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ABSTRACT 
Checking the predictive worth of an environmental 
model inevitably includes a goodness of fit metric 
to quantify the degree of matching to recorded 
data, thereby giving a measure of model 
performance. Considerable analysis and discussion 
has taken place over fit indices in hydrology but a 
neglected aspect is the degree of communicability 
to other disciplines. It is suggested that a fit index 
is best communicated to colleagues via reference 
to models giving unbiased predictions, because 
unbiased environmental models are a desirable 
goal across disciplines. That is, broad recognition 
of a fit index is aided if it simplifies in the unbiased 
case to a familiar and logical expression. This does 
not hold for the Nash-Sutcliffe Efficiency E which 
reduces to the somewhat awkward unbiased 
expression E = 2 – 1/ r2, where r2 is the coefficient 
of determination. A new goodness of fit index V is 
proposed for model validation as V = r2/(2-E), 
which simplifies to the easily-communicated  V = r4 
in the unbiased case. The index is defined over the 
range 0 ≤ V ≤ 1 and it happens that V < E for larger 
values of E. Some synthetic and recorded data sets 
are used to illustrate characteristics of V in 
comparison to E. 

 

INTRODUCTION 
 

Goodness of fit indices are useful metrics 
whereby a single number is used to 
summarise how well a model performs in 
matching a set of validation data, recognising 
at the same time that proper model 
evaluation should always include multiple 
criteria which will vary with the nature of the 
model (Biondi et al, 2012). Many different fit 
measures and validation concepts have been 
developed and discussed over the years in 
hydrology and other subject areas –  see, for 
example, Legates and McCabe (1999), Biondi 
et al (2012), Pushpalatha et al (2012), Krause 
et al (2005),  Dawson et al (2007), Coffey et al 
(2004), Lin et al (2002), Tedeschi (2006), Criss 
and Winston (2008). A useful overview on 

fitting measures and methodology is given by 
Bennett et al (2013).  
 
The hydrology community have tended to 
favour as a validation fit measure the Nash-
Sutcliffe Efficiency E:  
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as proposed by Nash and Sutcliffe (1970). The 
terms Oi and Pi here denote respectively the 
observed data and model-predicted values. E 
is a comparison against the mean value as a 
baseline predictor. Many other baselines 
could be used as well, depending on the 
situation (Schaefli and Gupta, 2007; Seibert, 
2001). 

 
There has been much analysis and discussion 
of E since its introduction and relevant work 
includes McCuen et al (2006), Gupta et al 
(2008),  Criss and Winston (2008), Jain and 
Sudheer (2008), Gupta and Kling (2011) and 
Ritter and Muñoz-Carpena (2013). An 
important point noted by Schaefli and Gupta 
(2007) is that E is unfamiliar in the wider field 
of environmental sciences. Hydrology has 
many connections to other disciplines and it 
would seem that this issue of communication 
could be given more attention.  
 

 
Fit indices differ in their mathematical 
expressions, depending on the means of 
quantification of misfit due to bias effects 
(systematic departure from the 1:1 line) and 
to random scatter. The environmental 
sciences aspire to develop models which are 
at least approximately unbiased and therefore 
the degree of communicability of a fit index 
might be measured by its degree of familiarity 
when simplified for the unbiased case. The 
purpose of this brief communication is to 
present a new goodness of fit index V which 
has the attribute of being immediately 
communicable in its unbiased form as r4, 
which is simply the square of the coefficient 
of determination.  
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29201444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


V is proposed here in the sense of a 
performance assessment of a single defined 
model as applied to a given validation data set. 
It is not intended as a tool for model 
identification or for making a statement as to 
general applicability of any specific model. 
Nor is it proposed that V should necessarily be 
used as an index in calibration because V in 
calibration optimisation will have the same 
issues of component aliasing as previously 
identified for E (Gupta et al, 2009). Also, it 
may happen that V in calibration has a 
somewhat more constrained range than for 
validation, as is the case for E (Gupta and 
Kling, 2011). 
 
 

FIT INDEX 
 
The new fit index can be defined conveniently 
in terms of E and r2 as: 
 
V = r2 / (2 –E)  0 ≤ V ≤ 1             (2)
      
where r2 is the coefficient of determination 
with respect to the linear regression relation 
between the observed data and the model-
predicted values.  The index could be thought 
of as the product of r2 and the term 1/(2-E) 
which rescales E to the 0,1 interval. 
 
An extreme special case where V would fail is 
if r2 = 1 exactly and the regression line 
between observed and model-predicted 
values is close to the x-axis. The model 
concerned should be rejected of course 
because all model predictions are 0.0 for 
practical purposes. In this situation E ≈ 0 but V 
has the unreasonably high value of 0.5.  In 
practical applications, however, there will 
always be some scatter about the regression 
line which, if near the x-axis, would give r2 ≈ 0 
and therefore V ≈ 0. 
 
Table 1 lists the unbiased-case expressions for 
some dimensionless fit indices. It is evident 
that E simplifies to a somewhat awkward 
function of r2 which is not so amenable to 
ease of communication. Similar comments 
apply for the equivalent unbiased expression  
 

Symbol Expression 
(unbiased 
case) 

Fit Measure 

E 2 – 1/r2

  

Nash-Sutcliffe  Efficiency 

C2M 2r2 -1 E defined over the -1 +1 
interval  

rC r Concordance correlation 
coefficient 

ωr2 r2 Weighted coefficient of 
determination 

V r4 Proposed new fit 
measure 

 
Table 1. Unbiased-case expressions for selected  
dimensionless fit indices. 

 
 
of C2M , which is E mapped to the -1, +1 
interval (Mathevet et al 2006). Lin (1989) 
introduced the concordance correlation 
coefficient rC which has been widely adopted 
as a fit index in medical statistics and has 
found some application in hydrology  (Meek 
et al 2009). The unbiased expression for rC is 
just the correlation coefficient r which is 
immediately recognisable. Despite this 
familiarity advantage however, rC has not 
gained popularity in hydrology. This may be 
because the complete rC  expression is 
somewhat complicated. In contrast, the 
weighted coefficient of determination ωr2 
(Krause et al, 2005) is certainly simple and is 
just r2 in the unbiased case. However, ωr2 is of 
limited value as a practical index because the 
weight ω represents only the degree of 
prediction mismatch arising from 
proportionality differences, neglecting over- 
or under-prediction bias. 
 
In addition to ease of communication, V has 
some advantage over E in that V gives smaller 
values that E for situations of good fit, keeping 
in mind that E is criticised from time to time 
for yielding somewhat larger values than 
seems desirable.   Specifically, for any r > 0 
there is equality of E and V for a particular 
value E* defined by: 
 

2* 1 1E r r      (3) 
 
If E > E* then V < E and vice versa (Figure 1). 
 



 

 

Figure 1. Comparison of V and E as a function of r2. 
Dashed line denotes V = E and is a plot of E* in Equation 
3. The region above the dashed line represents V < E. 
Blue and red lines are respectively V = r4 and E = 2 – 1/ r2, 
which are the unbiased cases for V and E. 

 

Beyond noting the ease of communication 

aspect, it is not the intention of this brief 

paper to put forward an objective case for 

general use of V by way of detailed 

mathematical or data-based comparison with 

other fit indices. Selection of an index will in 

the end be a matter of personal choice. 

However, some sense of the behaviour of V in 

comparison to E can be seen in the following 

section with respect to some selected data 

sets. 

 

APPLICATION TO SYNTHETIC AND 
RECORDED DATA SETS 
 
Figures 2-7 illustrate V and E applied to 
synthetic data to show some specific fit 
situations. Figures 2-4 show V and E for 
unbiased models with progressively 
decreasing degrees of fit. That is, Figures 2-4 
all have a = 0, b=1, and V = r4, where a and b 
are respectively the intercept and gradient of 
the linear regression line between observed 
and predicted values. The indices in the plots 
are given to three decimal places to enable 

comparisons but two decimal places would be 
standard. A randomisation-based significance 
measure p is applied to V but other 
approaches such as bootstrapping could be 
used as well (Ritter and Muñoz-Carpena, 

2013). 
 
Figures 5-7 illustrate bias effects on V and E. 
Figure 5 shows an arbitrary scatter of points 
with no evident association between 
observed and predicted values. The model 
here is biased (b = 0.14, a = 12.10) but not 
statistically significant and the model would 
be rejected. Figures 6 and 7 give an indication 
of the response of V to systematic departure 
from the 1:1 line. Figure 6 illustrates bias in 
proportionality only (a = 0, b = 1.3). The value 
of r2 = 0.92 is clearly too high here as a fit 
measure (r2 being a measure of precision but 
not accuracy) but it is a matter of personal 
judgement whether V or E best reflects the 
bias in the predicted values. Figure 7 
illustrates the effect of bias arising from a 
displacement effect only (a = 10, b =1). Again, 
it is personal preference whether V or E better 
represents the considerable degree of bias in 
this example. 
 
Figure 8 shows a recorded hydrograph 
segment where the “model” is simply an 
exponential curve fitted to a more extended 
portion of the discharge data. The 
corresponding scatter plot is shown in Figure 
9. Figures 9 and 10 both show the mean as 
the better predictor of the data, but with V 
values indicating the model in Figure 10 giving 
better fit to data than the model of Figure 9 
achieves for its data. This is despite evident 
under-prediction bias in the Figure 10 model. 
Both values of V are statistically significant but 
the p =0.02 value of Figure 9 may not be 
reliable because of some degree of serial 
correlation in the data.  Figure 11 shows a 
better model fit situation for a seasonal 
forecasting validation set.  
 
The validation sets of Figures 9-11 involve 
small amounts of data so any model 
performance conclusion is tentative and there 
is possibility of change in both V and E with 
the addition of further data. The small data 
sets do not well determine the least-squares 



best fit line between the observed and 
predicted data but the discrepancy between V 
and r4 is suggestive of model bias in all three 
cases. It would be useful in fact to present 
both V and r2 on scatter plots of observed and 
predicted values. 
 

 
Figure 2. Simulated good fit to data and fit indices 
(unbiased model). Solid line here and in subsequent 
figures denotes the 1:1 line. The significance level of V is 
from randomisation (Bardsley and Purdie, 2007). 

 

 

Figure 3. Simulated weak fit to data and fit indices 
(unbiased model). 

 

 

Figure 4. Simulated very poor fit to data and fit indices 
(unbiased model). 

 

Figure 5. Simulated model failure and fit indices (a = 
12.10, b = 0.14). 

 

 

 

Figure 6. Simulated model fit and fit indices with 
proportionality bias (a = 0, b = 1.3). 

 

 

 
Figure 7. Simulated model fit and fit indices with 
displacement bias (a = 10, b = 1). 
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Figure 8. Daily discharge values (from 22/9/1992) of the 
Kawerau River at Lake Wakatipu outlet, New Zealand. 
Dashed line is predicted flow from an exponential curve 
fitted to a longer time series. 
 
 
 

 
 
Figure 10. Predictions from a rainfall-runoff model of 
daily flood magnitudes, Tarawera River, New Zealand. 
The validation set is recorded flood peaks exceeding 50 
m3s-1. From Bardsley and Purdie (2007). 
 
 
 

DISCUSSION AND CONCLUSION 
 
It is well known that fit indices like V can yield 
values which are incorrectly high if applied to 
models which have a component of 
discovering the obvious (Schaefli and Gupta, 
2007). For example, a model forecasting 
seasonal rainfall on a per-region basis for wet 
and dry regions would clearly have no 
predictive ability if the forecasts were always 
just the respective regional means, giving  V = 
0 for each region. However, if the regional 
data were presented as a single data set then 
the resulting V would be an erroneously high 
value unless the data were first standardised 
by subtracting regional means from the 
recorded values. 

 

 

 
Figure 9. Scatter plot of observed and predicted values 
from Figure 8. 
 
 
 

 
 
Figure 11. Validation set (1963-97) of a hydroclimatic 
model forecasting winter inflows to Lake Pukaki, New 
Zealand. From Bardsley and Purdie (2007). 

 
 
 
 
 
For example, Legates and McCabe (1999) 
calculated inflated fit values when comparing 
various evaporation models because monthly 
evaporation averages were not first 
subtracted from the data. The present author 
apologetically notes a similar error in the 
context of presenting the fit of a rainfall-
runoff model with seasonal river discharge 
(Bardsley and Liu, 2003). 
 
 All fit indices have their advantages and 
disadvantages in representing validation fit, or 
lack of fit. One issue relevant to V concerns 
the use of squared deviations, with the 
implication that the squaring process gives 
undue weight to the more extreme 
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observations (Criss and Winston, 2008; 
Legates and McCabe, 1999). In fact, an 
argument can be made that such weighting is 
actually desirable. The reasoning here is that 
during the calibration process a model gains 
least experience from the extremes, which are 
always the most infrequent values. If the 
calibrated model is able to capture the 
environmental processes sufficiently well so 
that extremes are well matched in a validation 
data set, then it would seem appropriate for a 
validation fit index to give extra weight to 
such matching. 
 
V is a convenient fit measure for application 
to validation data sets. However, no claim is 
made for it being in some sense better than 
other indices in terms of summarising model 
fits by presenting model precision and bias in 
a single number. The main advantage of V is 
with respect to communicability and in 
conference presentations, for example, we 
are not likely to present model prediction 
plots that are strongly biased. V can then be 
communicated easily as being almost the 
same as r4 and therefore a more conservative 
index than r2, while at the same time still 
being a true fit measure and not simply a 
reflection of model precision. In this spirit of 
communication, V is suggested as a fit index 
for consideration for use in hydrology and the 
environmental sciences generally. 
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