte cs = 0; 

   foreach (byte b in mInBuffer) 

   cs += b; 

   if (cs == 0xff) 

 { 

    int result = 0; 

    for (i = bytes - 1; i >= 0; i--) 

    { 

     result <<= 8; 

     result |= mInBuffer[i]; 

    } 

    return result; 

    } 

  throw new TimeoutException(); 

  } 

  Thread.Sleep(10); 

  } 

  throw new TimeoutException(); 

  } 
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ReadFormat1 is used to read volt parameters. 
 

public double ReadFormat1(byte address) 

{ 

 return ReadValue(address, 2) / 20.0; 

} 

 

ReadFormat2 is used to read amp parameters. 
 

public double ReadFormat2(byte address) 

{ 

 uint amp1 = (uint)ReadValue(address, 3); 

 uint sign = amp1 >> 23; 

 amp1 &= 0x7fffff; 

 if (sign != 0) 

 amp1 |= 0xff800000; 

 return -((int)amp1) / 1000.0; 

} 

 

The code below shows how to read the 5 required parameters of the 18 parameters 

that the Smart Circuit 20 device receives. 

public string ReadValue() 

 { 

  string data=string.Empty; 

  try 

 { 

 if (inBuf.IndexOf("#d") >= 0) 

 { 

  inBuf = inBuf.Substring(inBuf.IndexOf("#d")); 

 } 

 if (inBuf.StartsWith("#d") && inBuf.Contains(";")) 

 { 

  inBuf = inBuf.Substring(0, inBuf.IndexOf(";") + 1); 

  data = inBuf; 

  inBuf = ""; 

  mSp.DiscardInBuffer(); 

  mSp.Write("#R,W,0;"); 

 } 

 } 

 catch 
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 { 

 data = ""; 

 } 

 return data; 

 } 

 

Similarly, the Current Cost device receives several parameters; however, only six 

of them are required for this study. The code below shows how to read these 

parameters. 

public void ReadValue() 

{ 

 if(!mSp.IsOpen) 

 mSp.Open(); 

 dt[0] = ""; 

 dt[1] = ""; 

 dt[2] = ""; 

 dt[3] = ""; 

 dt[4] = ""; 

 dt[5] = ""; 

 for (int i = 0; i < 6; i++) 

 { 

  dt[i] = mSp.ReadLine(); 

 } 

  mSp.DiscardInBuffer(); 

  var ccObject = new CurrentCostObject(); 

  foreach (var item in dt) 

 { 

  CurrentCostUpdate cc; 

  try 

 { 

  cc = new CurrentCostUpdate(item); 

 } 

 catch 

 { 

 continue; 

 } 

 switch (cc.Sensor) 

 { 

  case 1: 

  mSensor1 = cc.ChPower; 
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  break; 

  case 2: 

  mSensor2 = cc.ChPower; 

  break; 

  case 3: 

  mSensor3 = cc.ChPower; 

  break; 

  case 4: 

  mSensor4 = cc.ChPower; 

  break; 

  case 5: 

  mSensor5 = cc.ChPower; 

  break; 

  case 6: 

  mSensor6 = cc.ChPower; 

  break; 

 } 

 } 

 ccObject.Timestamp = System.DateTime.Now; 

 ccObject.HouseLighting = mSensor1; 

 ccObject.WaterPump = mSensor2; 

 ccObject.Refrigerator = mSensor3; 

 ccObject.Entertainment = mSensor4; 

 ccObject.Portable1 = mSensor5; 

 ccObject.Portable2 = mSensor6; 

} 

 

The Smart Circuit 20 device has a buffer that must be cleared after receiving each 

sample from it.  

mSp.Write("#R,W,0;"); 

Storing the data in the database 

The Entity Framework is very important for accessing the database and entering 

the data received for each device into it. Therefore, each device must use the 

Entity Framework. The code excerpt below shows how one of the devices uses the 

framework. 

using (PowerMonitoringEntities ctx = new PowerMonitoringEntities()) 

{ 

 Monitor.Enter(ctx); 
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 PowerMonitoringEF.CurrentCost bmEntity = new 

 PowerMonitoringEF.CurrentCost();           

 bmEntity.Timestamp = ccObject.Timestamp; 

 bmEntity.Entertainment = ccObject.Entertainment; 

 bmEntity.HouseLighting = ccObject.HouseLighting; 

 bmEntity.Portable1 = ccObject.Portable1; 

 bmEntity.Portable2 = ccObject.Portable2; 

 bmEntity.Refrigerator = ccObject.Refrigerator; 

 bmEntity.WaterPump = ccObject.WaterPump; 

 try 

{ 

 ctx.CurrentCosts.AddObject(bmEntity); 

 ctx.SaveChanges(); 

} 

 catch (Exception ex) 

{ 

 MessageBox.Show(ex.ToString(), "An error occured!", 

MessageBoxButtons.OKCancel, MessageBoxIcon.Exclamation); 

} 

 finally 

{  

 Monitor.Exit(ctx);  

} 

} 

} 

4.1.4 Off-grid power monitoring database description  

The off-grid power monitoring database designed and created for this study is 

described below. The database was created with Microsoft SQL Server 2008. 

 

Off-grid power monitoring database entity relationships  

The entity relationship diagram in Figure 4.3 outlines the entities and attributes 

required for the database. There are four entities in the off-grid power monitoring 

database: BogartMonitor, SmartCircuitMachines, SmartCircuit20, and Current 

Cost tables. 
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Figure  4.3: Off-grid power monitoring database entity relationships  

The BogartMonitor table has seven attributes: Id, Timestamp, BatteryVoltage, 

BatteryCurrent, SolarCurrent, and InverterCurrent. These attributes are described 

below. 

Id: Primary key of this table and auto increase number of the record. The 

data type of this attribute is INT (4). 

Timestamp: Date and time of data recording. The data type of this 

attribute is DATETIME. 

BatteryVoltage: Recorded battery voltage. The data type of this attribute 

is FLOAT (8). 

SolarVoltage: Recorded solar voltage. The data type of this attribute is 

FLOAT (8). 

BatteryCurrent: Recorded battery current. The data type of this attribute 

is FLOAT (8). 

SolarCurrent: Recorded solar current. The data type of this attribute is 

FLOAT (8). 

InverterCurrent: Recorded inverter current. The data type of this 

attribute is FLOAT (8). 

The SmartCircuitMachines table has two attributes: Id and MachineName. This 

table was created to avoid data redundancy in the SmartCircuit20 table. These 

attributes described below. 
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Id: Primary key of this table and unique number for each device; it is used 

in the SmartCircuit20 table as MachineId. The data type of this attribute is 

INT (4). 

MachineName: Name of each device. The data type of this attribute is 

VARCHAR (100). 

The SmartCircuit20 table has a number of attributes, including Id, MachineId, 

Timestamp, ACVolt, ACAmp, Powerfactor, Watts, and Frequency. The 

descriptions of these attributes are below. 

Id: Primary key of this table; it is the auto increase number of the record. 

The data type of this attribute is INT (4). 

MachineId: Identification unique number from the SmartCircuitMachines 

table. The data type of this attribute is INT (4). 

Timestamp: Date and time of data recording. The data type of this 

attribute is DATETIME. 

ACVolt: Recorded AC voltage. The data type of this attribute is FLOAT 

(8). 

ACAmp:  Recorded AC amps. The data type of this attribute is FLOAT 

(8). 

Powerfactor: Recorded power factor. The data type of this attribute is 

INT (4). 

Watts: Recorded watts. The data type of this attribute is FLOAT (8). 

Frequency: Recorded frequency. The data type of this attribute is FLOAT 

(8). 

The CurrentCost table has eight attributes: Id, Timestamp, HouseLighting, 

WaterPump, Refrigerator, Entertainment, Portable1, and Portable2. These 

attributes are described below. 

Id: Primary key of this table; it is the auto increase number of the record. 

The data type of this attribute is INT (4). 
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Timestamp: Date and time of data recording. The data type of this 

attribute is DATETIME. 

HouseLighting: House lighting consumption in watts. The data type of 

this attribute is FLOAT (8). 

WaterPump: Water pump consumption in watts. The data type of this 

attribute is FLOAT (8). 

Refrigerator: Refrigerator consumption in watts. The data type of this 

attribute is FLOAT (8). 

Entertainment: Entertainment consumption in watts. The data type of this 

attribute is FLOAT (8). 

Portable1: Portable 1 consumption in watts. The data type of this attribute 

is FLOAT (8). 

Portable2: Portable 2 consumption in watts. The data type of this attribute 

is FLOAT (8). 

The tables below show the collected data stored in the off-grid power monitoring 

database. 

Table  4.1: Bogart Monitor sample data 

 

 

Table  4.2:  Smart Circuit 20 machines 
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Table  4.3: Smart Circuit 20 sample data 

 

 

 

Table  4.4: Current Cost sample data 

 

4.2 Testing  

To save time while testing the monitor at the off-grid site, a laboratory was built 

so that all aspects of the system could be tested before the equipment was installed. 

This section describes the laboratory setup, problems encountered and solved, and 

the schematic diagram of the laboratory setup. 

4.2.1 Laboratory setup 

Before using the software, we tested it in a laboratory situation to resolve any 

problems before actual use. Figure 4.4 shows the laboratory setup, which included 

three devices: the Bogart PentaMetric, Smart Circuit 20, and Current Cost. The 

Bogart Pentametric and Smart Circuit 20 lab tests schematic diagrams are shown 

in Figures 4.5 and 4.6.The software was tested on each of these devices.  
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Figure  4.4: Laboratory setup 

 

 

Figure  4.5: Bogart Pentametric lab test 
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Figure  4.6: Smart Circuit 20 lab test 

4.2.2 Problems and solutions 

While testing the devices, some issues were found when the software was running 

and storing the data in the database. For one, the software stopped running when 

the computer was updated and then restarted. To solve this problem, we added the 

software to the start-up folder so the software would run automatically when the 

computer restarts. Obtaining the correct time right was another issue; there were a 

few milliseconds of delay when the time was recorded in the database for each 

device. This issue was caused when the data was read from the devices; it was not 

in the same order for each sample. To address this issue, the manual correction of 

time after each download from the database was needed. In addition, when one of 

the devices was turned off, the software stopped running. This issue was resolved 

by programming the software to enter zero in the database and continue operating 

if one of the devices was turned off.  
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4.3 Installation and commissioning 

After the monitoring software was fully tested in the laboratory environment, it 

was installed at the off-grid site. An important requirement for installing the 

software in the field is having the optimal PC. Intense PC from Fit PC Company 

had all the specifications that were required to run our software on it: low power 

consumption, the correct number of USB ports, and the specific features for 

running the software (Fit PC, 2013).    

4.3.1 Device installation 

 

Figure  4.7:  Off-grid system device installation 

The Intense PC and devices installed in the field are shown in Figure 4.7. After 

the PC was set up in the field and our software was installed on it, drivers for all 

the devices were then installed to enable communication with the PC.  

4.3.2 Remote desktop and Internet connections 

The Intense PC was accessed from outside the field to verify that it was 

continuing to receive and download the data. A remote desktop connection was 

PentaMetric 
Battery Monitor 

Smart 
Circuit 

20 

Intense PC 
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established to communicate with the Intense PC. The Intense PC was given a 

dynamic IP address; therefore, it was necessary to maintain an updated IP address 

to retain the remote desktop connection. To address this need, the No-IP Dynamic 

Update Client (DUC) 10 was installed on the Intense PC, and a No-IP hosting 

account was created. The No-IP Dynamic Update Client (DUC) maintained the 

most current IP address of the Intense PC and automatically updated it at the No-

IP.com host (No IP, 2013). In addition, the Intense PC had to be connected to the 

Internet by a wired connection, as opposed to a wireless one, because when the 

PC was accessed through the remote desktop connection, it would log off, which 

would cause a wireless Internet connection—and remote desktop connection—to 

disconnect.  

 

Figure  4.8:  Schematic diagram of system-installed devices  

                                                 

10 http://www.noip.com/  

http://www.noip.com/
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Figure  4.9:  Schematic diagram of system-installed devices  

The devices installed in the system are shown in the schematic diagrams in 

Figures 4.8 and 4.9. Yellow denotes the Bogart PentaMetric device, pink 

represents the Smart Circuit 20 devices, and bright blue represents the Current 

Cost devices. 

4.3.3 Downloading data 

To download the data, the Intense PC was accessed through the remote desktop 

connection. The data was then exported from the database to the Intense PC in an 

Excel spreadsheet. The spreadsheet could then be copied from the Intense PC to 

another PC through the remote desktop connection. 
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4.3.4 Sample data 

 

Figure  4.10:  Excel spreadsheet of Bogart PentaMetric device data 

 

 

Figure  4.11:  Excel spreadsheet of Smart Circuit 20 device data  

4.4 Summary 

In this chapter, an overview of the monitoring system and its design were 

provided, the laboratory setup for evaluating and testing the design was described, 

and the installation and commissioning of the monitor at the off-grid site were 

described. In the next chapter, examples of energy-use visualisations are provided, 
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the dashboard design is described, the implementation and tools used are outlined, 

and the processes involving the web page and sections are explained. 
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Chapter 5: Data visualisation, dashboard design, 

and implementation 

The function of the off-grid dashboard is to present a real-time visualisation for 

the off-grid power monitoring. The dashboard was designed to provide 

information on real-time power input and consumption, the real-time battery 

charge state, battery power input/output, power consumption history, power input 

history, and battery charge state history. In Section 5.1, samples of energy use 

visualisations are provided. The dashboard design is described in Section 5.2. 

Section 5.3 explains the implementation, tools employed, and web page processes. 

A summary of this chapter is provided in Section 5.4. 

5.1 Energy use visualisation examples 

Numerous examples of domestic energy consumption dashboards are available. 

However, the particular requirements of off-grid monitoring, such as battery state 

and energy source information, are not always accommodated by these 

dashboards. The following paragraphs present a few examples of existing 

dashboards, which have partly informed the present dashboard design. 

 

Figure  5.1:  University of California, Merced, campus energy dashboard 

(reproduced from the University of California, Merced, 2012) 
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Varick Erickson of the University of California, Merced, has developed an online 

energy dashboard and corresponding software package that monitor and present 

real-time energy usage on the campus (University of California, Merced, 2012). 

Images from the system are shown in Figure 5.1 Each room has a series of 

wireless cameras that count the people in the room. That data informs the system 

of the rooms to be heated and the given times and days. The information is shown 

on the dashboard. Overall, the system enables campus staff to monitor, reduce, 

and save electricity (University of California, Merced, 2012). 

 

 

Figure  5.2:  University of Louisville, Kentucky, building dashboard (reproduced 

from Mog, 2013) 

To minimise environmental impact while maximising opportunities for energy 

efficiency on campus, the University of Louisville Office of University Planning, 

Design and Construction (UPDC) in Louisville, Kentucky, has produced a 

dashboard design that displays the campus sustainability effort (Mog, 2013). A 

screenshot from the campus building dashboard is shown in Figure 5.2. As part of 

the energy efficiency program, energy monitors were installed in four residence 

halls in 2012. These monitors collect data on real-time energy use in each hall, 

which helps the residents receive feedback on what energy they are using and how 

their conservation measures are helping. Having the rate of energy displayed on 

the dashboard helped the university to be one of the leading ten energy savers for 

the spring of 2012 (Mog, 2013). 
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Figure  5.3 :  University of Massachusetts, Amherst, energy dashboard (reproduced 

from the University of Massachusetts, Amherst, 2013) 

To reduce its overall impact on the environment and to save money, the 

University of Massachusetts, Amherst, conducted a pilot program using an energy 

dashboard to help students become more aware of their energy consumption 

(University of Massachusetts, Amherst, 2013). The dashboard, shown in Figure 

5.3, plots energy usage over a two-week period to show students the impact of 

their efforts to save energy during that period. The pilot program led to the 

installation of 7 touch-screen 42-inch monitors, which display in real time the 

energy usage data for 82 campus buildings (University of Massachusetts, Amherst, 

2013). 

 

Figure  5.4:  Kwantlen Polytechnic University, British Columbia, campus energy 

dashboard (reproduced from Kwantlen Polytechnic University, 2013) 
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Kwantlen Polytechnic University in British Columbia has installed Internet-

accessible dashboards to display its campus real-time energy consumption, as 

shown in Figure 5.4 (Kwantlen Polytechnic University, 2013). The dashboards 

provide data 24 hours a day. The system can display daily, weekly, monthly, and 

annual rates of use. It serves as a tool for analysing the data received and 

encouraging continued electricity savings. The university currently has two 

separate dashboard systems, one for the campuses and one for the horticultural 

facilities (Kwantlen Polytechnic University, 2013). 

5.2 Dashboard design 

A requirement of the monitoring system is to provide real-time information on the 

use and status of the system. For this reason, we intended to develop a dashboard 

display that is suitable for mobile devices and that can be updated in real time and 

viewed from any location. 

When users open the real-time off-grid monitoring system web page in any device 

and web browser, they are directed to the main page (see Figure 5.5). On this page, 

users can see the real-time power consumption and input meters, real-time battery 

charge status meter, and power input/output of the battery history. In the 

following paragraphs, each feature of the display is described in detail. 

 

Figure  5.5:  Main page of off-grid monitoring system dashboard  

The power consumption meter displays the present power consumption using a 

pointer and counter in the centre of the meter. The daily total of power 
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consumption in watt hours is shown below the counter depicting the present 

power consumption, as shown in Figure 5.6.  

 

Figure  5.6:  Power consumption meter 

The power input meter displays the present power input using a pointer and 

counter in the centre of the meter. The daily total of power input in watt hours is 

shown below the counter depicting the present power input, as shown in Figure 

5.7. 

 

Figure  5.7:  Power input meter 

The battery meter displays the present battery state of charge using a pointer and 

counter in the centre of the meter. The present battery voltages are shown below 

the counter of the present battery state of charge, as shown in Figure 5.8. An 

algorithm for calculating the battery charge status employs data from the 

monitoring system, including the history. This algorithm is described in Chapter 

6. 
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Figure  5.8:  Battery meter 

 

Figure  5.9: Power consumption history button 

When users press the ‘show power consumption history’ button, shown in Figure 

5.9, the chart at the bottom of the page changes and displays the power 

consumption history in a new chart, as shown in Figure 5.10. The same button 

then changes to a default button, shown in Figure 5.11. When users press this 

button, it returns them to the main page of the off-grid mentoring system 

dashboard. 

 

Figure  5.10: Power consumption history chart 

 

Figure  5.11:  Default page button 
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The same process occurs with the ‘show input battery history’ and ‘show battery 

charge history’ buttons, shown in Figures 5.12 and 5.13, respectively.  

 

Figure  5.12:  Power input history button 

 

Figure  5.13:  Battery charge history button 

5.3 Implementation 

In this section, the process of implementing our system is described, including the 

implementation environment, visualisation tools, and user interface.  

5.3.1 Implementation environment 

The first implementation environment of this study was for the development 

stage. It was implemented on a Dell laptop with a 500 GB hard disk, 4 GB RAM, 

and an Intel Core i5 CPU. The second implementation environment was for the 

production stage. It was implemented on an Intense PC with an 80 GB hard disk, 

4 GB RAM, and an Intel Celeron CPU. In the implementation, Microsoft Visual 

Studio 2010 and Microsoft SQL Server 2008 were used. The implementation was 

written in C#, ASP, JavaScript, JQuery, Highcharts, Highstock, and HTML.  

5.3.2 Visualisation tools 

Several visualisation tools from the Highcharts/Highstock library were 

implemented in our web page, including data range selector buttons, data time 

scale, text boxes that display time, and zooming and tooltip functionalities (see 

Figure 5.14). 
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Figure  5.14:  Visualisation tool items 

Data range selector buttons   

As shown in Figure 5.14, Item 1, this tool provides options for selecting ranges of 

data for time periods of one day, one week, one month, two months, and all 

available history.  

 

Figure  5.15:  Time selection buttons 

Data time scale  

The data time scale tool, shown in Figure 5.14, Item 2, enables users to manually 

select the data time period. It provides additional customisation capabilities for 

selecting data. 

 

Figure  5.16:  Time scale 

Text boxes displaying time  

Presented in Figure 5.14, Item 3, this tool displays the time after the user selects 

that option from the available buttons or manually selects it from the time scale.  

1 

2 

3 

4 
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Figure  5.17:  Text boxes displaying time 

Zooming 

As depicted in Figure 5.14, Item 4, this tool enables users to zoom the displayed 

data by selecting the mouse and finger zooming option.  

 

Figure  5.18: Data zooming 

Tooltip 

Shown in Figure 5.14, Item 5, the tooltip provides information, such as date, data, 

time, and so on, when the mouse rolls over the given data line on the chart.  

 

Figure  5.19: Tooltip functionality 

5.3.3 Available Libraries 

The off-grid power monitoring web page was developed using C# and ASP 

languages in addition to several free libraries. 

Highcharts/Highstock library 

The Highcharts charting library is written in HTML5 and JavaScript. It offers 

interactive charts for any website. The library supports the creation of many chart 

types, including line, spline, area, area spline, column, bar, pie, scatter, angular 

gauges, area range, area spline range, column range, bubble, box plot, error bars, 
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funnel, waterfall, and polar. Highstock is included in the library. It is written in 

JavaScript and is used to create stock or general timeline charts (Highcharts JS, 

2013). 

To use Highcharts, the following code excerpt must be included in the web page: 

    <script src="http://code.highcharts.com/stock/highstock.js" 

type="text/javascript"></script> 

    <script src="http://code.highcharts.com/highcharts-more.js" 

type="text/javascript"></script> 

JQuery library 

The JQuery library is suitable to almost any scripting situation because it provides 

a general abstraction layer for common web scripting. Without a JavaScript 

library, many lines of code must be written to find specific parts of an HTML 

document structure and to span the Document Object Model tree. JQuery provides 

a “robust and efficient selector mechanism for retrieving exactly the piece of the 

document that is to be inspected or manipulated” (Chaffer & Swedberg, 2010). 

To use JQuery, the following code excerpt must be included in the web page:      

<link rel="stylesheet" 

href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.9/themes/base/jquer

y-ui.css" type="text/css" media="all" />  

    <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.5.min.js" 

type="text/javascript"></script> 

<script 

src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.9/jquery-ui.min.js" 

type="text/javascript"></script> 

5.3.4 Web page process  

The web page process began with two Visual Studio 2010 class libraries: the off-

grid energy monitoring web page class, and off-grid energy monitoring entity 

model class. The web page model contained a server side and client side (see 

Figure 5.20). To map the relational model from SQL Server to the C# object 

model, the entity model was required. Use of the Entity Framework included in 

Visual Studio dramatically simplified the mapping process. An entity data model 

(EDM) was used to map the object model in the object data, which was then 

delivered to ASP file format using C#. In the first step of the web page process, 
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the server side information was transferred to the client side. A combination of 

Highcharts and Highstock, based on HTML, JavaScript, and JQuery, were used to 

generate graphical views in the browser of power consumption, power input, and 

the battery charge status.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.20:  Web page model process 

5.4 Summary 

In this chapter, examples of energy use visualisation were provided, the present 

dashboard design was described, and the implementation, development tools, and 
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process of the web page were explained. The next chapter explains state-of-charge 

(SoC) challenges, describes measuring known information and analysing data 

collected, and describes the battery SoC algorithm.  
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Chapter 6: Battery state-of-charge monitoring 

The objective of this research was to produce battery state-of-charge (SoC) 

indications based solely on continuous monitoring of battery voltage and current, 

as well as on low-voltage shutdown event information. An indication of the 

battery charge percentage (to at least the nearest quarter) at any given time was 

desired for the off-grid power system. Section 6.1 explains the challenge of this 

SoC goal. In Section 6.2, the measuring of collected information is described, 

while the analysis of data collected is described in Section 6.3. In Section 6.4, the 

battery SoC algorithm is outlined, and the chapter summary is provided in Section 

6.5.   

6.1 State-of-charge challenge 

To accurately measure battery SoC, measurements must be taken after the battery 

has been resting for a period of time. This resting state is not a typical one for off-

grid energy systems, which are constantly in use (Apperley & Alahmari, 2013). 

Actions can trigger the equipment that measures battery level and those that 

record battery SoC; these actions may cause a conflict due to a drop in voltage, 

and an accurate reading might not be taken (Apperley & Alahmari, 2013). For 

example, the Pauaeke installation uses a Studer inverter/charger that ceases 

operation when the battery voltage drops below 23.2 V for 2 min (Studder Innotec, 

n.d.). 

When a heavy load is applied to the battery, the proxy charge level, which 

normally reads at 0%, can occur above this percentage. The Pauaeke installation, 

for example, uses an Outback solar controller with a Studer inverter/charger that 

automatically changes to absorption mode when the battery approaches its 

capacity to hold a charge, which is shown by a combination of current and voltage 

(Battery University, 2013). 

The load current and total battery current are recognized by the solar controller, 

while the inverter recognizes the battery current level. However, neither of these 

is a dependable and accurate reflection of a fully charged battery. The battery 

voltage during charging depends on the rate of the charge input; it can 
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occasionally produce a false reading at a level lower than the 100% charge 

capacity (Pop et al., 2005). An awareness of the history of the battery can enhance 

an understanding of the SoC; however, it cannot prevent battery shutdown due to 

low voltage (above 0%) caused by a heavy load, or if the charger backs off under 

100% charge. In addition, a drop or other change in battery capacity can be 

expected as the battery ages (Pop et al., 2005). 

Changes in temperature can additionally influence the behaviour of the battery. 

Some monitors can read these changes with the inclusion of a temperature sensor 

(Perez, 1993). The behaviour of the charging battery is affected by the rate of 

charge. For example, a battery will appear to be 100% full when it is actually less 

than fully charged because of a high rate of charge. This behaviour supports the 

theory that a slower input charge rate will enable the battery to fully charge itself 

(Pop et al., 2005). Moreover, the behaviour of the discharging battery varies with 

the load placed on it. The battery voltage declines as the current load rises. This is 

not solely due to internal resistance. Time is required to recover the voltage after 

the load is removed. Additionally, a certain amount of energy is released as heat 

from the battery rather than being stored in it (Battery University, 2013). Because 

this energy can be lost because of the temperature and charge rate, which can vary 

and are occasionally unclear, gauging the battery ‘charge efficiency’ is difficult. 

Batteries in an off-grid system do not fully charge and discharge over the period 

of a day; therefore, these batteries may receive many sources of charge, such as 

from the sun or other energy input. Moreover, the discharge rate also varies due to 

peak usage; the batteries may not ever be completely full or empty. For example, 

this behaviour can occur when there is direct sunlight at a high usage time; the 

load may come directly from the source, not the battery (Apperley & Alahmari, 

2013). 

6.2 Measuring known data 

When monitoring battery energy input/output, voltage and current values can be 

precisely measured. The charge and discharge rates can also be calculated from 

these values, and the battery temperature can be observed. However, this latter 

capability is not yet available at the Pauaeke installation. The inverter low voltage 
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shut down events (LVSDs) can be easily detected. Nevertheless, the charger back-

off events are more difficult to detect, which makes them unreliable as an accurate 

reflection of the SoC. The battery charge state cannot be accurately known prior 

to charging because it can vary depending on many factors; however, it can be 

estimated using the above information (Apperley & Alahmari, 2013). 

6.3 Data analysis 

Figure 6.1 depicts analysis of actual data from the 23 July to 4 August period. 

Each vertical line indicates a separate day; however, the lines do not correspond 

with midnight. The algorithm was initiated without knowledge of the SoC or 

battery capacity; the assumption that the charge efficiency would be at 80%, with 

the beginning charge level at 0%, was made. For the first three days, the 

maximum charge value (C100), having begun at zero, was achieved; the SoC 

values were considered accurate from that point. Errors in charge efficiency (CE) 

value are shown in the figure as a general upward (CE too high) or downward (CE 

too low) drift in the CT and SoC values. The impact of any drift of this value 

would have been minimal provided that the maximum (C100) value was 

calculated within five days. 

 

Figure  6.1:  Data from the Pauaeke electricity system from 23 July 2013 to 4 August, 

2013 (reproduced from Apperley & Alahmari, 2013) 
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The red numbers shown in Figure 6.1 are described below. 

1. C100 increased because the CT was assumed to have an initial 

value of zero. However, it decreased (i.e., showed a negative 

tendency); therefore, C100 was increased so that it did not decrease 

below zero. At this stage, C100 represented the highest value of 

CT to date. 

2. C100 continued to increase in this region, and it followed the rise 

of CT as charging commenced. 

3. Because the true C100 value had not yet been established, the SoC 

value was 100% for the highest charge level to date. 

4. C100 continued to track the maximum value of CT to date; 

however, it also increased if CT became negative. 

5. Five days had passed; therefore, we froze C100 at this point and 

introduced a daily 2% drop in its value. 

6. SoC exceeded 100%. However, it was not as high as 105%; 

therefore, no action was taken. 

7. SoC decreased to -5% with no LVSD event occurring; therefore, 

the CE was assumed to be too low. A new value of CE was 

calculated from the battery power input/output over the previous 

seven days (81%), and CT was rest to zero. Although CT (and 

therefore SoC) continued to decrease for a period, CT did not reach 

as far as -5%; therefore, no further action occurred here. 

8. SoC again decreased to -5% with no LVSD event; therefore, CE 

was recalculated to 82%. It again decreased shortly thereafter to -

5%, and CE was recalculated to 82.5%. This process was repeated 

once again, thereby producing a value for CE of 83.2%. An LVSD 

event occurred soon thereafter; however, because SoC was at 0%, 

no action from the algorithm was required. 

9. The SoC increased to 105%; therefore, C100 was increased to 

decrease the former value to 100%. Although the SoC continued to 

increase, it reached to only 101%; therefore, no further action was 

required. 
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After the first five days, any perceived errors with the CE value were adjusted by 

observing the low voltage shutdown alert in the following manner. An LVSD alert 

occurred when the inverter output voltage dropped to zero and when the battery 

voltage was low (approximately < 23.2 V) for two minutes or more. Assuming 

that the tolerance band of ±5% was around the zero level of charge, the actual 

value of zero (LVSD occurrence) over the SoC level of 5% indicated an error, 

which required adjusting once more to 0%. If the zero level became too low 

(under -5%), it required readjustment towards 0%. 

 

 

Figure  6.2:  Upward drift in the estimated charge level because the assumed charge 

efficiency value (CE) is too high (reproduced from Apperley & Alahmari, 2013) 

An upward drift meant that the CE was excessively high. This behaviour was 

shown by the LVSD when the SoC increased above 5% and the power draw had 

not been extreme for the last two minutes. If the power draw was excessive for 

two minutes or more—for example, more than 500 W—then this value was 

averaged over the time monitored, and the event was ignored. In addition, if the 

SOC increased by 20% or more, this too was ignored to prevent errors. The alert 
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value was typically set to zero for the value equalling CT and to 0% for the SoC; 

the CE was then adjusted down. During the past week, if information was needed 

that an SoC occurred, then no adjustments to C100 were required.  

To set the CT to 0, we take the Pout, Pin, and CT values from the previous week 

and subtract them from the current values, thereby giving ΔPout, ΔPin and ΔCT. 

  SoC = 0% 

  new CE = (ΔCT + ΔPout) / ΔPin 

 

 

Figure  6.3:  Downward drift in the estimated charge level because the assumed 

charge efficiency value (CE) is too low (reproduced from Apperley & Alahmari, 

2013) 

As illustrated by Figure 6.3, a downward drift shows that the CE was excessively 

low (SoC below -5%) without an LVSD event. The adjustments of the CT to zero 

were required to help move the CE upwards. The same technique and formula 

were used to achieve a past weekly value with the SoC set to 0%. As shown in the 

figure, a continuous sequence of drifts occurred until an LVSD event followed or 
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the battery discharge ceased. The assumption previously mentioned that all CE 

errors cause drift issues was realized by the two LVSD processes because the 

LVSD was more consistent than the alerts indicating a full battery.  

 

 

Figure  6.4:  The effect of under-estimating the battery charge capacity (C100) 

(reproduced from Apperley & Alahmari, 2013) 

Issues with the total charge capacity shown by the C100 were occasionally 

observed. By watching the C100, an error could be observed by the following: 

When the SoC rose to 105%, a C100 low event occurred (C100LO). Given the 

assumption that this state resulted from the value being excessively low, for 

example, rather than the CE value being excessively high, verification was already 

made for that condition using the LVSD. Therefore, the required adjustments set 

the C100 to equal the CT. 
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Figure  6.5: The effect of over-estimating the battery charge capacity (C100) 

(reproduced from Apperley & Alahmari, 2013) 

The cause of the C100 being excessively high could be aging of the battery, the 

initial settings being incorrect, or the value of the C100 being too high because 

there is no reliable way to accurately gauge if the battery is full. These possible 

causes should be evaluated. To identify the problem when the C100 was 

excessively high, we reduced the setting by 2% every day until a low event was 

triggered, which would provide information on what the issue was. The end of 

each day would therefore yield: C100 = 0.98 × C100. 

6.4 Battery state-of-charge algorithm 

The battery SoC algorithm developed for the present study is described in this 

section. 

Pin = 0             Pin is the power input to the battery.   

Pout = 0           Pout is the power output from the battery.   

CT = 0             

C100 = 0         C100 is the maximum charge value. 
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CE = 0.8         CE is the charge efficiency.  

For the first five days, this algorithm was used to establish the value for C100: 

Take next data record 

Calculate Power increment Pinc = VB * IB * time increment, battery 

increment Binc and update Pin and Pout: 

If Pinc > 0 then 

 Pin = Pin + Pinc 

 Binc = CE * Pinc 

else 

 Pout = Pout – Pinc  / Pout is maintained as a positive value 

 Binc = Pinc 

If CT attempts to go below zero, C100 must be adjusted upwards 

If (CT + Binc) < 0 then 

 C100 = C100 – (CT + Binc) 

 CT = 0 

and if CT exceeds C100, C100 must be adjusted upwards 

else  

 CT = CT + Binc 

 If CT > C100 then 

  C100 = CT 

SoC = CT / C100 

continue looping 

From that point, follow this algorithm to maintain CE and keep C100 honest: 

Take next data record 

Take next data record 

Calculate power increment Pinc = VB * IB * time increment, and update 

Pin and Pout: 

If Pinc > 0 then 

 Pin = Pin + Pinc 

 CT = CT + CE * Pinc 
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else 

 Pout = Pout – Pinc  /Pout is maintained as a positive value 

 CT = CT + Pinc 

SoC = CT / C100 

 

1. Check for upward drift: 

If (LVSD) and (SoC >= 5%) and (2 minute load > 500 W) then 

 CT = 0 

 SoC = 0% 

Calculate ΔCT, ΔPout and ΔPin using values from 7 days prior 

 CE = (ΔCT + ΔPout) / ΔPin 

 

2. Check for downward drift: 

If (not LVSD) and (SoC <= -5%) then 

 CT = 0 

 SoC = 0% 

Calculate ΔCT, ΔPout and ΔPin using values from 7 days prior 

 CE = (ΔCT + ΔPout) / ΔPin 

 

3. Check if C100 is excessively low: 

If (SoC >= 105%) then 

 C100 = CT 

 SoC = 100% 

 

4. Check if C100 is excessively high: 

If (end of day) then 

 C100 = 0.98 * C100 

continue looping 
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6.5 Summary 

In this chapter, challenges posed by the state-of-charge (SoC) were explained, 

measuring known data was described, the data collected was analysed, and the 

battery state-of-charge algorithm was described.  
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Chapter 7: Conclusion and future work 

In summary, this research aimed to describe the implementation of monitoring 

equipment in an off-grid residential system. Software was developed to collect the 

data from the equipment and to store it in a power monitoring database. A 

monitoring dashboard was built to display the real-time data in combination with 

analysis techniques to provide short-, medium-, and long-term information.  

7.1 Conclusion 

In the initial sections of this thesis, the motivation of this research was outlined to 

address the questions: Why must subjects living off-grid monitor and control their 

electricity systems more than subjects who live on-grid? Why is understanding 

off-grid usage patterns useful for developing approaches to regulating on-grid 

energy usage?  

In addition, available monitoring devices and software, off-grid system 

technology and characteristics, battery state-of-charge (SoC) algorithms, and 

related work were reviewed. This information was applied to develop the 

hardware and software used to provide the required information for the present 

off-grid system. After the off-grid system environment and its components were 

fully described, the requirements and processes of performing the measurements 

were addressed.  

Once the monitoring software for this research was built, it was tested to identify 

and solve any issues before actual installation in the field.  

To build the dashboard, examples of energy use visualisations were reviewed. The 

dashboard design and its implementation environment were described in detail in 

Chapter five. The challenges presented by the battery SoC, variables that can be 

measured, and data analysis used to produce the SoC algorithm, were described in 

Chapter six. 

During this study, several limitations were identified that require further work. The 

off-grid monitoring database should be implemented into the IDSLM database at the 

university of Waikato. Because of security concerns with data entering the 

university network from outside it, the database was implemented in a Fit PC with 
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software in the field. To publish the web page, a Windows server was required. 

However, this server was not available and the web page was not published. As an 

option, if the University of Waikato can provide a domain in the university server, the 

web page could then be published.  

The study results were used to develop the battery SoC algorithm. The purpose of 

this algorithm is to help users of off-grid systems learn at any given time the 

percentage of charge in their off-grid system batteries. 

7.2 Future work 

The next step in this research is to collect data from more than one off-grid 

system. Appliance scheduling will then be undertaken to determine the energy-use 

impact of these appliances. The present power consumption of each appliance will 

be displayed in the developed dashboard, and the history record of each appliance 

will be available (see Figure 7.1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure  7.1: Developed off-grid system dashboard of appliance power consumption 

Chose appliance 
from the list 

Display appliance 
power consumption 

here as a meter 

Display appliance power 
consumption history here as graph  
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