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Abstract 

 

This investigation was carried out on behalf of the Momentive Specialty Chemicals 

Pty Ltd, Mt Maunganui. The aim of the investigation was to develop a method to 

analyse the formation of melamine formaldehyde resins via an in situ real time NMR 

experiment leading to quantitative NMR intensities of the resin up to the stages of its 

Industrial Resin Endpoint (IRE).  

In order to run an in situ reaction for the melamine formaldehyde resin system and 

monitor it in real time, both qualitative and quantitative NMR acquisition methods 

were required. The qualitative method was power gated and used to obtain results in 

situ and in real time. However to render it quantitative, it was necessary to develop a 

quantitative method which was initially executed to obtain a conversion factor for 

relating the qualitative results obtained in the in situ experiment to quantitative results 

performed by doing inverse gated NMR spectra on a final form of the resin.  The 

development of this technique required the determination of the longitudinal 

relaxation times (T1) of the species within the melamine reaction as these were 

required to derive the necessary repetition rates employed in the NMR acquisition 

methods. 

In general, this project involved the development of  the above mentioned NMR 

analytical protocols with tailoring to run this type of experiment in a 5 mm NMR tube 

using a 400 MHz NMR spectrometer whereby previous research on urea and phenol 

formaldehyde resins and employing identical NMR methodologies had relied on 

analyses conducted in a 10 mm NMR tube on a 300 MHz NMR instrument.  

As a result, reaction profiles of the melamine resin reaction were obtained during a 

real time experiment. The reaction profiles of the addition stage of the melamine resin 

reaction showed that the increase in the methylol melamine species occurs very fast 

and is justified by the exponential decay of the methylene glycol species 

corresponding to the formaldehyde solution. The condensation stages of the resin 
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reaction were also observed until the IRE. The reaction profiles of the ether and 

methylene bridge links are clearly given showing that ether linkages predominate in 

the addition stage and plateaus, and methylene linkages only increase after the 

addition stage of the reaction. They provided insight to the reaction progress 

corresponding to addition and condensation stages of the melamine resin reaction. 

 



 

iv 

 

Acknowledgements 

 

Firstly, I would like to thank Dr. Michael Mucalo and Prof. Alistair Wilkins for being 

my Waikato supervisors. Michael for your patience and understanding without which 

I would not be able to complete my thesis. Alistair, for your wide range of knowledge 

of all things analytical especially in NMR, your help and advice were much 

appreciated. 

Secondly, I would like to acknowledge Momentive Specialty Chemicals Pty Ltd for 

providing the project and application of funding from the Ministry of Science and 

Innovation (MSI). Scott Earnshaw, Sam Woolley, Clyde Campbell, I would like to 

express my thanks to you as industrial supervisors for guiding me through this project. 

To MSI, thanks for providing funding to support this project. 

Thanks go to Cheryl Ward, the Science librarian who helped me considerably with 

formatting Word, Endnote and Excel. Her help has been much appreciated. 

Thanks to all The University of Waikato Chemistry staff, especially the technicians 

for providing all the chemical, lab equipments and instrument training required.  

To fellow students and friends, thanks for being there for me during the course of 

these two years. The great social environment provided stress relief which has been 

needed many times throughout the course of the research. 

Maria, your help with the huge task of proof reading is deeply appreciated. I am 

grateful to have had you as a fellow student and friend for all the support you have 

given me throughout writing.  

I have saved the last thanks for my family, for always being there when times are 

hard. The support and encouragement felt and received was ultimately the drive to 

completing this thesis. Thank you for always being with me, I love you all. 



 

v 

 

Table of Contents 

 

Abstract ......................................................................................................................... ii 

Acknowledgements ...................................................................................................... iii 

Table of Contents ......................................................................................................... iv 

List of Figures ............................................................................................................ viii 

List of Tables.............................................................................................................. xiii 

List of Equations ......................................................................................................... xv 

List of Abbreviations................................................................................................. xvii 

Introduction ................................................................................................................... 1 

1.1  General Background........................................................................................... 1 

1.2  The chemistry of melamine formaldehyde resins .............................................. 4 

1.2.1  Raw materials .............................................................................................. 4 

1.2.2  Reactions between melamine and formaldehyde ........................................ 7 

1.2.2.1  Modified resins .................................................................................... 8 

1.2.2.2  Unmodified resins ................................................................................ 9 

1.3  NMR Spectroscopy .......................................................................................... 14 

1.3.1  Introduction ............................................................................................... 14 

1.3.2  Nuclear magnetism ................................................................................... 15 

1.3.3    Pulse ........................................................................................................ 18 



 

vi 

 

1.3.4  Relaxation ................................................................................................. 19 

1.3.5  The NMR experiment ............................................................................... 20 

1.3.6  The NMR spectra ...................................................................................... 21 

1.4 Previous Studies of Melamine Formaldehyde resins ........................................ 23 

1.5  Objectives of present investigation .................................................................. 27 

2  Materials and Methods ............................................................................................ 28 

2.1  Nuclear Magnetic Resonance ........................................................................... 28 

2.1.1  General NMR conditions .......................................................................... 28 

2.1.2  Standard Acquisition Method ................................................................... 30 

2.1.3  The Qualitative (rapid) NMR Acquisition Method ................................... 31 

2.1.4  The Quantitative (slow) NMR Acquisition Method ................................. 33 

2.1.5  Temperature Management. ....................................................................... 34 

2.1.6  Additional NMR Investigations ................................................................ 35 

2.2  Additional Techniques used to study the resins. .............................................. 38 

2.2.1  Infrared Spectroscopy ............................................................................... 38 

2.2.2  MALDI-TOF Spectrometry ...................................................................... 39 

2.2.3  Electrospray Ionisation Time of Flight mass spectrometry ...................... 40 

(ESI-MS or MicrOTOF) ..................................................................................... 40 

2.3  The Preparation of Melamine Formaldehyde Resins ....................................... 41 

2.3.1  Preliminary reagent preparations. ............................................................. 42 

2.3.2  Commercial Resin Synthesis on a laboratory scale .................................. 42 



 

vii 

 

2.3.3  Resin synthesis for real time analysis ....................................................... 44 

2.4  Summary of the steps leading up to the deduction of the quantitative 

NMR intensities of species observed in real time NMR analyses of resin 

reaction. ........................................................................................................... 46 

3  Development of the Rapid NMR Method ............................................................... 47 

3.1  Introduction ...................................................................................................... 47 

3.2  Deducing the NMR spectrometer parameters .................................................. 47 

3.2.1  The 
13

C pulse: Theory ............................................................................... 47 

3.2.2  Repetition rate ........................................................................................... 52 

3.3  Signal assignment of the 
13

C NMR spectrum .................................................. 54 

3.4  Factors which influence the chemical shift ...................................................... 59 

3.5  Internal tube and lock solvent/reference .......................................................... 64 

3.5.1  Internal tube and optimization .................................................................. 64 

3.5.2  Selection of solvent ................................................................................... 65 

3.6  Longitudinal relaxation times, T1 ..................................................................... 67 

3.6.1  The inversion-recovery method ................................................................ 68 

3.6.2  Transverse relaxation times, T2 ................................................................. 73 

3.7  Determination of the conversion factors .......................................................... 75 

3.7.1  One Step Method ...................................................................................... 75 

3.7.2  Two Step Method ...................................................................................... 81 

3.8  Application of the conversion factors to qualitative data................................. 83 



 

viii 

 

4  Analysis of Melamine Resin Reactions .................................................................. 86 

4.1  Introduction ...................................................................................................... 86 

4.2  NMR reaction monitoring ................................................................................ 86 

4.2.1  Addition stage reactions ............................................................................ 87 

4.2.2  Condensation stage reactions .................................................................... 92 

4.3  Results from the additional techniques used to study the melamine 

formaldehyde resin systems............................................................................. 97 

4.3.1  Solid state NMR spectroscopy .................................................................. 97 

4.3.2  Fourier transform infrared spectroscopy ................................................. 100 

4.3.3  MALDI-TOF-MS .................................................................................... 104 

5  Conclusion and Recommendations ....................................................................... 107 

5.1  Conclusion ..................................................................................................... 107 

5.2  Future development ........................................................................................ 108 

6  References ............................................................................................................. 109 

7  Appendix 1 ............................................................................................................ 115 



 

ix 

 

List of Figures 

 

Figure 1. 1 The production of dicyanodiamide from calcium carbide .......................... 4 

Figure 1. 2 The dimerisation of dicyanodiamide under high yield melamine 

production conditions .................................................................................................... 4 

Figure 1. 3 The modern commercial synthesis for melamine ....................................... 5 

Figure 1. 4 The structure of trimethyl ether of trimethylol melamine. ......................... 8 

Figure 1. 5 The mechanism of which formaldehyde reacts with melamine under basic 

conditions .................................................................................................................... 10 

Figure 1. 6 Possible methylol melamine products: (A) monomethylol melamine (B) 

dimethylol melamine (C) tetramethylol melamine. .................................................... 10 

Figure 1. 7 A generalised scheme of the pathways of methylolated melamine .......... 11 

Figure 1. 8 The reactions of methylol with amino, imino and other methylol groups 

where R is the melamine moiety ................................................................................. 12 

Figure 1. 9 A proposed structure of a final liquid state melamine resin ..................... 13 

Figure 1. 10 (a) Larmor precession of a single nucleus, (b) excess low energy nuclei 

in a sample and (c) excess low energy nuclei presented as a rotating frame .............. 17 

Figure 1. 11 The magnetisation from equilibrium to a 90° pulse. (a) r.f. radiation 

perpendicular to static field, (b) sample magnetisation driven around the x axis, (c) 

the position of the sample magnetisation after a 90° pulse ......................................... 18 

Figure 1. 12 The Fourier transformation from an FID (time domain) to an NMR 

spectrum (frequency domain ....................................................................................... 20 

 



 

x 

 

Figure 2. 1 The concentric arrangement of the internal solvent tube and sample used 

for NMR analyses in the current investigation ........................................................... 29 

Figure 2. 2 Schematic of the Qualitative analysis pulse program ............................... 31 

Figure 2. 3  Schematic of the quantitative analysis pulse program ............................. 33 

Figure 3. 1 Position of the sample magnetisation when a 70° and a 90° pulse is 

applied. ........................................................................................................................ 48 

Figure 3. 2 An overlaying spectrum of linear methylol species (from a prepared 

sample of melamine formaldehyde resin) subjected in experiments under different 

pulse angles. From left to right 90° (blue), 70° (red) and 45° (green). (Note the x axis 

is offset for clarity). ..................................................................................................... 49 

Figure 3. 3 Spectra of methylene glycol species obtained after executing the POPT 

program ....................................................................................................................... 51 

Figure 3. 4 A representative spectrum of a control resin sample obtained using the 

qualitative (rapid) method. .......................................................................................... 55 

Figure 3. 5 A representative spectrum of a control resin sample obtained using the 

quantitative (slow) method .......................................................................................... 55 

Figure 3. 6 A spectrum showing the positions of the methylol and ether signals ...... 58 

Figure 3. 7 Overlaying spectra of linear methylol at 30°C (green), 60°C (red) and 

90°C (blue) noting that intensity of the peak is due to the extent of the reaction. ...... 59 

Figure 3. 8 A plot showing the temperature set point of the VTU compared to the 

actual temperature measured with a thermocouple. .................................................... 61 

Figure 3. 9 A plot showing the temperature discrepancy of the thermocouple 

temperature measure within the probe and the thermocouple VTU set point............. 62 

Figure 3. 10 Inversion-recovery pulse sequence ......................................................... 68 



 

xi 

 

Figure 3. 11 A plot of the observed intensities (Mz) against the varied delays (VD) 

 ..................................................................................................................................... 70 

Figure 3. 12 Bruker Topspin 3 T1 profile for linear methylol. .................................... 71 

Figure 3. 13 A spectra obtained using varied D1 to show the effects of saturation on 

quaternary carbons from left to right D1 = 2 s (green), 1 s (red), 0.5 s (blue). ........... 73 

Figure 3. 14 Quality control chart of 8 different replicates of quantitative NMR 

experiments showing the RPI of the branched dimethylene ether with hemiformal 

methylol (72.08 ppm)(. SD = standard deviation and 2SD = 95% confidence of a 

normal distribution curve. ........................................................................................... 79 

Figure 3. 15 The quantitative reaction profile (after application of the conversion 

factor) for the integrated species of methylene from hemiacetal (89.23 ppm) 

generated from a real time reaction ............................................................................. 85 

Figure 4. 1 The reaction profiles showing: secondary amine of the triazine carbon of 

melamine (A, 166.2 ppm) and tertiary amine of the triazine carbon of melamine (B, 

164.84 ppm) ................................................................................................................ 88 

Figure 4. 2 Formaldehyde species corresponding from top to bottom to: Methylene 

carbon of hemiacetal, dimeric methylene glycol, monomeric methylene glycol and 

methoxy carbon of hemiacetal .................................................................................... 89 

Figure 4. 3 The quantitative reaction profile of dimeric methylene glycol (85.36 ppm) 

and monomeric methylene glycol (81.67 ppm) .......................................................... 90 

Figure 4. 4 Reaction profile of methylene carbon of hemiacetal species (89.23 ppm) 

and methoxy carbon of hemiacetal (54.03 ppm) ......................................................... 90 

Figure 4. 5 Reaction profile for linear methylol (63.80 ppm), linear hemiformal 

methylol (67.59 ppm) and branched methylol (69.91 ppm) ....................................... 91 



 

xii 

 

Figure 4. 6 Reaction profile for linear methylene (46.61 ppm) and branched 

methylene (52.73 ppm) ............................................................................................... 93 

Figure 4. 7 The reaction profile of linear dimethylene ether (67.59 ppm), branched 

dimethylene ether with hemiformal methylol (72.14 ppm) and branched dimethylene 

ether with methylol (73.02 ppm). ................................................................................ 93 

Figure 4. 8 The reaction profile of the major linkage groups of the resin; linear 

dimethylene ether (67.59 ppm) and methylene linkage (46.61 ppm) ......................... 95 

Figure 4. 9 Solid State NMR spectrum of melamine using CP pulse program with 

5000 scans ................................................................................................................... 97 

Figure 4. 10 Solid state NMR spectrum of freeze dried melamine formaldehyde final 

resin (control) using CP puse program with contact time of 2000 µs ......................... 98 

Figure 4. 11 Overlaid spectra of the final resin (control) sample acquired under the 

CP (red, top) and the HP DEC (blue, bottom) pulse programs. .................................. 99 

Figure 4. 12 Representative FT-IR spectrum of melamine ....................................... 100 

Figure 4. 13 Representative spectrum of melamine formaldehyde resin .................. 101 

Figure 4. 14 Overlapped FT-IR spectra of melamine (black) and melamine 

formaldehyde spectra (blue) ...................................................................................... 101 

Figure 4. 15 MALDI-TOF spectrum of sample with dithranol as a matrix .............. 104 

Figure 4. 16 The structure of 2 melamine molecules with different numbers of linkage 

groups ........................................................................................................................ 106 

 



 

xiii 

 

List of Tables 

 

Table 2. 1 Typical NMR acquisition conditions for the Quantitative and Qualitative 

NMR methods. ............................................................................................................ 30 

Table 2. 2 Experimental parameter values used for T1 and T2 experimental parameters 

(D1 = relaxation delay, D20 = Fixed echo time to allow elimination of diffusion) ... 36 

Table 3. 1 The 
13

C chemical shift assignments of individual melamine resin species 

used throughout the current investigation. (Where Ѻ represents a melamine moiety, D 

= deuterium atom, R = CH2OH, hydrogen, CH2 linkage group or CH2OCH2 linkage 

group). ......................................................................................................................... 56 

Table 3. 2 A table showing the applied output power required for each of the specific 

set temperatures on the VTU and the corresponding temperatures of the wire 

thermocouple and their differences. ............................................................................ 61 

Table 3. 3 A table showing the external diameter of the internal tube and volume of 

sample used. ................................................................................................................ 64 

Table 3. 4 The T1 relaxation times measured using the Inversion Recovery Method  

(using commercial Bruker software) of the measurable species within the melamine 

formaldehyde resin sample. ........................................................................................ 72 

Table 3. 5 The T2 relaxation times of measurable species within a control melamine 

formaldehyde sample. ................................................................................................. 74 

Table 3. 6 Integrated signal areas and the RPI (normalised intensities to the linear 

methylol peak at ~64 ppm) of a quantitative spectrum ............................................... 76 

Table 3. 7 Integrated signal areas and the RPI (normalised intensities to the linear 

methylol peak at ~64 ppm) of a qualitative spectrum ................................................. 77 



 

xiv 

 

Table 3. 8 Ratio of RPIs from the one step method producing the conversion factors 

for each signal using the results from above ............................................................... 78 

Table 3. 9 The mean RPIs of the 7 NMR quantitative and qualitative experiments 

used for the generation of the conversion factor for all signals in melamine resin. ... 79 

Table 3. 10 The relative peak intensities (RPI) of 5 example signals obtained from 

four different pulse programs used to deduce the conversion factor via the two step 

method. ........................................................................................................................ 81 

Table 3. 11 Comparison of the saturation (Sat), NOE (NOEf) factors and conversion 

factors of the 1 and 2 step methods. ............................................................................ 82 

Table 3. 12 A list of reliable conversion factors for each chemical environment from 

using the average of the 7 repeated quantitative and qualitative experiments. ........... 84 

Table 4. 1 The infrared absorptions of melamine corresponding to the nature of the 

assignments ............................................................................................................... 102 

Table 4. 2 The infrared absorptions of melamine formaldehyde resin corresponding to 

the nature of the assignments .................................................................................... 102 

Table 4. 3 The area and intensity of the mass peaks of interest ................................ 105 

Table 4. 4 Mass to charge ratio of substituted melamine determined by            

MALDI-TOF ............................................................................................................. 105 



 

xv 

 

List of Equations 

 

Equation 1.1 ............................................................................................................. 6 

Equation 1.2 ............................................................................................................. 6 

Equation 1.3 ............................................................................................................. 6 

Equation 1.4 ............................................................................................................. 6 

Equation 1.5 ............................................................................................................. 7 

Equation 1.6 ............................................................................................................. 7 

Equation 1.7 ........................................................................................................... 15 

Equation 1.8 ........................................................................................................... 16 

Equation 1.9 ........................................................................................................... 16 

Equation 1.10 ......................................................................................................... 16 

Equation 1.11 ......................................................................................................... 17 

Equation 1.12 ......................................................................................................... 17 

Equation 1.13 ......................................................................................................... 19 

Equation 1.14 ......................................................................................................... 19 

Equation 3.1 ........................................................................................................... 48 

Equation 3.2 ........................................................................................................... 52 

Equation 3.3 ........................................................................................................... 69 

Equation 3.4 ........................................................................................................... 69 



 

xvi 

 

Equation 3.5 ........................................................................................................... 69 

Equation 3.6 ........................................................................................................... 70 

Equation 3.7 ........................................................................................................... 70 

Equation 3.8 ........................................................................................................... 70 

Equation 3.9 ........................................................................................................... 76 

Equation 3.10 ......................................................................................................... 82 

Equation 3.11 ......................................................................................................... 82 

Equation 3.11 ......................................................................................................... 84 

 



 

xvii 

 

List of Abbreviations 

 

NMR Nuclear Magnetic Resonance 

FID Free Induction Decay 

ESI - MS Electrospray Ionisation mass spectrometry 

FT Fourier Transform 

FT - IR Fourier Transform Infrared Spectroscopy 

ATR - IR Attenuated Total Reflection Infrared Spectroscopy 

MCT Mercury Cadmium Telluride 

MALDI - TOF Matrix Assisted Laser Desorption Ionisation Time of Flight 

NOE Nuclear Overhauser Effect 

CP Cross Polarisation 

r.f. Radiofrequency 

HMMM Hexakis Methoxymethyl Melamine 

VTU Variable Temperature Unit 

M:F Melamine to Formaldehyde ratio 

IRE Industrial Resin Endpoint 

RPI Relative Peak Intensity 

S/N Signal to noise ratio 

NS Number of scans 



 

xviii 

 

DEPT Distortionless Enhancement by Polarisation Transfer 

HMBC Heteronuclear Multiple Bond Correlation  

HSQC Heteronuclear Single Quantum Coherence 

D1 Relaxation delay 

VD Variable delay 

T1 Longitudinal relaxation time 

T2 Transverse relaxation time 

MPa Mega Pascal 

Hz Hertz 

MF Melamine formaldehyde 



Introduction 

1 

 

Introduction 

1.1  General Background 

 

Resins are hydrocarbon secretions from plants dating back as far as 320 million years 

ago.
1
 Ambers are a well known group of fossilized remains of tree resin which has 

been precious to many cultures since the Neolithic times.
2
 Since then the uses of resin 

were well documented by Theophrastus in ancient Greece,
3
 as well as in ancient 

Egypt.
4
 Resins in contemporary times are useful components of varnishes, adhesives 

and laminates, polishes, perfume, incense and are valued for their ability to form 

enamel-like finishes. 

Due to the vast applications of resins and their limited natural resources, alternative 

methods were required to produce resins more economically. This led to the 

production of the well known synthetic resins. Synthetic resins are the liquid material 

which have a property of interest similar to natural plant resins that are replicated by 

scientists, i.e. they are viscous and can harden permanently.  

Synthetic resins can be typically classified as either thermoplastic resins or 

thermosetting resins. Thermoplastic resins are those which after being physically set 

can be reformed and softened upon pressure and heating. These thermoplastic resins 

include polyethylene resin, polypropylene resin and polyvinyl chlorine (PVC). 

Thermosetting resins are those which are typically softened during formation stages 

and set to their final shape, then cured by introducing a chemical curing agent or heat 

treatments. Once it is cured a thermosetting resin cannot be melted and reformed into 

a new shape.
5
 

Since the development of thermosetting resins, the market for these resins increased 

rapidly and is now a multibillion dollar industry. Thermosetting resins include epoxy 

resins, phenolic resins and amino resins.  
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Epoxy resins were initially produced by the Devoe Raynolds company around 1947. 

They are often used in industrial and construction materials for high strength 

properties
6
 

Phenolic resins were initially proposed by Baekeland, and they  are commonly 

applied to moulding compounds in foundries, lacquers varnishes  and spray 

insulators.
7,8

 

Amino resins are comprised of urea formaldehyde resins, melamine formaldehyde 

resins and composite of melamine urea formaldehyde resins, of which urea 

formaldehyde resins are the most cost effective due to the relatively high cost of 

melamine in other resins. 

Melamine formaldehyde resins, commonly known simply as melamine resins were 

produced industrially by Henkel and its condensation production patented around 

1935. Furthermore, this was around the same time as the first feasible route to 

commercial production of melamine was developed by Ciba AG (Switzerland).
9, 5

 

This resin was initially invented by Talbot
10

 for the use of casting and molding which 

was the building block of developing this resin for the vast range of applications 

melamine resins now contribute to.  

A substantial improvement in chemical resistance properties and high water 

resistance occurred with melamine resins compared to urea formaldehyde resins. This 

resulted in the interest for the determination of the mechanism of the formation 

reaction and it is commonly covered within many textbooks related to plastics and 

polymers.
5, 9, 11

 Accounts of chemical reaction, applications and their importance in 

the industrial field of melamine resins are described in these textbooks. 

Melamine resins were initially invented for the purpose for moulding and casting,
10

 

but at present, due to the relatively high cost of production, melamine resins are 

generally used for surface coatings, laminates, moulding compositions, textile 

finishes and adhesives.
 5,9,11-15 

For the purposes of this project the melamine resins of 
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interest are those involved in the wood adhesive industry to produce plywood and 

laminated veneer lumber(LVL). 

A major consideration for formaldehyde based resins is the release of formaldehyde 

upon hydrolysis. This is a significant problem associated with urea formaldehyde 

resins. Formaldehyde in melamine-based resins is tightly bound compared with the 

formaldehyde in urea based resins. Consequently, formaldehyde emissions are 

reduced and thus melamine resins are preferred in cabinets, furniture and timber.  

The dominant limitation to the wider use of melamine resins in production is the cost 

of manufacturing.
16

 The raw material, melamine is expensive  in terms of the 

industrial revenue the resin is expected to produce, limiting the applications of 

melamine resins to materials which require relatively less of the material for example 

in coatings and laminates rather than the use as a bulk material. 

The commercial production of melamine resins needs to be improved to be more 

efficient, economical and eco-friendly resin to be produced commercially whilst 

preserving or strengthening the physical properties in the final state of the resin 

product to improve its desirability for manufacture and utilization of these resins. 

Using spectroscopic characterization techniques of the reaction while it is progressing 

can provide valuable insights into the resin reaction and its evolution, 

In previous studies, the use of NMR allowed Woolley
7
 and Zeng

17
 to develop in situ 

NMR methods which followed the formation reactions of phenolic- and urea-based 

formaldehyde resins in real time. These studies helped to account for the changes 

over time for those resins quantitatively. Being able to quantitate the NMR intensities 

observed allowed for a complete understanding of the reactions between the reactants 

used up to the commercial endpoints of the resins (i.e. the final product). 
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1.2  The chemistry of melamine formaldehyde resins 

 

1.2.1  Raw materials 

 

 Melamine
 
 

Melamine was first synthesized in 1834 by a German chemist called Justus von 

Liebig, by heating ammonium thiocyanate. The material had no documented uses 

until Henkel's 1935 patent as mentioned earlier.
 5,9,18

 There are several methods to 

synthesize melamine,
12-14  

the method used in early commercial production involved a 

two step reaction via the production of dicyanodiamide. The production of 

dicyanodiamide from calcium carbide is shown below:   

 

Figure 1.1 The production of dicyanodiamide from calcium carbide. Adapted from reference 9. 

 

Dicyanodiamide is the product of treating calcium carbide with nitrogen gas to form 

calcium cyanamide. The acid treatment of calcium cyanamide removes the calcium 

component and produces cyanamide. The heating of cyanamide between 70 - 80 °C 

dimerises and produces dicyanodiamide (Figure 1.1).
5
  

 

Figure 1.2 The dimerisation of dicyanodiamide under high yield melamine production conditions. 

Adapted from reference 9. 



Introduction 

5 

 

The heating of dicyanodiamide to just above its melting point of 209 °C results in an 

exothermic reaction which produces melamine plus a number of water insoluble     

de-ammoniation products. To maximise the yield of melamine the reaction was 

carried at 250 - 300 °C under approximately 4 MPa of pressure (Figure 1.2).  

In modern commercial production, melamine is produced from urea (shown below). 

 

Figure 1.3 The modern commercial synthesis for melamine. Adapted from reference 5. 

 

This process requires six urea molecules to form one molecule of melamine. The 

three ammonia carbamate molecules can potentially be recycled to form urea. Thus 

this process is normally carried out parallel to the production of urea. 

 

 Formaldehyde 

In 1859 Butlerov described the possibility of formaldehyde forming polymers during 

its isolation.
5
 In 1872 Bayer reported that the reaction between phenols and aldehydes 

was found to produce a resin type material.
19

 In 1899, Smith lodged the first patent 

involving phenol and aldehyde resins. It was British patent 16,274 for making a 

substitute for electrical insulation. What truly established the industrial utilisation of 

formaldehyde was when Baekeland patented the phenolic resins.
5 

The production of 

formaldehyde is effected by the catalytic vapour phase oxidation of methanol over a 

metal catalyst, commonly silver.
7
 The basic equation is shown in Equation 1.1.  
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 CH3OH + O2  CH2O + H2O Equation 1.1 

 

In the process the methanol is vapourised and passed over the metal catalyst at 300 -

600 °C. The formaldehyde formed is absorbed into the aqueous reaction medium and 

passed through a fractioning column. A 37% solution of formaldehyde is removed at 

the bottom of the column and excess methanol is recycled from the top of the 

column.
5,9

 

Aqueous formaldehyde solution (a.k.a. formalin) is known to undergo a rapid 

acid/base catalysed hydration reaction of formaldehyde to form methylene glycol 

shown in the equations below (Equation 1.2 and Equation 1.3): 

 

nCH2=O + H2O ⇌ HOCH2OH (methylene glycol) Equation 1.2 

 

nHOCH2OH (methylene glycol) ⇌ HO(CH2O)nH (polymeric methylene glycol) + nH2O  

 Equation 1.3 

 

The equilibrium of the hydration reaction (Equation 1.2) of formaldehyde to form 

methylene glycol lies to the right thus in aqueous formaldehyde solution the primary 

constituents are methylene glycol and its polymeric species with less than 0.1% of 

monomeric formaldehyde present.
7,17

 

 

HO(CH2O)nH   + H2O ⇌ HO(CH2O)n-1H + HOCH2OH Equation 1.4 

 

The depolymerisation of polymeric methylene glycol (Equation 1.4) becomes an 

important reaction relative to the overall reaction for the resin formation. In the 
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presence of methanol this is slightly stabilised due to the reaction with the methylene 

glycol species to form hemiacetals and their associated polymeric derivatives 

(Equation 1.5). In acidic conditions, the below equilibrium lies to the right but in 

basic conditions it lies to the left shown as the reversed equilibrium.
7
 

 

CH3OH + HO(CH2O)nH ⇌ CH3OCH2O(CH2O)n-1H + H2O Equation 1.5 

 

The reaction of formaldehyde in basic condition undergoes a base-induced 

disproportionation redox reaction of an aldehyde where the oxidation product is a salt 

and the reduction product is an alcohol:
7
 

 

2CH2=O + NaOH ⇌ CH3OH + H(CO)O
- 
Na

+
 Equation 1.6 

 

This is called the Cannizzaro reaction and means that small amounts of formate 

(HCOO
-
) are usually present.

13
 

 

1.2.2  Reactions between melamine and formaldehyde 

  

The main practical application of melamine formaldehyde resins is in a network 

polymer form. Just like urea formaldehyde polymers, the resin preparation is carried 

out via two operations. 
9, 14

 The first operation is that the resin formation process 

produces resins of a low molecular weight, aqueous, semi-soluble polymer resin 

made in batches of approximately 16 tonnes each. The second operation consists of 

curing of the resin which involves the application of heat and pressing to produce the 

final condensed and cross-linked product. Both the modified resins and unmodified 

resin have commercial importance. 
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1.2.2.1  Modified resins  

 

Methylol melamines reacting with alcohols under acidic conditions to produce 

methylated and butylated products are modified melamine formaldehyde resins in 

which their production requires the approximate melamine to formaldehyde (M:F) 

mole ratio of 1 : 3.3.
9
 The resin is heated briefly for 15 minutes at 70 °C or until all 

the melamine is dissolved, and then spray-dried or allowed to crystallise into a solid 

composed mainly of monomeric methylol melamine. 

The methylated product, trimethyl ether of trimethylol melamine (Figure 1.4) is used 

for textile finishing. It is made by heating methylol melamine at 70 °C in a solution at 

twice its weight of methanol and oxalic acid (0.5%) at 70 °C to form a clear solution. 

The solution is adjusted to a pH of 9 and concentrated to 80% solids under reduced 

pressure.  

 

Figure 1.4 The structure of trimethyl ether of trimethylol melamine. 

  

The butylated products are preferred for utilisation in surface coating formulations 

due to their compatibility with hydrocarbon solvents and with film-forming materials. 

The preparation of the butylated melamine formaldehyde resin involves using a 

melamine to formaldehyde (M:F) mole ratio Between 1:4 and 1:6 and a melamine to 

butanol (n- or iso) mole ratio between 1:4 and 1:8. The esterified groups are bound to 

half of the methylol groups. The rest of these methylol groups interact with each other 

to produce resin with a molecular weight between 800-1500. The butylated product is 
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brittle when used by itself thus it is more commonly mixed with other film-forming 

material such as alkyd resins and acts as a plasticizer.
9
 

 

1.2.2.2  Unmodified resins 

 

Unmodified melamine formaldehyde resins are primarily used in moulding 

compositions, laminates and various textile finishes. The methods for each 

application vary, but the example below for a laminating resin for the illustration of 

the general principles. The formaldehyde solution is made slightly alkaline (pH 7.5 -

8.5) with aqueous sodium carbonate then the addition of melamine is made to give an  

M:F ratio of approximately 1:3. This mixture is heated to 80 °C for 1 to 2 hours until 

the predetermined endpoint.
9
 The end point is dictated by the degree of water 

tolerance required in the resin.
5,9,14

 This research is ultimately directed to unmodified 

resins commonly employed for the plywood and LVL industries. There are three 

stages of reactions involved in the synthesis:
20

 

 

 (i) Addition stage reactions 

 

The addition stage reactions are considered to be those which form the methylol 

melamines. Under alkaline conditions melamine reacts to produce methylol 

derivatives, each melamine has six possible positions to substitute methylol 

compounds at any of the three amine groups of the melamine.  
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Figure 1.5 The mechanism of which formaldehyde reacts with melamine under basic conditions. 

Adapted from reference 18. 

 

This can give six possible products when reacted, examples of possible products are 

as follows (Figure 1.6): 

 

Figure 1.6 Possible methylol melamine products: (A) monomethylol melamine (B) dimethylol 

melamine (C) tetramethylol melamine. 
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The reactions, in reality, between melamine and formaldehyde are much more 

complicated than the idealized monomeric structures shown above as the resins could 

also contain dimeric, trimeric and oligomeric structures within the resin and when the 

MF resin is in a solution or liquid state. They are described as "living structures"
18

 in 

that the methylol groups can change their position on different N-H groups i.e. they 

can cross link or hydrolyse again.  

A generalised scheme of the pathways of methylolated melamines is shown below: 

(Figure 1.7)   

 

 

Figure 1.7 A generalised scheme of the pathways of methylolated melamine. Adapted from 

reference 15.  
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 (ii) Condensation stage reactions 

 

The methylol melamines undergo condensation reaction on heating, to form a more 

viscous resinous product. This resin increases in hydrophobicity as the reaction time 

increases until eventually the product forms an insoluble gel. The rate of 

resinification is highly dependent on pH. 
5,

 
9
 The minimum pH is 10 - 10.5 and either 

increasing or decreasing the pH will result in a increase in reaction rates. 
9, 11, 21

 It is 

envisaged that the methylol undergoes reaction with amino, imino, and other 

methylol groups (Figure 1.8): 

 

Figure 1.8 The reactions of methylol with amino, imino and other methylol groups where R is the 

melamine moiety. Adapted from reference 9. 

 

The proposed mechanisms are in good concordance with many studies by which 

heating the methylol melamines produces water and formaldehyde, however the 

various reactions proposed have not been fully investigated with certainty in the 

literature.
 5, 9

 Elemental analysis of the products of heating hexamethylol melamine 

indicates ether, rather than methylene linkages. Thus it is believed that preparing 

resins with less formaldehyde produces more ether linkages. 
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 (iii) Curing stage reaction 

 

Curing is where the reactions of the unmodified resins convert from low molecular 

weight melamine formaldehyde resins into high molecular weight network polymers 

via the direct application of heat. The rate at which this occurs, however, may be 

accelerated in the presence of acidic compounds. Under the curing conditions,  it is 

thought that the reaction involves the formation of methylene and dimethylene ether 

links. These are formed through the methylol groups of the methylol melamine 

positions and the reaction undergone is shown in Figure 1.8 (c) and (d). There are six 

positions in which the methylol group can be on the methylol melamine, this 

increases the complexity of the combinations of cross linking with either methylene 

or dimethylene ether as there is a high number of possible interactions with each 

methylol on each melamine moiety. Investigations show that during curing stages, 

there is less formaldehyde produced compared to water. The general assumption is 

that the dimethylene ether links predominate over the methylene links in the final 

product. 

A proposed structure of a final liquid state resin is shown in (Figure 1.9): 

 

Figure 1.9 A proposed structure of a final liquid state melamine resin 
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These reactions become more complex when dealing with the various polymeric 

forms of formaldehyde and their reactions with dimers and trimers. Further 

complexity can be seen since the reactions shown above are mostly in the mono 

methylol melamine and not in longer chain linkage groups. Despite the diverse 

reactions achievable, a large number of synthesis parameters such as temperature and 

pH contribute to the reaction progress of a melamine formaldehyde reaction. These 

parameters affect the reaction pathways and hence the final structure and properties 

of the resin. 

Nuclear Magnetic Resonance (NMR) spectroscopy has been used previously as a 

structural analysis technique of many resin species including melamine resin systems. 

NMR has provided the structural elucidation of the various isomers and the effect of 

synthesis conditions on the final resin structure. Therefore NMR is a common 

analytical technique for resins and is the paramount technique for this investigation.  

 

1.3  NMR Spectroscopy 

 

1.3.1  Introduction 

 

NMR Spectroscopy is a technique used for structural elucidation.
22

 It was 

independently discovered between 1945 - 1946 by two groups; Bloch et al at 

Stanford and Purcell et al at Harvard. In 1952 they received a joint Nobel Prize for 

the discovery and development of this technique. The importance of NMR methods 

has increased steadily since then and this was highlighted in 1991 when Richard R. 

Ernst received a Nobel Prize in chemistry for his contributions to the development of 

the methodology of high resolution NMR spectroscopy. The importance of NMR 

methodologies is furthermore demonstrated in 2002 and 2003 when K. Wüthrich, P. 
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Lauterbur and P. Mansfield were awarded the Nobel Prize for their contributions to 

NMR research in medicine, chemistry and biochemistry. 
23,24

 

The theory behind NMR is well documented in the literature.
 23,25,26

 Section 1.3.2 -

1.3.6 (see below) include a brief description of the NMR concepts and techniques that 

were important for the current investigation. Application of these techniques allow 

for the determination of the species in the mixtures and their interactions with each 

other throughout a polymerisation reaction. 

 

1.3.2  Nuclear magnetism 

 

NMR spectroscopy utilises the magnetic properties of the atomic nucleus and 

observes the response of the perturbation to the system from equilibrium via the use 

of a magnetic field (B0).  

Certain nuclei of natural isotopes possess an intrinsic quantized nuclear spin or 

angular momentum (ρ), as defined in Equation 1.7:
24, 27

 

  

ρ = ħ  Equation 1.7 

 

where I is the spin quantum number and ħ is the reduced Planck's constant (= h/2π).  

 

The spin quantum number (I)  is dependent on the isotope . Allowed values of I, 

range from values of I, I - 1, I - 2, down to -I. There are 2I + 1 allowed spin states. 

 

A nucleus with a spin also has a magnetic moment, µ. The magnetic moment (µ) and 

angular momentum (ρ) arising from it behave as vectors which are either aligned with 

(same direction) or opposite (opposite direction) to the applied magnetic field (B). 
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The ratio (γ) between the aligned or opposed energies is referred to as the 

magnetogyric ratio or gyromagnetic ratio and is given by Equation 1.8.  The 

gyromagnetic ratio is different for each magnetically active nucleus.   

 

γ = µ / ρ Equation 1.8 

 

A large γ value indicates a sensitive nucleus (easy to observe) and vice versa.  

 

The resonant frequency of an NMR active species is directly proportional to the 

strength of the magnetic field. The intensity of the detected NMR signal(s) is directly 

related to the applied magnetic field. 

With no external magnetic field applied, the two spin states present  (+1/2 and -1/2) 

have the same energy, but when exposed to a magnetic field (B0) their degeneracy is 

destroyed due to the interaction between the magnetic moment (µ) and magnetic field 

(B0). The potential energy of the magnetic dipole is µB0 or -µB0 and since the spin 

axis aligns with the z axis in the same direction as B0, what results is an energy 

difference between the two spin states of: 

 

∆E = 2µB0 = E-1/2(a) - E+1/2(b)  Equation 1.9 

 

Since the lower energy state (a) is preferred.  ∆E follows the Bohr model: 

 

h∆γħ Equation 1.10

 

thus the rearrangement of these equations will allows the frequency of precession (0) 

or Larmor frequency of the nucleus to be calculated (Equation 1.11).
28
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0 = γB0 / 2π Equation 1.11 

 

The energy difference between the aligned and opposite spin states can be expressed 

as: 

 

 ∆E = 2µB0 = γħγhB0/2π = E-1/2 - E+1/2 Equation 1.12 

 

If thermal equilibrium is reached the population of the energy levels will mimic those 

of the Boltzmann's distribution. In this case, the net or equilibrium magnetisation(M0) 

should be in parallel with the applied magnetic field direction which is defined using 

Cartesian coordinates as the z axis. If this is applied to a single nucleus then the 

observed magnetisation would be shown as Figure 1.10( a). If the magnetisation of 

the z axis of an entire sample was considered, a macroscopic magnetisation would be 

observed (Figure 1.10b). To simplify the system, a set of coordinates are chosen and 

rotated with the nuclear precession so only the equilibrium magnetisation (M0) is 

observed, This choice of rotating axis is known as the rotating frame of reference 

(Figure 1.10c) 

 

Figure 1.10 (a) Larmor precession of a single nucleus, (b) excess low energy nuclei in a sample 

and (c) excess low energy nuclei presented as a rotating frame. Adapted from  reference 27. 
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1.3.3    Pulse 

 

In a rotating frame, the sample magnetisation (M) and the B1 field vector are static, 

one on the z axis and one at right angles to it (x axis) . The application of a radio 

frequency (r.f.) pulse on the B1 field vector allows the nucleus to absorb the energy 

causing the degeneracy of the spin states to be destroyed, thus causing the nucleus to 

resonate. The applied pulse causes the sample magnetisation to be rotated around the 

B1 field vector (x axis) at a speed depending on the field strength and in theory it can 

be rotated by a defined angle. When the pulse applied causes the magnetisation to 

turn and  be rotated into the y axis direction, it is said that a π/2 or 90° pulse has been 

applied. (Figure 1.11) 

 

Figure 1.11 The magnetisation from equilibrium to a 90° pulse. (a) r.f. radiation perpendicular 

to static field, (b) sample magnetisation driven around the x axis, (c) the position of the sample 

magnetisation after a 90° pulse. Adapted from reference 7. 

 

The generation of a detectable signal arises from the voltage created in the receiver 

coil. This only occurs when the sample magnetisation is in the x-y plane. When a π or 

180° pulse is applied the sample magnetisation is aligned in the z axis direction, and 

no x-y  axis signal is generated, in contrast when the sample is subjected to a π/2 or 

90° pulse the sample magnetisation is completely aligned along the x-y plane, with no 

residual magnetisation in the z axis, thus providing maximum x-y axis signal 

intensity. The component of the magnetisation in the z axis after a pulse of angle θ is 

given by the Equation 1.13:  
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Mz = M0 cos θ Equation 1.13 

 

When the r.f. pulse is applied, NMR active nuclei undergo resonance, and the net 

sample magnetisation rotates about the x axis. When the r.f. pulse is turned off the 

resonant energy used to disrupt the degeneracy dissipates and decays back to 

equilibrium, and the consequential precessing magnetisation will induce an 

oscillating current within the receiver coil which is detected. This is the so called free 

induction decay (FID) NMR signal, induced in the coil as induced alignment 

magnetism decays back to equilibrium.  

A useful analogy of this behaviour is that of a plucked string on a musical instrument. 

Little can be heard from the initial impulse but the resulting sound lasts for a 

significant time as the system (string) returns to equilibrium during which time the 

amplitude of the sound decreases but the frequency remains the same. 

 

1.3.4  Relaxation 

 

When a system is interrupted from equilibrium in the static field B0, the nuclear spins 

will relax back to its original equilibrium condition along the z axis exponentially 

(Bloch theory). This does not happen instantly. Rather it takes a finite amount of time, 

characterised by a definable time constant (T1) for it to readjust to the changed 

conditions. This time constant is known as the longitudinal (or spin-lattice) relaxation 

time and is given by the expression: 

 

Mz = M0(1-e
-t/T1

) Equation 1.14 

 

Where Mz is the sample magnetisation and M0 is the magnetisation at thermal 

equilibrium. This relaxation is what is observed in the FID period.  
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1.3.5  The NMR experiment 

 

When a sample is subjected to the NMR technique, a short r.f. pulse is applied and 

the radiation from the pulse excites all the nuclei within the analyte to undergo 

resonance. The response decays over a period of time and can be observed as the FID. 

This experiment can be repeated (number of scans), accumulated and the individual 

FID's summed to increase the signal-to-noise of the signals. Once the desired number 

of scans (NS) is reached the data collected in the time domain (more commonly 

known as the FID) is converted into a signal in the frequency domain using a 

mathematical operation known as the Fourier Transformation (FT). The function of 

frequency produced is the conventional NMR spectrum. 

 

Figure 1.12 The Fourier transformation from an FID (time domain) to an NMR spectrum 

(frequency domain). Adapted from reference 29. 
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1.3.6  The NMR spectra 

 

Every molecule has a unique structure and shape, which is dictated by the outer 

electron clouds of the atoms and their associated neighbouring atoms. The 

interactions between the atoms with a molecule can produce unique environments 

called "chemical environments". These interactions of the outer electron clouds have 

small influences on the magnetic field applied on the nucleus, their differences in the 

nuclear precession frequency are called chemical shifts. Thus a unique spectrum of 

discrete frequencies for a given NMR active nucleus is produced instead of a single 

Larmor frequency. 

The effective magnetic field experienced by the nucleus therefore dictates the 

chemical shift of a nucleus since the magnetic field and the frequencies are 

proportional to each other. A consequence for nuclei with spin is coupling, the 

interaction between two nuclei through a bond may cause a shielding effect or 

deshielding of the nucleus from external magnetic field. The signal arising from the 

nucleus coupled to n amounts of equivalent nuclei with I number of spins will be split 

into a multiplet, with the number of resonances observed following the multiplicity 

rule of 2nI + 1. Their relative intensities can be defined by Pascal's triangle.
28

 

 

 Carbon -13 (
13

C) NMR 

 

The element carbon consists predominantly of two stable isotopes 
12

C and 
13

C with 

the natural abundance of 98.9% and 1.1% respectively. While the 
12

C nucleus of the 

major isotope is NMR inactive, the low abundant 
13

C nucleus is NMR active. This 

makes NMR spectroscopy of organic chemistry limited to carbon - 13. The magnetic 

moment of 
13

C is smaller than 
1
H by a factor of four, and as a consequence the 

sensitivity of the 
13

C NMR experiment is less than that of 
1
H NMR. The detection of 
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13
C is further rendered challenging by the low natural abundance of the 

13
C nucleus 

thus making it more difficult to detect. 

For many 
13

C NMR experiments it is desirable and necessary to completely ignore 

the coupling between different nuclei (e.g. between C and H), thus producing signal 

which normally would be multiplets  as a single discrete resonance. This “ignoring of 

the coupling” referred to as “decoupling” results in a remarkable increase in signal 

intensity and simplicity in the analysis of the NMR spectrum. Decoupling occurs 

when the r.f. field is exactly tuned to the frequency of a nucleus such as the 
1
H 

nucleus while obtaining data of the nuclei coupled to it i.e. 
13

C. The proton decoupled 

13
C - NMR spectrum thus simply illustrates the single discrete resonance of the 

individual carbon atoms. 

As a consequence of  the 
13

C nucleus’s insensitivity and low natural abundance the 

amount of time required to carry out an NMR analysis in greatly increased compared 

to that of a proton spectrum. This means that the majority of 
13

C NMR analysis is 

routinely carried out under qualitative conditions where the observed intensities of 

peaks are not able to be correlated to the quantity of that nucleus in the sample. To 

perform a highly precise 
13

C quantitative NMR analysis of a system (as will be the 

subject of the present study), considerable difficulties in choosing appropriate 

experimental conditions are experienced. Factors such as the relaxation time (T1) and 

the NOE factor are two of the key parameters required to be determined for 

quantitative experiments to be successful (see Section 3.6.1 and 3.8.2 respectively). 
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1.4 Previous Studies of Melamine Formaldehyde resins 

 

Melamine resins have been formulated primarily on an empirical basis due to the 

complexity and instability of the resin. The chemical analysis was difficult and the 

commercial drive for the immediate supply allowed the industry to be satisfied with 

incomplete fundamental research on these systems. Improved analytical techniques 

were required to investigate the chemistry of melamine resins throughout the 

formation reaction.  

Many techniques have been used in the past for the characterisation of melamine 

resins including Matrix Assisted Laser Desorption Ionisation - Time of Flight - mass 

spectrometry (MALDI-TOF-MS),
29

 Raman spectroscopy,
30

 high performance liquid 

chromatography (HPLC),
31-32

 Ultraviolet spectroscopy (UV),
32-33

 Fourier transform 

infrared spectroscopy (FT-IR). 
29,34 -35

 The technique of primary importance to resin 

analysis, mainly for its ability to elucidate the structure determining properties is 
13

C 

NMR.  

Extensive research on the physical and chemical properties of melamine resins and 

their application to the wood industry has been done by Pizzi.
16

 He described the 

chemistry of the reactions between melamine and formaldehyde, the possible 

structures they can form and the kinetics of the acid condition reactions of melamine 

resins. 

Saito and Naito carried out research on acid
36

 and base
37

 hydrolysis of the reactions 

of (hydroxymethyl) melamine, products of reaction between melamine and 

formaldehyde and obtained kinetic information deduced from the rate of hydrolysis of 

di - substituted methylol melamine using acid and base catalysts. In their studies of 

the basic conditions it was revealed  that between the pH of 8 and10, first order 

kinetics are followed and when the pH was increased to the range of 11 - 13.5, the 

slope of the rate constant increased and  was found to follow third order kinetics 

overall.  
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In 1949, Widmer
38

 devised a method for characterising the melamine and urea resin 

in technical products by preparing crystalline compounds and observing them under 

the microscope. Melamine crystals and long crystalline needles of urea dixanthate 

were able to be visualised and allowed for the urea and melamine to be 

distinguishable even in a cured resin. In this investigation, Widmer
38

 also developed a 

method of quantifying the melamine in the condensation products of the resin. During 

this procedure, the resin is destroyed by aminolysis under pressure leaving the 

melamine unchanged. The melamine is then converted to melamine picrate to be 

crystallised and weighed. This method allowed for the species within a mixed cured 

resin of melamine and urea to be quantitatively identified. 

Hirt et al.
39

 described a rapid method for detecting melamine by ultraviolet 

spectroscopy. The melamine formaldehyde resin in this case is hydrolysed to 

melamine by boiling with hydrochloric acid under reflux. The detection of the 

melamine is aided by its characteristic strong absorption at 235 nm. 

Snyder and Vuk
21

 investigated the self condensation of commercial hexakis 

(methoxymethyl) melamine (HMMM) resins and reported that condensation of 

HMMM is pH sensitive and is also dependent on alcohol content. 

Blank
40

 conducted GPC analysis of the melamine resins and showed that upon self 

condensation, demethylolation of the resin occurred. According to Blank's studies, 

water and high reaction temperatures were factors promoting the demethylolation and 

elimination of methanol.  

Chang
41

 used HPLC methods to separate different components of HMMM and the 

different components of the resin were characterised by liquid chromatography - mass 

spectrometry (LC-MS). This technique afforded identification of twenty monomeric 

compounds and thirteen dimeric compounds. 

13
C NMR has been utilised for investigations of melamine resins and the ability to 

assign all the signals was an advantage in terms of characterisation of the 
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functionalities within the resin.
42

 This was a major advancement into understanding 

the polymer structure and relating this to the properties of the resin.  

Subraya et al.
43

 published a paper on highly methylolated melamine resins describing 

the structure with 
13

C NMR spectroscopy and applied the technique of DEPT to 

justify the assignment of signals. Their advancements also included carrying out 

quantitative NMR experiments on the resins with moderate success. They concluded 

from the results of 
13

C NMR and GPC that the self condensation of HMMM 

predominantly produced methylene linkages. The result of this study were consistent 

with the results of Blank
40

 and Chang.
41

 

Another interesting paper regarding the advancement of quantitative studies 

Scheepers et al.,
44

 where the authors described the basic criteria required to obtain 

quantitative results. They quantitatively described the curing stages of the resin with 

the use of 
1
H and 

13
C NMR by regulating experiments. This was achieved by 

methylolating the melamine then placing the resin in a sealed (in vacuo) tube and 

regulating the temperature at 90 °C for different reaction times (stages). This 

provided mechanistic details of the curing stage however this was only achievable 

under isothermal conditions. This meant that the kinetic studies of the addition stages 

and some of the condensation stages were undescribed.  

There is a need for quantitative in situ reaction monitoring under the commercial 

conditions of resin production. The ability to monitor the reaction in real time and 

provide quantitative analysis of the reaction can provide insight to the reaction 

pathways. 

The significant advancement towards the quantitative real time reaction monitoring 

was proposed by Zeng,
17

 regarding urea formaldehyde resins. The research provided 

a novel NMR acquisition method where the real time qualitative NMR data obtained 

from an in situ resin reaction, could be converted to quantitative data. In addition, 

maintaining the synthesis conditions similar to those applied industrially produced 

data corresponding closely to the commercial process.  



Introduction 

26 

 

Seven years later Woolley
7
 conducted the real time analysis of phenolic 

formaldehyde resins by adapting the method developed by Zeng to better suit 

phenolic resins. The advantage of Woolley's method was that it allowed for reaction 

profiles to be built quantitatively. The monitoring of the relative concentrations of 

each individual species and intermediates within the resin was also possible, thus 

providing kinetic information about the resin formation process. 

The NMR data obtained at specific time intervals during the synthesis correlates 

effectively to "snapshots" of the reactions progress. This meant that the conditions of 

the experiment were completely controlled by Zeng and Woolley. This allowed them 

to carry out investigations of different reaction parameters such as temperature and 

pH. This allowed the effects of different parameters to be investigated and its effects 

on the structure of the resin to be monitored. This led to the proposal of the optimum 

conditions of the formation of the urea and phenolic formaldehyde resins. 
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1.5  Objectives of present investigation 

 

Two principal goals for this research were: 

1. Adoption and adaption of the methods utilised by Zeng and Woolley and 

expansion on their methods so that the analysis of melamine formaldehyde 

resin was possible. Several factors needed to be addressed: 

 

2. Determination of whether the parameters derived from previous research on 

urea formaldehyde or phenol formaldehyde resins could be applied to 

melamine formaldehyde resins.  

 

3. Determination of the logistics of carrying out this investigation in a 5 mm 

NMR tube with a 400 MHz NMR instrument. In the past the methods used by 

Zeng and Woolley were conducted in a 10 mm probe (associated with a 300 

MHz NMR instrument) which obviously allows for greater sensitivity, 

however for this research this was not an available option due to the 

malfunctioning of the 10 mm NMR probe associated with the 300 MHz NMR 

instrument. 

  

4. Determination of the main parameters required for this particular investigation. 

 

5. The investigation of transient species and products as a result of the synthesis 

by monitoring their concentrations of a commercial melamine resin process. 

 

This investigation will give insight to the melamine resin reaction and form the basis 

for further work. The information is intended to aid the optimisation of these 

adhesives supplied to the plywood and LVL industries, and thus develop new, cost 

effective and original resins. 
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2  Materials and Methods 

 

Methodology, parameters and experimental conditions of the Nuclear Magnetic 

Resonance (NMR) technique used on the commercial resin reaction are discussed. 

In addition to the NMR methodologies mainly used, Infrared spectroscopy (IR), 

Matrix Assisted Laser Desorption Ionisation Time-of-Flight mass spectrometry 

(MALDI TOF), and Electrospray Ionisation mass spectrometry (ESI-MS) methods 

employed for the analysis of the melamine resin are also described. 

The preparation of melamine formaldehyde resins used for the in situ real time NMR 

monitoring is also briefly described.  Due to commercial confidentiality not all details 

of this process can be divulged.  

 

2.1  Nuclear Magnetic Resonance 

2.1.1  General NMR conditions 

 

NMR Spectra were acquired using a 5 mm multinuclear probehead installed in a 

Bruker Avance DRX400 Fourier Transform Nuclear Magnetic Resonance 

spectrometer, operating at 400.13 MHz for proton (
1
H) and 100.62 MHz for carbon 

(
13

C). 

 

Unless otherwise stated, NMR spectra were recorded at 303.15 K (30 °C), with the 

chemical shifts reported relative to the acetic acid methyl group (CH3COOH) in the 

internal solvent  tube kept separate from the reaction mixture (described below)  

which gave a resonance peak at 21.3 ppm with an SR (spectral reference correction) 

= 0.06. The Free induction decay (FID) was processed using the Bruker supplied 
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Topspin software (version 3.0, Bruker BioSpin 2010) on both online and offline 

terminals. 

 

As stated above, an internal insert (see Figure 2.1 below) in the form of a small 

capillary tube was used. This was arranged concentrically within the 5 mm NMR tube 

and contained a mixture of deuterated Dimethyl Sulfoxide (150 µL, DMSO-d6; 

Dimethyl-d6 Sulfoxide, ) and non-deuterated glacial acetic acid (50 µL, CH3COOH, 

acetic acid; 99.7 atom %, analytical grade Ajax Finechem Pty Ltd, NSW, Australia ) 

Its purpose was to provide a sufficient deuterium lock and integration reference (see 

Section 3.5.2) but at the same time remain completely isolated from the reaction 

mixture so it did not interfere with the reaction mixture. 

 

Figure 2.1 The concentric arrangement of the internal solvent tube and sample used for NMR 

analyses in the current investigation.(adapted from reference 7) 
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2.1.2  Standard Acquisition Method  

 

The NMR methods employed throughout the analysis consisted of two methods 

known as  "The Quantitative Method" and "The Qualitative Method".  The major 

differences between the two methods are the acquisition times and the repetition 

delays (D1 values).  

The following is a table of parameters and acquisition conditions for the NMR 

methods used for the resin analyses.(see Table 2.1) 

 

Table 2.1 Typical NMR acquisition conditions for the Quantitative and Qualitative NMR 

methods. 

Parameter Quantitative Qualitative (rapid) 

Pulse angle 90° 90° 

Number of FID points 32 k 32 k 

Repetition Delay (D1) 10 s 1s 

Decoupling mode Inverse gated Power gated 

NOE Enhancement No enhancement Enhancement present 

Number of scans 3200 640 

Typical acquisition time 9 hr 32 min 9 s 18 min 43 s 

Analysis temperature 303.15 K Variable 

FID acquisition time 0.68 s 0.68 s 

Receiver gain 912 912 

 

 

The different NMR methods produce two sets of independent spectral data. The 

specifications of the differences between the methods are derived in detail and 

explained thoroughly in Section 2.1.3 and Section 2.1.4 (to follow).  
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2.1.3  The Qualitative (rapid) NMR Acquisition Method 

 

The pulse program utilised for the Qualitative method is shown in Figure 2.2: 

 

 

Figure 2.2 Schematic of the Qualitative analysis pulse program  

 

This schematic shows the sequence followed in the 
13

C channel of the Qualitative 

NMR pulse program: Pulse (PW), acquisition (AQ), pulse delay (D1), repeated by the 

chosen number of repetitions. 

 

Broadband proton (
1
H) decoupling in this qualitative analysis procedure is applied 

throughout the duration of the experiment. This means that any enhancement in 

sample signals brought about by the Nuclear Overhauser Effect (NOE) is not 

suppressed and  hence (in the case of 
13

C NMR spectra) maximizes intensities of 

signals acquired in the experiment. This is also known as power gated decoupling. 

 



Materials and Methods 

32 

 

NOE effects occur via through space interactions between spatially close NMR active 

nuclei in the molecule. This essentially consists of a transfer of nuclear spin polarity 

from one nucleus to another. Three effects could arise out of these interactions 

depending on the nuclei involved. They can act to either 1) enhance signal intensity, 2) 

decrease signal intensity or 3) have no effect on signal intensity arising from the 

neighbouring nucleus.  

 

As mentioned earlier, the constant application of proton decoupling in the case of 

acquisition of 
13

C NMR spectra causes the protons to experience a significant 

enhancement from the decoupling leading to an NOE effect increasing the signal on 

protonated carbons, this in turns causes the method to produce qualitative results 

because the changes in the observed signal intensity cannot be purely attributed to 

changes in concentration of the NMR active nuclei within the sample. This means 

that integrals of NMR signals in 
13

C NMR spectra must be regarded with caution.  

NMR acquisition methodologies can, however be modified to remove this NOE 

effect from spectra so that signal intensities observed are more quantitative. This 

forms the basis of the quantitative acquisition method (Section 2.1.4).  
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2.1.4  The Quantitative (slow) NMR Acquisition Method 

 

The  schematic for the pulse program used for the Quantitative method is shown 

below in Figure 2.3  

 

Figure 2.3  Schematic of the quantitative analysis pulse program  

 

The pulse program of the Quantitative NMR pulse program follows a similar series of 

actions as the Qualitative pulse program (see Figure 2.2): Pulse (PW), acquisition 

(AQ), and pulse delay (D1), repeated by the chosen number of repetitions. 

 

However the main difference between the Quantitative NMR method as shown above 

and the Qualitative method is that the Quantitative method only applies proton 

decoupling in the duration of acquiring the FID and not over the entire 

excitation/acquisition period as in the qualitative method. The selective period of 

proton decoupling used essentially removes the NOE effects by saturating the signals 

arising from protons within the sample, essentially removing any proton to carbon 

couplings. This is known as inverse gated decoupling. 
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Inverse gated decoupling removes the NOE effect of all protonated carbons and 

effectively provides decoupled spectra with quantitative intensities when suitable 

delay times are used. This means that the peaks can be integrated and the difference 

in intensities can be realistically related to the concentration of each NMR active 

nucleus in the sample.  

 

2.1.5  Temperature Management. 

 

The current investigation required the NMR experiments to be carried out at different 

temperatures. This means there is the requirement of temperature ramping in the 

NMR instrument. This is achieved in the Bruker 400 MHz NMR instrument by the 

means of a variable temperature unit (VTU)  installed in the instrument. However, in 

the past it was discovered (Woolley, 2008)
7
 that taking at face value the temperature 

set on the VTU unit for the temperature monitoring in the NMR spectrometer  was ill 

advised due to its unreliability.
7
 Before any experiments at temperatures higher than 

the usual 30°C were run, there was thus  a need to check the accuracy of  the variable 

temperature unit (VTU, Bruker) within the NMR. Woolley (2008) had previously 

checked this in his work and found the VTU to be in error as the temperature actually 

reached in the NMR cavity as determined by means of a separately installed 

thermocouple deviated from the intended temperature set through the VTU unit. 

To measure how much the true temperature in the NMR cavity deviated from that 

which was set, the strategy devised by Woolley, 2008 was repeated for the sake of the 

present set of experiments to gain a measure of the true temperature as it is essential 

that this is well known for studying the melamine resins. After a series of heating 

experiments executed by setting the VTU to specific temperatures and allowing the 

temperature to equilibrate, the temperature  inside the probe itself was measured 

using a long thin thermocouple placed inside a sample tube( CHY 502 K/J free 

standing thermometer with a K type thermocouple wire) (See Section 3.4). 
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2.1.6  Additional NMR Investigations 

 

 1
H 

 

1-D Proton NMR spectra were initially obtained to aid in the identification  of the 

species within the melamine resin sample. The internal reference was the same as the 

one used for the kinetic studies. (See Section 2.1.1) 500 scans were employed to 

obtain each spectrum. 

 

 DEPT135 

 

Distortionless Enhancement by Polarisation Transfer (DEPT) spectra were 

additionally recorded to help distinguish relatively close peaks such as the linear 

methylene signal and the methanol signal in the spectra. DEPT-135 has the capability 

to suppress the quaternary carbons and show methine and methyl carbons (CH and 

CH3) as positive signals and methylene carbons (CH2) as negative signals. 

 

 2D NMR 

 

2D NMR spectroscopic techniques of Heteronuclear Single Quantum Coherence 

(HSQC) and Heteronuclear Multiple Bond Correlation (HMBC) were also acquired 

under the same conditions as the kinetic experiments (i.e. with same internal insert 

with 600 mg of sample) and processed as described previously (Section 2.1.1) for the 

express purpose of signal confirmation. 
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 Relaxation studies 

 

T1 relaxation investigated for each of the resin species for the important purpose of 

determining the correct quantitative parameters for this particular resin. (see Section 

3.6) 

T2 relaxation experiments was carried out using the Spin Echo technique to give an 

insight to the molecular size of the resin polymer sample. 280 scans were used to 

obtain the data (details of this investigation can be found in Section 3.6.2). The 

parameters used are shown in Table 1.2 

 

Table 2.2 Experimental parameter values used for T1 and T2 experimental parameters (D1 = 

relaxation delay, D20 = Fixed echo time to allow elimination of diffusion) 

Parameter T1 experiment (s) T2 experiment (s) 

D1 10 20 

D20 - 0.006 

       VD list - 1 30 0.024 

2 25 0.048 

3 20 0.096 

4 15 0.1923 

5 10 0.3606 

6 5 0.7212 

7 2.5 1.202 

8 1.5 2.885 

9 0.8 4.808 

10 0.4 9.616 

11 0.15 14.42 

12 0.05 19.23 
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 Solid state NMR studies 

 

Solid state NMR spectra were acquired using a solid state broadband probehead 

equipped with a MAS spinning unit installed in a Bruker Avance 300 MHz Fourier 

Transform Nuclear Magnetic Resonance spectrometer, operating at 300.13 Hz for (
1
H) 

and 75.47 Hz for 
13

C. Freeze dried solid final resin samples were ground and packed 

into a 4 mm zirconia rotor which was spun at 5 - 10 kHz during acquisitions at the 

magic angle to average out dipolar interactions. A cross Polarisation (CP) pulse 

program using a ramp for variable amplitude. CP was employed which had D1 set to 

1.5 s and the contact time between 
13

C and 
1
H set to 2000 µs. Cross polarisation 

operates by the transfer of energy between the 
1
H nucleus and the 

13
C nucleus. 

Excitation of the 
1
H nucleus provides additional sensitivity to the 

13
C nucleus being 

measured thus spectrum can be acquired faster.    

In addition to a CP, solid state NMR spectrum of the final melamine resin products , a 

13
C spectrum was also acquired by high power decoupling (HPDEC). This represents 

the solid state NMR spectrum acquired by classical Bloch decay where the nucleus is 

directly excited by the r.f. pulse (rather than the protons in the sample as in the CP 

pulse programme), with a D1 delay time of 10 s. Both pulse programs (CP and 

HPDEC) utilised high power 
1
H decoupling to generate 

13
C spectra. 
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2.2  Additional Techniques used to study the resins.  

 

Although this was a mainly NMR-based study, some use of other techniques was 

made to see if any further information could be gained on the resin systems studied.  

 

2.2.1  Infrared Spectroscopy 

 

Four IR-based methods were employed for the analysis of the melamine resins. IR 

transmission spectra of thin film (liquid) samples, Attenuated Total Reflection 

Infrared Spectroscopy (ATR-IR), analysis via a microscope (Perkin Elmer Spotlight 

200 optical bench attached to a Perkin Elmer Spectrum 400 instrument) and IR 

spectra obtained of solid samples by pressing them into semi-transparent KBr disks. 

All analysis was carried out at room temperature in absorbance mode on the Perkin 

Elmer Spectrum 400 FT-IR spectrometer except for the analysis with the KBr disk 

technique which was operated on a Perkin Elmer Spectrum 100 FT - IR spectrometer 

with each spectrum obtained after acquisition of 10 scans. All IR data were processed 

using Spectrum software Version 6.1.1.0132. 

 

Resin was analysed directly from sub samples (without further preparation) obtained 

every 10 min in a commercial resin production process as a surface film in between 

calcium fluoride (CaF2) windows using a Press Lok cell from SpectraTech.  

 

ATR-IR spectra were recorded using a Spectratech ATR cell fitted with a ZnSe multi-

pass crystal mount. Samples of the resin were introduced onto the ATR mount 

without further preparation and subsequently analysed. 
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Resin sub samples obtained from a commercial process were frozen with liquid 

nitrogen immediately upon collection. All samples were stored frozen until the entire 

reaction process completed after which the frozen samples were subsequently freeze 

dried. The freeze dried samples were then ground to fine powders which were pressed 

into KBr disks for IR analysis.   

 

Microscope FT - IR analysis was carried out in reflectance mode with focusing on the 

sample done to maximize reflected IR intensity coming off the specimen. A single 

beam spectrum obtained from the reflectance of a gold mirror was acquired as the 

background. A liquid nitrogen cooled MCT detector with a spectral observation 

window from 4000 - 750 cm
-1

 was used to detect IR peaks in samples examined on 

the microscope stage.  

 

2.2.2  MALDI-TOF Spectrometry 

 

Preparation of the MALDI-TOF sample
45

 

 

Samples examined by Matrix Assisted Laser Desorption ionization  time of flight 

spectrometry were prepared as follows: the liquid resin sample was dissolved in water 

to a concentration of 4 mg/mL. This was then mixed with the acetone solution of the 

matrix (10 mg/mL of dithranol/acetone) to a 1 : 1 mixture. A 0.5 - 1 µL aliquot of the 

mixture was then spotted onto the MALDI target. After evaporation of the solvent via 

air drying, the MALDI target was inserted into the spectrometer and the analysis 

commenced. 
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Mass analysis was carried out on an Autoflex II MALDI - TOF/TOFTM
 Proteomics 

Analyzer (Bruker Daltonics), in the positive ion reflector mode using a 10 Hz 

frequency pulsed nitrogen laser operating at 327 nm. The ions generated were 

accelerated at 20 kV with the detector voltage being 1.6 kV. Mass spectra were 

obtained at the laser power of 45% and each spectrum was the result of at least 300 

shots. 

 

2.2.3  Electrospray Ionisation Time of Flight mass spectrometry  

(ESI-MS or MicrOTOF) 

 

Sample preparation for ESI-TOF 

Resin samples examined by ESI-MS were dissolved in a solvent (isopropyl alcohol: 

distilled water (1:1)) to a concentration of 0.1 mg/mL and 1 mg/mL, then injected 

into the instrument for analysis.  

High resolution mass spectra were obtained of samples using a Bruker Daltonics 

Electrospray Ionisation (ESI) mass spectrometer. The analysis was carried out using 

the positive ion mode.  
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2.3  The Preparation of Melamine Formaldehyde Resins 

 

Due to the commercial sensitivity of this work, the details of the series of additions, 

and temperature controls could not be revealed in this thesis. It is possible only to 

give a broad outline.  

 

Several methods were used for preparing the melamine formaldehyde resins, each of 

which provided information for the main purpose of investigating the real time NMR 

studies of the reaction. 

 

Under industrial conditions the progress of the melamine formaldehyde resin reaction 

is monitored as changes in viscosity over time. However, when subjected to real time 

NMR experiments  in a 5 mm NMR tube it is difficult to monitor the viscosity due to 

the small reaction volume and the location of the reaction mixture to be sampled.( i.e. 

inside the NMR spectrometer).  To deal with this problem, a series of time allocations, 

predetermined by control experiments corresponding to viscosity measurements were 

used instead throughout this investigation. 

 

The methods used to prepare the melamine resins used throughout the project are 

presented below in Sections 2.3.1 - 2.3.3. 
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2.3.1  Preliminary reagent preparations. 

 

A premade formaldehyde solution mixture consisting of aqueous formaldehyde and 

methanol (prepared to predetermined compositions and remaining stable over an 

extended period of time) was used throughout the investigation as the “formaldehyde 

reagent”. This allowed easier transportation of formaldehyde in sealed Schott bottles 

and the reduction of the concentration of formaldehyde decreased the potential 

hazards associated with the flammability of formaldehyde, and allowed the reaction 

to be continued at a later time and place. 

 

2.3.2  Commercial Resin Synthesis on a laboratory scale 

 

The representative commercial laboratory scale resin was prepared with the 

formaldehyde/melamine mole ratio (F:M) of 1.27. 

In the previous study on phenolic formaldehyde resin by Woolley, 2008
7
 spectral data 

corresponding to different stages of the reaction could be obtained from sub samples 

of the resin synthesis. Sub samples are samples collected every 5 minutes after the 

temperature ramp until the Industrial Resin Endpoint (IRE) of the synthesis is reached. 

The resin sub samples obtained from preliminary resin synthesis gave insight into the 

reaction as a function of time (i.e. progress of reaction. This provided information on 

the reactions taking place during the resin synthesis. Due to the nature of the 

melamine resin however, sub samples obtained prematurely from the IRE would tend 

to solidify due to the precipitation of melamine and this prevents such samples from 

being examined via liquids NMR analytical techniques. This eliminates the ability for 

the sub samples to be analysed for at specific time frames during the reaction leading 

up to the IRE. Consequently preliminary sub samples of the resin could not give 

insight to the reaction as a function of time by the use of liquid state NMR. In the past, 

conversion factors have been calculated for different time frames of the reaction (i.e. 
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conversion factors (see Section 3.7) used for the conversion of intensities 

corresponding to the reaction at 35 min would be determined from the sub sample 

acquired at 35 min). The conversion factor for this investigation therefore must be 

determined from the stable final liquid resin (control) obtained at the IRE. This is 

used as a representative conversion factor for the entire synthesis of the commercial 

resin. 

 

Preparation of the Laboratory Scale resin (Control for determining conversion 

factors 

 

The premade formaldehyde mixture was added directly into a five necked 1 L round 

bottom flask fitted with an overhead stirring device (Global Science, IKA-RW20 

digital), condenser, and a custom temperature control unit consisting of a 

thermocouple probe, cooling coil and heating mantle. Stirring was maintained 

throughout the entire reaction. The mixture was adjusted to a predetermined pH with 

10 molL
-1

 caustic (NaOH aqueous solution) and melamine was added over a 

predetermined amount of time, upon which the melamine -formaldehyde mixture was 

put through a temperature ramp and held until the IRE was reached. This final liquid 

resin is stored at 25 °C and has a shelf life of ~2 weeks. 

 

NMR procedure for the Laboratory Scale Resin(Control) 

 

The final resin was taken out of the containers from a 25 °C oven and from it 600 mg 

of resin was directly added into a 5 mm NMR tube (Wilmad Lab Glass, 5 mm thin 

wall 7" length) without further treatment. A concentric internal tube containing 

solvents for deuterium locking and referencing (see Section 2.1.1 for description) was 
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inserted and the cap was secured (see Figure 2.1) before the sample was placed into 

the NMR spectrometer, where it was locked and shimmed for NMR analysis to work 

out the conversion factors (see Section 3.7). 

 

2.3.3  Resin synthesis for real time analysis  

 

For real time monitoring of the melamine formaldehyde resin, the reaction was scaled 

down to NMR dimensions so that the entire reaction could be carried out within a 5 

mm NMR tube located inside the spectrometer (i.e. in situ) which contained also the 

insert tube containing reference solvent. For this analysis the overall reaction mixture 

weight was taken to be 600 mg (c.f. industrial resin production ~ 16 tonnes). 

 

Preparation of the sample used for Real Time NMR Analysis of resins 

 

The initial approach had been to add the solid (powdered) melamine into the bottom 

of the NMR tube with the subsequent addition of the formaldehyde solution mixture 

(pH adjusted to industrial condition) to a weight of ~ 600 mg. The internal tube is 

then inserted into the 5 mL NMR tube (as shown in Figure 2.1) and thoroughly mixed, 

before being applied to the predetermined time scheme of the kinetics experiment 

within the NMR. However due to the size of the 5 mL NMR tube and presence of 

insoluble melamine powder, it was found difficult to then insert the internal tube so it 

reaches the bottom of the tube and at the same time mix the formaldehyde solution 

mixture and the melamine thoroughly. The results of this initial approach showed a 

lack of reaction between the formaldehyde and melamine despite the increase of 

temperature which would have otherwise aided the solvation of melamine in the 

reaction mixture. The physical observation also showed that most of the melamine 

had not reacted. This is a limitation regarding the amount of mixing available within 
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the NMR sample tube. The mixing of the sample during the kinetics experiment was 

hence reliant on what little amount of mixing within the tube could be achieved with 

the NMR tube spin (ca. 20 Hz and a normal part of any acquisition in the NMR) 

within the probe, this is preset and unable to be adjusted. This challenge in mixing 

tube contents is obviously a consequence of the “crowded” nature of the sample tube 

with its containing the insert tube and sample under investigation around it. Hence, 

instead of relying on mixing of the reagents from the outset within the NMR tube, 

another method (optimised) was used whereby vigorous premixing of all the reactants 

together within a sealed container was carried out first with subsequent sonication in 

an ultrasonic bath for 5 min. After this premixing, a total of 600 mg of the mixture 

was transferred into the 5 mm NMR tube with the internal tube inserted and capped 

(see Figure 2.1). This was then transferred into the spectrometer where it was tuned, 

locked, and shimmed before NMR acquisition was begun. 

  

Within the NMR, the reaction mixture was heated at a constant rate to the final 

temperature of 90 °C. The temperature was held for the predetermined period of time 

until it reached the IRE of the resin. A total of 12 experiments were carried out 

corresponding to approximately 225 minutes for each kinetic real time NMR 

experiment. This was the predetermined period of time for a commercial resin 

reaction and any longer was deemed unnecessary for this particular resin in terms of 

commercial resin production.  



Materials and Methods 

46 

 

2.4  Summary of the steps leading up to the deduction of the 

quantitative NMR intensities of species observed in real time 

NMR analyses of resin reaction. 

 

The essential steps in summary are hence:  

 

1)  Deduce the time allocations of the resin synthesis 

 

2) Make a control resin for deducing the conversion factors (see Section 3.7) to 

enable the determination of quantitative NMR intensities. 

 

3) Run real time NMR experiments in a NMR tube as a function of time after 

premixing the alkaline adjusted formaldehyde solution and melamine. 

 

4) Carry out conversion of qualitative real time NMR intensities to quantitative 

intensities. 
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3  Development of the Rapid NMR Method 

 

3.1  Introduction 

 

In this section the procedures for carrying out the rapid NMR method will be 

described. Spectrometer parameters, spectral information and calibration factors 

necessary for the application of this method are obtained. These parameters have been 

adopted from, and adapted where necessary from the study of real time analysis of 

phenolic resins by Woolley
7
 who in turn had adapted methodology for his study from 

the earlier study of urea formaldehyde resins by Zeng.
17

  

 

3.2  Deducing the NMR spectrometer parameters 

 

The first step in the development of the rapid NMR method is determining the 

acquisition parameters for recording  
13

C NMR spectra of the samples. In order to 

achieve the maximum signal intensity in a NMR spectrum it is essential that the 

radiofrequency (r.f.) pulses are of the correct duration and the relaxation delays are 

optimised for the system being studied. 

 

3.2.1  The 
13

C pulse: Theory  

 

A sinusoidal function shows the relationship between the excitation pulse angle (θ) 

and the intensity of signal detection (I) in pulsed NMR spectroscopy as illustrated in 

Equation 3.1, where I0 is the maximum possible signal intensity obtained. 
7, 25
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I = I0 sin θ Equation 3.1 

 

The pulse angle is the pulse used to adjust the sample magnetisation about the x axis. 

For example a 90° or π/2 (radians) pulse angle is the pulse which turns the sample 

magnetisation by 90° around the x axis. (See Section 1.3.2 and Section 1.3.3) As this 

angle decreases the time required for the re-equilibration of the magnetisation vector 

via relaxation is also reduced. For example when comparing two r.f. pulses applied to 

a sample, namely a 70° pulse and a 90° pulse. The sample magnetisation would be 

rotated corresponding to the angle of the pulse applied towards the y axis from the z 

axis. (See Figure 3.1) It can be seen that the amount of time it needed for the re-

equilibration of the magnetisation back to the z axis with a 90° pulse would be longer 

than that of the 70° pulse. Thus the time required for an NMR acquisition is less 

when using a 70° pulse. 

 

 

Figure 3.1 Position of the sample magnetisation when a 70° and a 90° pulse is applied. 

 

A 90° rotation of the sample magnetisation causes the magnetisation to be along the y 

axis, meaning that the field vector is completely in the x-y plane. The more the 

magnetisation vector deviates from the x-y plane, the more sample magnetisation 

associated with the z plane where no signal is generated, reduces the intensity of the 

signal observed. Therefore an investigation of the pulse angles will afford spectra of 

the maximum intensity within the shortest time period. 
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Determining the optimum pulse angle 

 

A sample of representative resin was placed into the NMR to carry out a series of 

experiments under three different pulse angles, 45°, 70° and 90° to deduce the 

optimum pulse angle for the current system under investigation (Figure 3.2). 

 

 

Figure 3.2 An overlaying spectrum of linear methylol species (from a prepared sample of 

melamine formaldehyde resin) subjected in experiments under different pulse angles. From left 

to right 90° (blue), 70° (red) and 45° (green). (Note the x axis is offset for clarity). 

 

From the results of the experiment shown above, it can be deduced that even though 

using a pulse angle less than 90° reduced the acquisition time for obtaining each 

spectrum, the associated loss of signal intensity had even greater disadvantages for 

the analysis. Thus it was decided that a 90° pulse angle would be applied to the two 

pulse programs (see Section 2.1.2) executed for this investigation. 
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In NMR spectrometers the required r.f. pulse to adjust the sample magnetism to the 

intended pulse angle is measured and calculated in lengths of time (µs) required to 

turn the sample magnetisation to the preferred angle. Due to the importance of the 

90° pulse in maintaining spectral quality, investigations into the pulse length were 

carried out to ensure the pulse length utilised in the investigation corresponded to a 

90° pulse. Not only does this ensure that the pulse parameters are set correctly but 

also that the spectral quality is the highest possible. 

 

Determination of the 90° pulse length 

 

In order to derive the 90° pulse length, the signal intensity obtained from analysing a 

sample of aqueous formaldehyde was employed. A correctly phased spectrum was 

acquired initially to ensure it produced a positively phased absorption spectrum. A 

series of experiments was conducted with the increment of pulse lengths ranging 

from 2 - 36 µs. This series was carried out using Topspin 3.0's internal program 

'POPT' “pulse optimization program”, which measures the pulse length via measuring 

pulse lengths from less than 90° to pulse lengths greater than 180°. The result is a set 

of intensities following a sinusoidal curve. A 90° pulse would generate the maximum 

signal intensity thus the peak of the sinusoidal curve directly represents the 90°pulse. 

Another way of determining this is the fact that the 90° pulse is exactly half of the 

pulse length of the 180° signal (Figure 3.3). The pulse length of a 90° pulse angle can 

hence be easily determined as 9.5 µs (from the Figure 3.3 below). This was then 

employed throughout the investigation.  
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Figure 3.3 Spectra of methylene glycol species obtained after executing the POPT program  

 

When using pulse optimization programs as above it is important to ensure the 

relaxation time used are long enough. In the series of experiments above, a relaxation 

time of 20 s was purposely employed to allow the complete relaxation of the nucleus 

subjected under the conditions of 'POPT'. 

This is because an insufficient delay time would not result in the true maximum 

intensity observed for the pulse angle used due to saturation of the signal. In fact you 

may get a “flattening” of the curve or lack of a true maximum instead.  Thus 

application of this exceedingly long delay assured the maximum intensity signal 

intensity of each pulse length was recorded. This extremely long delay clearly 

increases the length of the time it takes for acquisition of each NMR spectrum. To 

now find out how to achieve maximum signal intensity with minimal time, an 

investigation of the optimum repetition rate was subsequently carried out. 
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3.2.2  Repetition rate 

 

Each NMR experiment produces a series of FIDs corresponding to the different 

nuclei in the sample. The Fourier transformation of these FIDs converts the FID time 

domain signal to a frequency domain signal known as an NMR spectrum.  In order to 

obtain a reasonable quality spectrum with a good signal to noise ratio (S/N), multiple 

NMR experiments (scans) can be carried out with the result of multiple FIDs for each 

experiment. These FIDs can then be accumulated and Fourier transformed to achieve 

greater S/N, (Equation 3.2), the S/N of a spectrum is related to the square root of the 

number of scans (NS). Therefore the accumulation of adequate numbers of FIDs is 

the key to greater resolution and signal intensity. 

 

S/N = √NS Equation 3.2 

 

A problem arises with the limitation of the time required for the opposite and aligned 

spin states to re-establish equilibrium (relaxation) after each application of the 90° 

pulse, before the experiment is repeated. This is known as the saturation effect, i.e. 

when a nucleus is excited with an r.f. pulse,  a signal is generated by the current 

within the receiver coil (FID). This signal decays back to equilibrium after the 

excitation. However if another excitation pulse is immediately applied (i.e. no delay 

employed) the nucleus essentially re-establishes equilibrium immediately. This 

phenomenon is called the saturation effect and as a consequence the signal intensities 

will be reduced. This means that a delay must be introduced between the application 

of the 90° pulse to allow this relaxation to occur. 

 

The excitation of a sample with the r.f. pulse (90°) will cause the sample 

magnetisation to turn to the x-y plane (see Section 1.3.2) from the z axis. In the 

absence of external influences this magnetisation will return to the z axis with the 
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longitudinal relaxation time (T1) exponentially (see Section 3.6). Using a short delay 

would essentially mean that the re-equilibration would not be complete and produce 

inaccurate relative signal intensities. Relaxation times of each species are influenced 

by changes of conditions such as temperature, structure, sample viscosity and 

molecule size.
25, 28

 

 

The general rule of thumb for obtaining good quantitative NMR results is to obtain 

signals which have a 99% re-establishment to equilibrium. This corresponds to 5 x T1 

and the accepted value is 3 x T1 which is when the equilibrium has reached 95%. 

 

The determination of the T1 values for all the resin species under the investigation 

was seen as a necessary exercise, in order to determine the optimum repetition rates 

for constructing the two NMR acquisition methods. A melamine formaldehyde resin 

as prepared for this investigation was experimentally analysed and the T1 relaxation 

times of each resin species are reported in Section 3.6. 

 

As a result of measuring the T1 values, the repetition rates of the Qualitative and 

Quantitative NMR acquisition methods used in this study were able to be deduced 

(Section 2.1.3-2.1.4). 
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3.3  Signal assignment of the 
13

C NMR spectrum 

 

There is a goodly amount of  previously reported NMR- related literature on the 

characterization of species observed in melamine resin reactions, of which 
13

C NMR 

is a commonly used analysis technique. The chemical shifts of the species obtained in 

this investigation were skewed in terms of their ppm values compared with other 

studies reported in the literature. This is due to the solvent effects between the 

internal solvent used in the insert tube during spectral acquisition and resin reaction 

solvent. Therefore the elucidation of the patterns of chemical shift observed in this 

study was compared with the literature,
46- 48

 taking into account differences in 

conditions (e.g. concentration, solvents, temperature etc) and the referencing of 

signals. The chemical shifts in this investigation, are reported relative to the acetic 

acid methyl group (CH3COOH) peak resonating at 21.3 ppm with an SR (spectral 

reference adjustment) value of 0.06 in the internal insert. Spectra of the resin obtained 

using 2D and DEPT NMR techniques were also employed to aid in the resin signal 

assignment. 

 

Representative spectra of a melamine resin sample obtained via qualitative (rapid) 

(Figure 3.4) and quantitative (slow) (Figure 3.5) methods are presented below: 
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Figure 3.4 A representative spectrum of a control resin sample obtained using the qualitative 

(rapid) method. 

 

Figure 3.5 A representative spectrum of a control resin sample obtained using the quantitative 

(slow) method 
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The chemical shifts of individual resin species are assigned where possible; however 

there are some chemical shifts which were assigned by speculation. These 

assignments are given below (Table 3.1)  

Table 3.1 The 
13

C chemical shift assignments of individual melamine resin species used 

throughout the current investigation. (Where Ѻ represents a melamine moiety, D = deuterium 

atom, R = CH2OH, hydrogen, CH2 linkage group or CH2OCH2 linkage group). 

Chemical 

shift (ppm) 
Functionality Species 

21.28 CH3COOH Acetic acid 

39.50 ((CD3)2S=O) Dimethylsulfoxide - d6 

46.72 Ѻ - NH - CH2 -NH - Ѻ Linear methylene 

48.57 CH3OH Methanol 

52.48 

 

Branched methylene 

54.09 HO-CH2-OCH3 Methoxy of hemiacetal 

63.94 Ѻ - NH - CH2OH Linear methylol 

67.52 
Ѻ -NH - CH2 - O - CH2 - NH - Ѻ  or 

Ѻ - CH2 - O - CH2 - OH 

Linear dimethylene ether or linear 

hemiformal methylol 

70.02 

 

Branched methylol 

72.08 

 

Branched dimethylene ether with 

hemiformal methylol 

72.98 

 

Branched dimethylene ether with 

methylol 

81.66 HO - CH2 - OH Monomeric methylene glycol  

85.39 HO - CH2 - O - CH2 - OH Dimeric methylene glycol  

89.22 HO - CH2 - O - CH3 Methylene from hemiacetal 

164.86 

 

Triazine carbon of melamine with 

tertiary amine. 

166.13 

 

Triazine carbon of melamine with 

primary/secondary (1°/2°)  amine. 

172.69 CH3COOH Acetic acid 



Development of the Rapid NMR Method 

57 

 

A description of the specific melamine resin NMR peaks and regions which give rise 

to each signal are described below.
43, 46, 49

 

 

Quaternary triazine melamine carbon region - 164-167 ppm: 

Signals in this region are due to the triazine quaternary carbon of melamine directly 

attached to an amine group. The signals up-field of this region correspond to species 

with a higher degree of substitution of the associated amine groups (tertiary) (i.e. with 

R groups such as CH2OH, CH2 or CH2OCH2). Signals downfield of this region 

correspond to species with less methylol or methylene substitution (i.e. an amine 

NH2). The signal detected at approximately 166.13 ppm corresponds to primary and 

secondary amine, the integrated range however contains signals of the melamine with 

no substitution due to the signals overlapping. 

 

Formaldehyde  region - 81-90 ppm: 

Peaks in this region arise from the various forms of formaldehyde existing in the 

aqueous reaction mixture. As described before (Section 1.2.1) the species existing in 

an aqueous formaldehyde solution are known to be polymeric forms of formaldehyde. 

The signals in this region correspond to monomeric, dimeric methylene glycol and its 

polymeric derivatives. The polymeric form is a hemiacetal form of formaldehyde.  

 

Methylol and ether region - 63-73 ppm: 

The signals in this region arise from the methylol type carbon, directly bound to the 

amine group of the melamine moiety, and the mono/ dimethylene ether bridge linkage 

groups between two melamine moieties. The methylol carbon signals are generally 

further upfield in this region than the ether type carbons. The branched methylol 
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however, is further downfield than the signal arising from the linear dimethylene 

ether/ hemiformal methylol signal shown in Figure 3.6. 

 

 

Figure 3.6 A spectrum showing the positions of the methylol and ether signals 

 

Methoxy region - 54-55 ppm: 

The methoxy carbon signal appearing in this region belongs to that of the hemiacetal 

group of formaldehyde.  

 

Methylene region - 46- 53 ppm 

Two signals appear in this region, the linear methylene and branched methylene 

peaks of the resin product.  
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3.4  Factors which influence the chemical shift 

 

There are several factors which are likely to produce significant changes to the 

chemical shift values of individual resin species. The interpretation requires care 

when the spectrum is of a real time reaction where there are changes to factors such 

as pH and temperature. 

 

The effects of temperature on the chemical shift values can be observed by 

overlapping spectra obtained from the real time investigation at different 

temperatures, using the same reference (internal insert Section 2.1.1). It should be 

noted that the intensities of the signals are changing over the course of reaction 

(Figure 3.7). 

 
Figure 3.7 Overlaying spectra of linear methylol at 30°C (green), 60°C (red) and 90°C (blue) 

noting that intensity of the peak is due to the extent of the reaction.  
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Due to the findings of previous studies it is known that there is a discrepancy between 

the variable temperature unit and the actual temperature inside the probe. It was 

therefore essential for the temperature inside the NMR spectrometer to be measured 

and managed for the determination of varying chemical shifts as a function of 

temperature in real time experiments. 

 

Temperature management 

 

A series of heating experiments was conducted to gather information on the deviation 

of the set temperature from the true temperature attained in the sample. The Variable 

Temperature Unit (VTU) was set to specific temperatures, thermal equilibration was 

reached within the spectrometer probe and then the actual temperature measured with 

a long thin thermocouple situated within the probe. This consisted of a CHY 502 K/J 

free standing thermometer with a K type thermocouple wire. 

 

The following data was obtained from the investigation on the temperature within the 

NMR probe. (Table 3.2) 
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Table 3.2 A table showing the applied output power required for each of the specific set 

temperatures on the VTU and the corresponding temperatures of the wire thermocouple and 

their differences.  

Max 

output 

power 

set (%) 

Output 

power 

apply 

(%) 

VTU 

set 

point 

(K) 

BSMS-

Temp 

(K) 

Thermocouple 

(°C) 

Thermocouple 

(K) (+273.2°) 

Difference 

(Thermocoup

le - VTU set 

point) (K) 

5.0 2.0 300.0 302.2 27.7 300.9 0.9 

5.0 4.0 310.1 302.2 38.9 312.1 2.0 

8.0 6.3 320.2 303.2 50.0 323.2 3.0 

10.0 8.5 330.1 305.2 60.9 334.1 4.0 

13.0 10.6 340.1 308.2 71.8 345.0 4.9 

15.0 12.9 350.2 311.2 82.8 356.0 5.8 

15.0 13.9 355.2 312.2 88.2 361.4 6.2 

17.0 14.9 360.1 315.2 93.5 366.7 6.6 

 

Table 3.2 shows that there is a discrepancy between the temperature reading from the 

spectrometer and the true temperature inside the probe housing the sample.  

 

 

Figure 3.8 A plot showing the temperature set point of the VTU compared to the actual 

temperature measured with a thermocouple.  
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Figure 3.9 A plot showing the temperature discrepancy of the thermocouple temperature 

measure within the probe and the thermocouple VTU set point.  

 

The discrepancy of temperature shows a linear trend thus using the linear equation 

from Figure 3.8 we can predict the true temperature since the temperature ranges used 

lies within the series of experiments carried out for this project. (Figure 3.8 and 

Figure 3.9) 

For example, using the linear equation from Figure 3.8, it can be shown that the 

actual temperature samples were subjected to during spectra acquisition and used to 

acquire spectra was 303.15 K for a VTU setting of 301.95 K. Figure 3.9 shows the 

temperature discrepancy increases as the temperature increases. 

These corrections were taken into account when running the experiment in real time 

to ensure that the correct temperatures were used. This ensures that the experiment 

would mimic the reaction industrially to the greatest possible extent so the results 

obtained were realistic. 
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In this study the chemical shifts of peaks moved approximately 0.15 ppm as the 

temperature increased from 30 °C to 90 °C. Each resin peak shifted 0.15 ppm but the 

direction of shift of individual peaks was not consistent. The linear methylol signal 

for example, shifted downfield but the branched methylol shifted upfield by 

approximately 0.15 ppm, Whatever direction was taken, however,  the net chemical 

shift of the peaks was 0.15 ppm. 

 

In order to avoid the influences of solvent interactions between locking/reference 

solvents and the resin solvents , a concentric system was utilised (Figure 2.1). The 

lock solvent (DMSO - d6) and reference solvent (CH3COOH ) were mixed and 

contained inside a custom made sealed glass capillary, isolating the sample from the 

lock and reference solvent and so preventing any spurious mixed-solvent-associated 

chemical shift variations. This introduced another effect where the interaction of the 

solvents in the internal insert and the sample solvent caused a small shift in the proton 

spectra compared with where resin species normally arise. The deduction of the 

chemical shifts was possible using literature values and the pattern with which the 

groups of peaks arose (see Section 3.3). The pH of the reaction mixture has also been 

shown to have a relatively small influence on the chemical shift values of the 

melamine resin species. However any effects pH had on the chemical shifts were 

masked by the greater effects of temperature and solvent. 
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3.5  Internal tube and lock solvent/reference 

 

In this study, the internal tube is arranged concentrically (Section 2.1) (where the 

internal tube is inserted and centred inside the 5 mm NMR tube) and was used for the 

purpose of providing the deuterium lock, chemical shift reference and internal 

standard. The insert also prevented, as indicated earlier, any possible occurrence of 

side reactions between the resin and the lock and reference solvents. In this following 

section the internal tube and the effects it has on signal intensity, and the processes 

involved with selecting the NMR solvent are investigated.  

 

3.5.1  Internal tube and optimization 

 

Several thin walled tubes with differing external diameter were examined to 

determine the dimensions that would provide maximum signal intensity while 

maintaining the lock. Table 3.3 compares different internal tube diameters with the 

volume of sample used. 

 

Table 3.3 A table showing the external diameter of the internal tube and volume of sample used. 

Diameter (mm) Volume of sample (µL) Volume of internal solvents (µL) 

~2.0 750 50 

~2.1 700 100 

~2.2 650 150 

~2.3 600 200 

~2.4 550 250 

~2.5 500 300 

~2.6 450 350 
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The dimensions of the internal tube affect the volume of sample that can be analysed 

within the NMR probe, thus as the dimensions increase the effective volumes in the 

unoccupied part of the 5 mL NMR tube which are amenable to analysis. The internal 

volume however provides the lock reference and integration standard therefore 

reducing the volume significantly can have an adverse effect on this. After 

consideration of various external tube diameters given in Table 3.3 above, the internal 

tube with the diameter of ~2.3 mm was finally chosen which allowed for adequate 

lock and furthermore left sufficient sample in the remaining unoccupied space around 

the concentric inserted tube to give adequate signal intensity for the resin species of 

interest.  

 

3.5.2  Selection of solvent 

 

The selection of solvents depends on multiple factors such as solubility, spectra 

interference with the analyte signals, temperature dependence, viscosity, water 

content, and cost. Normally the samples are dissolved in a deuterated solvent as a 

lock solvent but in this investigation the lock/reference solvents are sealed within the 

internal tube. Hence the sample and solvents are effectively separated, and this 

isolates the two liquid mediums negating the factors of viscosity, solubility and water 

content within these media 

 

The solvent chosen must fulfill the requirements and criteria for the current 

investigation. The solvents will produce NMR signals, considered as "residual solvent 

peaks" and could mask and obstruct signals from the sample by overlapping them. 

Another factor to be considered is the fact that the NMR experiment is operated under 

a range of temperatures (30 - 90 °C) thus it is significant that the solvent's boiling 

points and melting points are taken into account. 
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To determine the appropriate locking and reference solvents for analysis of the 

melamine resins, common NMR solvents used in the literature were reviewed. 

Solvents such as CDCl3, D2O, ((CD3)2CO), CD3CN etc do not meet the temperature 

requirements and solvents such as C4D8O and CD2Cl2 have peaks between               

54 -  68 ppm which overlap with methoxy peaks of the hemiacetal and methylol 

groups therefore they were considered as inappropriate NMR solvents due to the 

constraints of this investigation imposed by the reagents being studied.  

In contrast, DMSO-d6 provides a septet signal at 39.5 ppm which does not overlap 

with any melamine resin signals, has a boiling point of 189 °C under atmospheric 

pressure  (well below 90 °C , the highest temperature used in NMR experiments) and 

so has a reasonably low vapour pressure over the temperature range used in the 

investigation. Having a relatively low vapour pressure was an important factor, since 

there is a variation in the temperature throughout the experiments that could lead to  

the relative pressure within the sealed internal tube increasing so causing possible 

damage to not only the NMR tube (via breakage) but also  the NMR probe. This 

could necessitate an expensive and time consuming cleaning procedure to be carried 

out. Hence DMSO-d6 was chosen as the internal lock solvent.  

 

In terms of the reference signal coming from the insert, it was necessary to use known 

amounts of an internal standard spike to provide an intense signal for use as a reliable 

integration reference. This mixture of acetic acid and DMSO-d6 (see Section 2.1) was 

utilised to provide the integration reference (SR) and lock throughout this 

investigation 
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3.6  Longitudinal relaxation times, T1 

 

The population difference between spin states that are available to the nuclei 

undergoing analysis defines the observed signal in the NMR spectrum. To obtain 

maximum signal output, as required by quantitative analysis using a 90 degree pulse, 

the time between excitation pulses must be long enough to allow for  complete 

relaxation of the nuclei.  

 

For quantitative 
13

C NMR analyses using a 90 degree pulse the scan repetition rate, 

which in a typical NMR experiment is the sum of the FID acquisition time (AQ) plus 

the pulse repetition delay time (D1) must ideally be longer than three times the 

longitudinal relaxation time (T1) with a general recommendation of five times the T1 

time. 

 

Hence, knowledge of the individual longitudinal relaxation times for each of the 

carbon species (types) in melamine formaldehyde resin was required. For the 

quantitative 
13

C NMR analyses using a 90 degree pulse the minimum acceptable scan 

repetition rate is three (preferably five) times that of the slowest relaxing carbon 

species.  Prior to the determination of T1 relaxation times, it was reasoned that the 

slowest relaxing species were likely to be the non-protonated carbonyl species in the 

system being studied. 
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3.6.1  The inversion-recovery method 

 

The application of a r.f. pulse can rotate the effective nuclear magnetisation away 

from the equilibrium position of the axis, thereby perturbing the system. The 

application of a 180° pulse can invert the net equilibrium population since it is 

aligned in the opposite direction to that prior to the application of the 180 degree 

pulse. Immediately after the 180° pulse, relaxation processes begin to return the 

magnetisation back to its normal state. This process, which proceeds via an 

exponential decay pathway (Figure 3.10) can be characterised by a time constant 

known as the spin-lattice relaxation time, otherwise known as T1, the longitudinal 

relaxation time. 

 

The inversion-recovery method is the most widely used technique for determining the 

longitudinal relaxation time (T1). T1 follows the pulse sequence: 180° pulse, VD, 90° 

pulse and FID (AQ) acquisition. VD is a variable time delay between the 180
o
 and 

90
o
 pulse and a fixed D1 time is used in all experiments (Figure 3.10) 

 

D1
AQ

VD

1
H

13
C

NS scans

180
o

90
o

 

Figure 3.10 Inversion-recovery pulse sequence 

 

A typical inversion recovery T1 experiment data set is composed of a sequential 

experiment with varying values of VD (typically from longest to shortest). This series 

of experiments provides a set of spectra with signals effectively arising from pulse 
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angles between 270° and 90° depending on the length of the varied delay constants i.e. 

when applying a 180° pulse and with very small delay (small VD) then applying a 

90° pulse is equivalent to applying a 270° pulse to the nuclei. If this delay becomes 

long enough (large VD) however, and allows the nucleus to completely relax the 

excitation generated by the 180° pulse recorded in the FID will resemble the 

excitation generated by a 90° pulse. 

The time dependency of the signals detected can be plotted on a longitudinal 

relaxation decay curve to derive the T1 value. 

The intensity of the magnetisation vector in the z axis at time VD is given by the 

Bloch expression: 

 

Mz = Mo (1 - 2e
(-VD/T

1
)
) Equation 3.3 

  

Where Mz = observed intensity for VD value 

Mo = equilibrium value (long VD) 

 

Rearrangement of this equation gives  

 

Mo - Mz = 2Mo e
(-VD/ T

1
)
. Equation 3.4 

 

The integration of this equation gives 

 

ln (Mz - Mo) = ln (2Mo)(-VD/T1)  Equation 3.5 
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Thus a plot of ln (Mz - Mo) against VD will afford a straight line since T1 and ln (2) 

are constants.  T1 can be manually estimated from a plot of VD vs Mz using peak 

areas or signal heights (intensities), by identifying the point where Mz = 0. 

At this point the expression Mz = Mo (1 - 2e
(-VD/ T

1
)
) becomes 

 

 0 = Mo (1 - 2e
(-VD/ T

1
)
) Equation 3.6 

 

Solving this equation and rearranging of the terms leads to the expression         

(Figure 3.11):  

 

T1 = VD (Mz = 0 ) / 2.303 log 2   Equation 3.7 

= VD (Mz = 0) / 0.693 Equation 3.8 

 

 

Figure 3.11 A plot of the observed intensities (Mz) against the varied delays (VD) 
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Alternatively a plot of ln (Mo - Mz) against VD can give a linear line from which T1 

can be ascertained by determining the VD value (= T1) at the point where                  

ln (Mo - Mz) = 0.  

 

Modern NMR software such as Bruker Topspin Software can be used to iteratively fit 

the exponential decay curve of best fit to a series of data points. This gives a 

computed value of T1 for the nucleus of interest without a user having to manually 

compute T1 values as described above (Figure 3.12). 

 

 

Figure 3.12 Bruker Topspin 3 T1 profile for linear methylol. 
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The typical T1 experiment was employed on the resin sample to obtain T1 values for 

individual species within the resin. (Table 3.4) The parameters employed are given in 

Table 2.2. These T1 values are more or less similar to the literature. 
43, 44 

Table 3.4 The T1 relaxation times measured using the Inversion Recovery Method  (using 

commercial Bruker software) of the measurable species within the melamine formaldehyde resin 

sample. 

Chemical shift Chemical environment T1 relaxation time 

179.69 CH3COOH 18.04  s 

166.13 Triazine carbon with 1°/2° amine 1.59 s 

164.86 Triazine carbon with tertiary amine 1.964 s 

89.22 Methylene from hemiacetal 1.1415 s 

85.39 Dimeric methylene glycol HOCH2OCH2OH 163.7 ms 

81.66 Monomeric methylene glycol HOCH2OH 1.253 s 

72.98 Branched dimethylene ether with methylol - 

72.08 
Branched dimethylene ether with hemiformal 

methylol 
- 

70.02 Branched methylol 165.39 ms 

67.52 
Linear dimethylene ether and linear hemiformal 

methylol 
174.7 ms 

63.94 Linear methylol 177.3 ms 

54.09 Methoxy for hemiacetal - 

52.48 Branched methylene 2.563 s 

48.57 Methanol 9.348 s 

46.72 Linear methylene 180.5 ms 

39.50 DMSO-d6 39.23 s 

21.28 CH3COOH 5.85 s 

 

The D1 delay time employed was 1 s and, this was chosen for a qualitative fast 

experiment (see Table 2.1). This was considerably longer than the required five times 

T1 value (i.e. a value as little as 0.5 s could be used), however the consequence of a 

short D1 if 0.3 s was used is that the degree of saturation in the quaternary carbons 

would substantially increase hence reducing signal intensities. This is due to the 
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reason that quaternary carbons (having no attached protons that aid in relaxation) 

have an inherently slower relaxation. Thus the use of a longer D1 is a good 

compromise for the signal intensity for the overall spectra shown in Figure 3.13 

 

Figure 3.13 A spectra obtained using varied D1 to show the effects of saturation on quaternary 

carbons from left to right D1 = 2 s (green), 1 s (red), 0.5 s (blue).   

 

3.6.2  Transverse relaxation times, T2 

 

The pulse program to measure transverse or spin-spin relaxation (T2) was developed 

by Meiboom-Gill via the modification of the Carr-Purcell spin echo pulse program.
50, 

51   
T2 relaxation is the rate at which the nuclei’s spin system magnetisation decays to 

zero in the transverse plane (x-y).
 50-52

 The T2 experiments were not central to the 



Development of the Rapid NMR Method 

74 

 

main NMR study of the resin systems but were conducted as a side experiment to 

acquire extra NMR data to provide insight into the molecular size of the polymers 

under investigation. The parameters of the T2 experiment are given earlier in (Table 

2.2). The results of the T2 experiment are presented in Table 3.5. The evaluation of 

the T2's in relation to the molecular weight was outside the scope of this thesis. 

 

Table 3.5 The T2 relaxation times of measurable species within a control melamine formaldehyde 

sample. 

Chemical shift Chemical environment T2 relaxation time 

179.69 CH3COOH 7.386 s 

166.13 Triazine carbon with 1°/2° amine 78.31 ms 

164.86 Triazine carbon with tertiary amine 99 ms 

89.22 Methylene from hemiacetal 676.6 ms 

85.39 Dimeric methylene glycol HOCH2OCH2OH 44.86 ms 

81.66 Monomeric methylene glycol HOCH2OH 3.104 ms 

72.98 Branched dimethylene ether with methylol - 

72.08 
Branched dimethylene ether with hemiformal 

methylol 
- 

70.02 Branched methylol 22.95 ms 

67.52 
Linear dimethylene ether and linear hemiformal 

methylol 
- 

63.94 Linear methylol 46.5 ms 

54.09 Methoxy for hemiacetal - 

52.48 Branched methylene - 

48.57 Methanol 54.7 ms 

46.72 Linear methylene - 

39.50 DMSO-d6 639.2 ms  

21.28 CH3COOH 711.1 ms 
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3.7  Determination of the conversion factors 

 

Qualitative NMR is acquired with short relaxation between pulses where signal 

enhancements from NOE factors are included in spectra. Quantitative NMR is 

acquired with long relaxation between pulses with no NOE enhancement. In order to 

relate qualitative NMR spectra to quantitative spectra it was necessary to determine 

the cross calibration (Sat) factor and the NOE factor for melamine resin species 

within the mixture. There are two methods for determining the conversion factors 

which were looked into during this investigation; the one step method and the two 

step method. The result of both methods, provide one set of conversion factors. 

 

3.7.1  One Step Method 

 

The one step method is literally a one step process whereby the cross calibration (Sat) 

factor and the NOE factor are incorporated together. This is calculated by normalising 

all the resin peak integrals relative to the peak with the shortest relaxation time 

(relative peak integral) in this case the methylol species at ~64 ppm. This ensures the 

signal intensity are comparable between the quantitative and the qualitative methods 

employed. Under the conditions of both methods the chosen nucleus would have 

completely relaxed avoiding saturation effects. Once the peaks are normalised, the 

conversion factor is simply the ratio of the relative peak integrals (RPI) between the 

quantitative and the qualitative spectra for each signal. The following tables show the 

absolute intensities and the relative peak integrals of each signal of each experiment 

(Table 3.5 and Table 3.6). 
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Table 3.6 Integrated signal areas and the RPI (normalised intensities to the linear methylol peak 

at ~64 ppm) of a quantitative spectrum 

Integral Signal Centre Integral [abs] RPI 

1 CH3COOH 172.69 337834251.2 0.158 

2 Triazine carbon with 1°/2° amine 166.13 1938337763 0.906 

3 Triazine carbon with tertiary amine 164.86 3359871990 1.570 

4 Methylene from hemiacetal 89.22 6380680.11 0.003 

5 Dimeric methylene glycol HOCH2OCH2OH 85.39 14760748 0.007 

6 Monomeric methylene glycol HOCH2OH 81.66 18894248.04 0.009 

7 Branched dimethylene ether with methylol 72.98 20502981.15 0.010 

8 
Branched dimethylene ether with hemiformal 

methylol 
72.08 15959954.77 0.007 

9 Branched methylol 70.02 418989620 0.196 

10 
Linear dimethylene ether and linear 

hemiformal methylol 
67.52 317321720.9 0.148 

11 Linear methylol 63.94 2140017963 1.000 

12 Methoxy for hemiacetal 54.09 21693592.96 0.010 

13 Branched methylene 52.48 54771497.87 0.026 

14 Methanol 48.57 135034412 0.063 

15 Linear methylene 46.72 127115890.5 0.059 

16 DMSO-d6 39.50 996182686.2 0.466 

17 CH3COOH 21.28 665415129.1 0.311 

 

To obtain the RPIs, one must divide the absolute integral values of each individual 

signal by the intensity of the linear methylol signal at ~64 ppm, effectively 

normalising all the signals relative to this signal. The RPI for the branched methylol 

signal (at a different ppm value to the linear methylol signal) in the quantitative run is 

provided as an example (Equation 3.9). 

 

RPI   = 
418989620 

=    0.196 (4 s.f.) Equation 3.9 
2140017963 
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Table 3.7 Integrated signal areas and the RPI (normalised intensities to the linear methylol peak 

at ~64 ppm) of a qualitative spectrum 

Integral Signal Centre Integral [abs] RPI 

1 CH3COOH 172.67 20727420.82 0.028 

2 Triazine carbon with 1°/2° amine 166.20 319962465.4 0.427 

3 Triazine carbon of with tertiary amine 164.84 486009125 0.649 

4 Methylene from hemiacetal 89.23 2177246.11 0.003 

5 Dimeric methylene glycol HOCH2OCH2OH 85.36 5108966.35 0.007 

6 Monomeric methylene glycol HOCH2OH 81.67 5846971.09 0.008 

7 Branched dimethylene ether with methylol 73.02 7354844.19 0.010 

8 
Branched dimethylene ether with hemiformal 

methylol 
72.14 4162085.08 0.006 

9 Branched methylol 69.91 128850804.6 0.172 

10 
Linear dimethylene ether and linear 

hemiformal methylol 
67.59 109633511.4 0.146 

11 Linear methylol 63.80 748762931.4 1.000 

12 Methoxy for hemiacetal 54.03 4695865.93 0.006 

13 Branched methylene 52.73 18383991.57 0.025 

14 Methanol 48.53 15965543.48 0.021 

15 Linear methylene 46.61 36480462.37 0.049 

16 DMSO-d6 39.52 43118792.49 0.058 

17 CH3COOH 21.27 86879709.71 0.116 

 

The quantitative RPI is divided by the qualitative RPI from the two tables above to 

produce the conversion factors show in Table 3.7. 
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Table 3.8 Ratio of RPIs from the one step method producing the conversion factors for each 

signal using the results from above 

Signal 
RPI from 

Table 3.5 

RPI from 

Table 3.6 

Conversion factor 

(NOE+Sat) 

CH3COOH 0.158 0.028 5.70 

Triazine carbon with 1°/2° amine 0.906 0.427 2.12 

Triazine carbon with tertiary amine 1.570 0.649 2.42 

Methylene from hemiacetal 0.003 0.003 1.03 

Dimeric methylene glycol HOCH2OCH2OH 0.007 0.007 1.01 

Monomeric methylene glycol HOCH2OH 0.009 0.008 1.13 

Branched dimethylene ether with methylol 0.010 0.010 0.98 

Branched dimethylene ether with hemiformal 

methylol 
0.007 0.006 1.34 

Branched methylol 0.196 0.172 1.14 

Linear dimethylene ether and linear 

hemiformal methylol 
0.148 0.146 1.01 

Linear methylol 1.000 1.000 1.00 

Methoxy for hemiacetal 0.010 0.006 1.62 

Branched methylene 0.026 0.025 1.04 

Methanol 0.063 0.021 2.96 

Linear methylene 0.059 0.049 1.22 

DMSO-d6 0.466 0.058 8.08 

CH3COOH 0.311 0.116 2.68 

 

Quantitative and qualitative NMR experiments were carried out several times on 

different days with different resin batches to confirm the reproducibility and the 

accuracy of the conversion factors used. Statistical analysis of 8 separate experiments 

was carried out on the RPIs obtained from each experiment. Figure 3.14 shows the 

distribution of the conversion factor across the experiments.  
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Figure 3.14 Quality control chart of 8 different replicates of quantitative NMR experiments 

showing the RPI of the branched dimethylene ether with hemiformal methylol (72.08 ppm)(. SD 

= standard deviation and 2SD = 95% confidence of a normal distribution curve. 

 

For the majority of the signals, the first "replicate" (of the 8 done) is outside the 95% 

confidence interval (Appendix 1). The conditions of the experiment were optimised, 

after the first replicate, particularly the sample mixing and loading into the NMR tube, 

and consequently the remaining (7) replicates fall well within the 95% confidence 

interval. If the first replicate were to be excluded the standard deviation dramatically 

decreases, indicating that the conversion factor has a high degree of reproducibility. 

The first replicate has not been removed from the results in Appendix 1 so that the 

effect of optimization can be discerned. However, Table 3.8 summarises the mean 

RPIs of the qualitative (fast) and quantitiative results from 7 separate experiments 

(first set of data removed). 
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Table 3.9 The mean RPIs of the 7 NMR quantitative and qualitative experiments used for the 

generation of the conversion factor for all signals in melamine resin. 

Integral Chemical environment 
Mean RPI of 

qualitative signals 

Mean RPI of 

quantitative signals 

1 CH3COOH 0.0274 0.1567 

2 Triazine carbon with 1°/2° amine 0.4263 0.9095 

3 Triazine carbon with tertiary amine 0.6448 1.5790 

4 Methylene from hemiacetal 0.0030 0.0026 

5 
Dimeric methylene glycol 

(HOCH2OCH2OH) 
0.0071 0.0073 

6 
Monomeric methylene glycol 

(HOCH2OH) 
0.0087 0.0089 

7 
Branched dimethylene ether with 

methylol 
0.0087 0.0088 

8 
Branched dimethylene ether with 

hemiformal methylol 
0.0062 0.0078 

9 Branched methylol 0.1712 0.1956 

10 
Linear dimethylene ether and linear 

hemiformal methylol 
0.1483 0.1530 

11 Linear methylol 1.0000 1.0000 

12 Methoxy for hemiacetal 0.0062 0.0100 

13 Branched methylene 0.0364 0.0197 

14 Methanol 0.0218 0.0626 

15 Linear methylene 0.0487 0.0596 

16 DMSO-d6 0.0606 0.4937 

17 CH3COOH 0.1144 0.3058 
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3.7.2  Two Step Method 

 

The two step method in determining the conversion factor is via the investigation of 

the cross calibration factor (commonly known as the saturation factor) and the 

Nuclear Overhauser Enhancement (NOE). The NOE provides signal enhancement by 

the transfer of nuclear spin polarisation between nuclear spin populations. A total of 

four experiments are required to deduce these two components. These include the two 

experiments required for the one step method and two equivalent experiments with 

opposite NOE enhancements. In normal situations however, experiments would only 

be done with the one step method due to the fact that it only requires half the amount 

of time to do two experiments, rather than four. The results of the two step method 

from the four different pulse programs are outlined in Table 3.9. 

  

Table 3.10 The relative peak intensities (RPI) of 5 example signals obtained from four different 

pulse programs used to deduce the conversion factor via the two step method. 

Chemical 

environment 

RPI 

Quantitative (slow 

without NOE) 

Qualitative (Fast 

with NOE) 

Slow with 

NOE 

Fast without 

NOE 

Triazine carbon 

with 1°/2° amine 
0.8773 0.4466 0.6678 0.6188 

Triazine carbon 

with tertiary amine 
1.5808 0.6660 1.1078 0.9163 

Methylene from 

hemiacetal 
0.0066 0.0035 0.0050 0.0045 

Branched methylol 0.2233 0.2110 0.2108 0.2171 

Linear methylene 0.0649 0.0802 0.0637 0.0815 

 

The NOE factor (NOEf), Equation 3.10, is obtained by dividing the quantitative RPI 

by the RPI of slow with NOE (quantitative with NOE).  
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NOEf   = 
RPI of slow without NOE 

Equation 3.10   RPI of slow with NOE 

 

The saturation factor (Sat), Equation 3.11, is obtained by dividing the quantitative 

RPI by the RPI of the fast without NOE method. 

 

  Sat     = 
RPI of slow without NOE 

Equation 3.11  RPI of fast without NOE 

 

The product of NOEf and Sat is essentially the conversion factor (Table 3.10). Due to 

the increased number of steps however and the need to integrate more spectra more 

uncertainty is introduced into to the calculated value of the conversion factor. 

Therefore the application of the rapid NMR method (Section 3.8) utilises the 

conversion factors obtained from the one step method. The two-step method is hence 

not used.  

 

Table 3.11 Comparison of the saturation (Sat), NOE (NOEf) factors and conversion factors of 

the 1 and 2 step methods. 

Chemical environment NOEf Sat 
Conversion 

factor -1 step 

conversion factor - 2 

step (Sat x NOEf) 

Triazine carbon with 

no/mono substituted amine 
1.3137 1.4177 1.9644 1.8625 

Triazine carbon with di 

substituted amine 
1.4270 1.7252 2.3736 2.4618 

Methylene from hemiacetal 1.3200 1.4667 1.8857 1.9360 

Branched methylol 1.0593 1.0286 1.0583 1.0895 

Linear methylol 1.0188 0.7963 0.8092 0.8113 
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3.8  Application of the conversion factors to qualitative data. 

 

In this section the conversion factors derived from Section 3.7 are applied to the 

spectral data obtained during an in situ melamine reaction. The results of this allow 

the quantitative reaction profiles of the reaction to be deduced for real time NMR 

analyses of the resin systems. 

Based on previous research
7,17

 it was predicted that the spectral data obtained from 

using "qualitative" experimental parameters (i.e. fast, non-qualitative data) can be 

reliably utilised to anticipate quantitative data, within an approximate error limit (ca. 

10-15%). The results in Table 3.7 show the RPIs of a qualitative and a quantitative 

experiment. The ratio of the RPIs gives a conversion factor which can be applied to in 

situ real time reaction spectral data. The conversion factors given in Table 3.11 were 

calculated from the average of the RPIs from seven repeated quantitative and 

qualitative experiments obtained on separate days and different batches to ensure 

reproducibility. Originally eight experiments were analysed, however the first 

replicates were recorded before conditions were optimized. Accordingly, the RPIs 

from the first qualitative and quantitative experiments are not included in the 

conversion factor calculations. 
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Table 3.12 A list of reliable conversion factors for each chemical environment from using the 

average of the 7 repeated quantitative and qualitative experiments. 

Integral Chemical environment Average Conversion factor 

1 CH3COOH 5.72 

2 Triazine carbon with no/mono substituted amine 2.13 

3 Triazine carbon with di substituted amine 2.45 

4 Methylene from hemiacetal 0.88 

5 Dimeric methylene glycol HOCH2OCH2OH 1.02 

6 Monomeric methylene glycol HOCH2OH 1.03 

7 Branched dimethylene ether with methylol 1.02 

8 
Branched dimethylene ether with hemiformal 

methylol 
1.26 

9 Branched methylol 1.14 

10 
Linear dimethylene ether and linear hemiformal 

methylol 
1.03 

11 Linear methylol 1.00 

12 Methoxy for hemiacetal 1.61 

13 Branched methylene 0.54 

14 Methanol 2.87 

15 Linear methylene 1.22 

16 DMSO-d6 8.15 

17 CH3COOH 2.67 

 

The average conversion factor (ƒac) was applied to the integrated intensities (IRr) of 

the in situ real time NMR analysis to produce the corrected quantitative data (IQ). 

(Equation 3.12) 

 

IRr .ƒac = IQ Equation 3.12 
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Figure 3.15 shows the quantitative reaction profile of the methylene group of the 

hemiacetal species at 89.23 ppm after the application of the conversion factor in an in 

situ real time NMR reaction analysis. 

 

 
Figure 3.15 The quantitative reaction profile (after application of the conversion factor) for the 

integrated species of methylene from hemiacetal (89.23 ppm) generated from a real time reaction 

 

All spectral data obtained during the real time reactions were converted into 

quantitative data as shown above. The reaction profiles of each species were used to 

monitor the formation and disappearance of transient species within the evolving 

resin systems during the reaction.  
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4  Analysis of Melamine Resin Reactions 

 

4.1  Introduction  

 

In this chapter, results of the in situ real time qualitative results converted to 

quantitative data are examined. They are presented in the form of quantitative 

reaction profiles for each of the transient species present. The progress of the changes 

in the transient species in the reaction was monitored throughout the duration of the 

reaction. 

 

The investigation of the melamine resins using the analytical techniques of infrared 

spectroscopy (IR), Matrix Assisted Laser Desorption Ionisation - Time of Flight - 

mass spectrometry (MALDI-TOF-MS) and Electrospray Ionisation - mass 

spectrometry (ESI-MS) are also outlined. 

 

4.2  NMR reaction monitoring 

 

The qualitative NMR method was employed for the in situ real time monitoring of the 

resin formation process. The analysis of the sequential spectra obtained by this 

method provides information on the order of the reactions occurring during the resin 

synthesis.  

The quantitative reaction profiles determined from Section 3.9 were used to monitor 

the relative concentrations of chemical species as a function of the reaction progress. 

This provides information on the relative rates of the formation of the melamine resin 

species. 

Due to the demanding conditions of the qualitative method, the spectral data of the 

real time analysis suffers loss of resolution. To compensate for this, qualitative 
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signals were compared to spectra obtained using the quantitative method (high 

resolution). This confirms the identity of the signals related to the species being 

monitored. 

The reaction profiles in this chapter will be discussed in two regions; region 1 is the 

variable temperature (VT) region and region 2 is the region for which the temperature 

was being held constant at 90 °C. 

 

 

4.2.1  Addition stage reactions 

 

Addition stage reactions are known to occur between the reactant species melamine 

and formaldehyde (polymeric species).
20

 These reactions, under alkaline conditions 

undergo a substitution reaction with formaldehyde species and form methylol 

melamines (Figure 1.5). The melamine species in the NMR region between 164 - 167 

ppm gave two distinctive signals which arise at ~166.2 and 164.8 ppm. They 

correspond to the quaternary triazine carbons of melamine, differing with the degree 

of substitution of the amine group i.e. primary and secondary (A) amines gives rise to 

the signal at 166.2 ppm and tertiary amines (B) produce the signal at 164.8 ppm.  
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i. Melamine species 

 

 

Figure 4.1 The reaction profiles showing: secondary amine of the triazine carbon of melamine (A, 

166.2 ppm) and tertiary amine of the triazine carbon of melamine (B, 164.84 ppm) 

 

The quantitative reaction profile of the melamine species shown in Figure 4.1 can be 

used to describe the relative rate relationships of the melamine species. The increase 

in relative concentrations of species A and B in region 1, demonstrates the addition 

stage reaction of the melamine resin synthesis. It can be seen that in region 1, species 

B is twice the amount of A at approximately 30 minutes into the reaction. This means 

that the rate at which species B forms in the addition stage is initially twice that of 

species A. However, by the end of the temperature ramp the A:B ratio is 1:1.2. The 

significance of this is that the formation of species B has decreased dramatically, this 

is likely due to the high consumption of the formaldehyde species shown in       

Figure 4.3 and Figure 4.4. The relative rates are somewhat comparable to the research 

proposed by Gordon et al.,
53

 however comparison to their research was restricted as 

their temperature conditions ranged only between 20 - 55 °C. The relative rates 
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observed in this study is the trend by which the reaction continues through the 

condensation stage up to the IRE of the resin formation process. The relative kinetics 

of the self condensation of melamine and formaldehyde has also in the past reported 

by Okano et al.
54

 Their results relied on the assumption that no equilibrium shifts 

were occurring. However many investigations in the past indicate that the pH in 

especially alkaline conditions are highly influential to the equilibrium constant 

(Equation 1.4). 
5, 9, 55

  

 

ii. Formaldehyde species 

 

Formaldehyde species form polymers in aqueous solution. These polymeric forms 

can be further stabilised to hemiacetal species in the presence of methanol. Structures 

of the observed formaldehyde species are given in Figure 4.2. 

 

 

Figure 4.2 Formaldehyde species corresponding from top to bottom to: Methylene carbon of 

hemiacetal, dimeric methylene glycol, monomeric methylene glycol and methoxy carbon of 

hemiacetal 
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The reaction profiles of methylene glycol (Figure 4.3) and hemiacetal (Figure 4.4) 

species are shown below. 

 

Figure 4.3 The quantitative reaction profile of dimeric methylene glycol (85.36 ppm) and 

monomeric methylene glycol (81.67 ppm) 

 

 

Figure 4.4 Reaction profile of methylene carbon of hemiacetal species (89.23 ppm) and methoxy 

carbon of hemiacetal (54.03 ppm) 



Analysis of Melamine Resin Reactions 

91 

 

Both the methylene glycol and the hemiacetal species show the same trend in region 

1 (addition stage). The species rapidly decrease corresponding to a fast rate of 

reaction of these formaldehyde species with the melamine species discussed earlier. 

The methoxy at 54.03 ppm has completely disappeared during the addition stage this 

is possibly due to that the hemiacetal species react have reacted with a melamine 

losing the methoxy chemical environment. These species are consumed as the 

secondary and tertiary amines of triazine melamine carbon increase corresponding to 

the production of methylol melamines.  

 

iii. Resin species 

 

It is apparent that the linear methylol (Figure 4.5) is the major methylol species, 

formed at a rapid rate until the end of the temperature ramp. This is consistent with 

the rapid drop of the formaldehyde concentration and increase in the melamine 

species described earlier. This is consistent with several studies such as Scheepers et 

al.
44

 and Subrayan et al.
43

 showing the loss of methylene glycol species quantitatively 

as the resins are reacted. 

 
Figure 4.5 Reaction profile for linear methylol (63.80 ppm), linear hemiformal methylol (67.59 

ppm) and branched methylol (69.91 ppm) 
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4.2.2  Condensation stage reactions 

 

The condensation reactions of methylol groups to form linkages between melamine 

moieties correspond to the region directly after the temperature ramp (region 2).  

The melamine carbons show that the condensation stages up to a reaction time of 140 

min maintain an A:B ratio of 1:1.2. The significance of this is that formation of B is 

initially fast during the addition stage, but slows down once the temperature reaches 

90°C. Up until 140 min the formation of A and B occurred slowly and increased at 

the same rate. After 150 min however, the rate at which species B increased was 

faster than the rate of A. The rate of formation of species A potentially decreases for 

two reasons; 1) the secondary amine is consumed to form tertiary amines and 2) the 

secondary amine is consumed to form methylene and ether linkage groups due to 

condensation reactions. The reaction progressed until ~225 min where the ratio of 

A:B is 1:1.6. This corresponds to the commercial endpoint of the reaction (the IRE) 

and reactions past this point have no commercial significance. 

The rapid rate of methylol species formation described in the addition stage is 

required to support the cross linking during condensation. Cross linking is shown by 

the increase of methylene and ether species. (Figure 4.6 and Figure 4.7 respectively). 
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Figure 4.6 Reaction profile for linear methylene (46.61 ppm) and branched methylene (52.73 

ppm) 

 

 
Figure 4.7 The reaction profile of linear dimethylene ether (67.59 ppm), branched dimethylene 

ether with hemiformal methylol (72.14 ppm) and branched dimethylene ether with methylol 

(73.02 ppm). 
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The linear dimethylene ether and the linear hemiformal methylol signal arise and 

overlap in the same chemical shift range. Therefore the two species provide the same 

reaction profile and are indistinguishable from each other. The difference between the 

two groups is that the ether species acts as a bridge/linkage between 2 melamine 

moieties and the methylol species is only attached to 1 melamine group and 

terminated with an alcohol group on the other end. They have very similar chemical 

shift because the chemical environment in the –NH-CH2-O-CH2-OH moiety is very 

much like the –NH-CH2-O-CH2-NH–. The trend shown by the dimethylene ether 

reaction profile suggests that the 120 min reaction time gives the maximum amount 

of ether species available for linking the melamines. The profile essentially plateaus 

after this point and no further ether linkages are produced. Hence it is important to 

monitor past this point for commercial synthesis. The secondary condensation 

product is the methylene linkage which increases once the ether linkage possibilities 

are exhausted. The linear methylol profile shows a steady decrease after the ramp in 

region 2, indicating the consumption of the methylol species (Figure 4.5). When cross 

linkage occurs the hydroxide from the methylol group is removed along with a proton 

from an adjacent species producing water. This can account for the formation of 

methylene (Figure 4.6) and ether (Figure 4.7) linkage groups depending upon the 

nature of the adjacent species. The methylene linkages show an exponential increase 

after the addition stage because during condensation the production of methylene 

species will only increase.  

 

In early NMR investigations many authors detected ether bridges in the resin 

however, did not account for any methylene linkages.
56,57

 In 1992, Samaraweera et 

al.
58

 published that ether links predominates over methylene linkages using 
13

C NMR 

however Chang
41

 contradicted their work, by presenting results obtained from liquid 

chromatography mass spectrometry (LC-MS)and showed strong evidence of the 

methylene bridging group. Under the current investigation with the techniques of real 

time NMR analysis of the resin, it can be concluded that both species are present 

within the melamine resin. The quantitative results of this investigation indicates that 
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preliminary stages of resin formation (addition stage) ether linkages between 

melamines predominate, however the condensation stage shows that the relative 

amount of methylene increases exponentially and if the analysis was carried through 

to the curing stage the possibility of methylene bridge predominating in the cured 

resin is relatively high. 

 

Region 2 of the carbon with a tertiary amine B (Figure 4.1) indicates an increase in 

substitutions of the amine groups. The trends of this region are very similar to the 

trend shown by the methylene group. This strong correlation is potentially the 

possibility that they are indicative of the same group being formed. Figure 4. 8 shows 

that the commercial endpoint of the liquid resin is reached when the ratio of ether 

links to methylene links is 2:1. 

 

 
Figure 4.8 The reaction profile of the major linkage groups of the resin; linear dimethylene ether 

(67.59 ppm) and methylene linkage (46.61 ppm) 
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The summary of the analysis of real time profiles of the resin indicates that the 

addition stages of the resin production have a relatively quick rate followed by 

plateaus. This is shown by the fast increase in melamine and methylol species in the 

addition stage (region 1) and the exponential decay of the methylene glycol 

(formaldehyde) species. The condensation process promotes the production of ether 

linkages with the rate of formation being very rapid initially, with a plateau after 120 

min of reaction. This is a crossing point of industrial significance as this is the 

amount of ether linkage required for this particular resin to reach the IRE. The 

reduction of ether formation in later stages of region 2 could possibly be due to the 

consumption of linear hemiformal methylol to form further cross linking products. 

The secondary cross linkage group is the methylene group. The methylene profile 

shows that it does not form during the addition stage and increases at an exponential 

rate once the condensation stage is reached. This is supported by the reduction of 

methylol species and increase in the melamine carbon with tertiary amine substitute. 

The IRE of the melamine resin in this research shows that the cross linking end point 

of the final liquid resin requires that the methylene to ether linkage ratio is 1:2. 

Quantitative measurements of the ether and methylene bridging groups have been 

measured in the past. 
43, 44

 However, experiments were constricted to reactions 

occurring outside the NMR subsequently once the reaction has progressed to a 

desired stage inject into the NMR for analysis therefore the observations of species 

reacting could not be acquired. This investigation forms the basis of monitoring of 

melamine resins quantitatively in a real time in situ NMR analysis, this technique 

allows the transient reaction profiles of each species to be observed. Future work 

using the technique developed in this study for quantitative NMR analysis should 

possibly exploiting the industrial parameters including stoichiometry, temperature 

and pH to see what the effects of changing these parameters has on the final resin 

products. 
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4.3  Results from the additional techniques used to study the 

melamine formaldehyde resin systems 

 

4.3.1  Solid state NMR spectroscopy 

 

Solid state NMR spectroscopy was included in this study to see if additional 

information can be obtained for the melamine formaldehyde resin system. The solid 

state NMR pulse programs of cross polarisation and high powered decoupling were 

utilised to acquire spectra for these investigations. 

 

Figure 4.9 Solid State NMR spectrum of melamine using CP pulse program with 5000 scans 

 

The spectrum of melamine shown above was obtained with CP pulse program . There 

was only 1 significant peak observed as expected corresponding to the triazine carbon 

of the melamine at 162.1 ppm.  
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Figure 4.10 Solid state NMR spectrum of freeze dried melamine formaldehyde final resin 

(control) using CP puse program with contact time of 2000 µs 

 

The spectrum of MF resin obtained with CP pulse program, the spectrum shows the 

melamine triazine peak arising at 164.9 ppm, and the broad CH2-O peaks arising 

around 64 ppm. The peak arising at ~46 ppm is assigned as the methylene linkage 

peak however uncertainties arise from the possibility that it was a spinning side band 

from another signal. It is important to note the peak at 32.9 ppm are the spinning side 

band of the 164.9 signal (10 kHz displaced from the 164.9 ppm peak). The broadness 

of the ether peak is due to either, multiple chemical environments (e.g. methylol and 

ether linkage) or reflects on the different levels of molecular motion in the resin (i.e. 

flexible chains versus crystalline).
59

 Solid state NMR peak widths are sensitive to 

these factors and what is observed spectrally depends strongly on acquisition 

conditions used. 
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Figure 4.11 Overlaid spectra of the final resin (control) sample acquired under the CP (red, top) 

and the HP DEC (blue, bottom) pulse programs. 

 

The comparison of the final resin samples acquired using the CP and the HP 

decoupling pulse programs confirm that the peak at 48 ppm is not a spinning side 

band therefore it is very likely the signal produced by the methylene linkage. The 

technique  of solid state NMR is not quantitative thus these are shown merely as 

confirmation of the linkage groups present in the resin system. 
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4.3.2  Fourier transform infrared spectroscopy 

 

Fourier transform infrared spectroscopy (FT-IR) was employed on samples of 

melamine and the final melamine formaldehyde resins as a complementary technique 

to NMR. Several FT - IR methods were carried out including thin film, ATR, 

microscope and KBr disk.  

The techniques of thin film, ATR and microscope produced spectra which were not 

optimum, however the spectra obtained from KBr disks provided spectra which 

showed clearly the changes of absorption patterns between melamine and the 

melamine formaldehyde resins.  

 

The representative IR spectrum of melamine, melamine formaldehyde resin and both 

spectra overlaid for comparison is given in Figure 4.12, Figure 4.13 and Figure 4.14 

respectively. 

 

Figure 4.12 Representative FT - IR spectrum of melamine  
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Figure 4.13 Representative spectrum of melamine formaldehyde resin 

 

Figure 4.14 Overlapped FT - IR spectra of melamine (black) and melamine formaldehyde 

spectra (blue) 
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All the major absorption signals of melamine and melamine resin were assigned 

according to the literature values.
34, 60- 62 

The assignments of peaks in melamine and 

melamine formaldehyde resin are shown in Table 4.1 and Table 4.2 respectively. 

 

Table 4.1 The infrared absorptions of melamine corresponding to the nature of the assignments  

Wave number (cm
-1

) Assignment Nature 

3500 - 3400 NH2 stretch Primary amine 

3300 - 3100 NH stretch Melamine 

1650 - 1400 C=N stretch Triazine ring of melamine 

1015 - 1030 C-N stretch Primary amine 

810 - 820 Triazine out of plane bend Triazine ring of melamine 

 

 

Table 4.2 The infrared absorptions of melamine formaldehyde resin corresponding to the nature 

of the assignments 

Wave number (cm
-1

) Assignment Nature 

3300 - 3100 NH stretch 
Secondary symmetric and 

asymmetric amines 

1650 - 1450 C=N stretch Triazine ring 

1330-1400 C-N stretch 
Secondary and tertiary 

amine 

1120 C-O-C stretch Ether linkage group 

1066 C-O stretch Ether linkage group 

1015  C-N stretch Primary amine 

810 - 820 Triazine out of plane bend Melamine  
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Description of the major absorptions observed are provided below 

Melamine IR spectrum: 

The several sharp narrow peaks ranging from 3500 - 3400 cm
-1

 can be assigned as the 

primary amine group (NH2) on the melamine spectra. A broad peak ranging from 

3300 - 3100 cm
-1 

is assigned as the secondary (NH) and tertiary amine stretch. The 

broad absorption band in the range of 1650 - 1400 cm
-1

 is attributed to the stretching 

vibrations of the C=N bonds in the triazine ring of melamine. 1021 cm
-1

 is assigned 

as the C-N stretch with primary amines and tertiary carbon. 

 

MF resins: 

A broad peak ranging from 3300 - 3100 cm
-1 

is assigned as the secondary (NH) and 

tertiary amine stretch. Another broad peak in the region of 1650 - 1500 cm
-1 

arises 

due to the C=N stretch in the triazine ring. The weak absorption band between 1300 - 

1400 cm
-1 

is the C-N stretch of the secondary and the tertiary amine groups. The two 

very weak absorption bands at 1120 and 1066 cm
-1 

correspond to C-O-C (ether) 

stretch and C-O stretch due to the dimethylene ether. The medium intensity of 1015 

cm
-1 

is assigned as the C-N primary amine stretch. 

When the melamine reacts with formaldehyde, the primary amine (NH2) stretch is no 

longer observed. This confirmed by the increase in the intensity of C-N stretch 

corresponding to secondary and tertiary amine group. The presence of C-O-C is also 

observed in the resin spectrum indicating the presence of cross linkage. The results 

show good agreement with the absorptions reported by Chen et al.
34

 and Chiu et al.
60

 

Although major differences are seen between the melamine and the resin product, the 

FT - IR spectra appears to be highly overlapped with common signals making 

interpretation less reliable. 
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4.3.3  MALDI-TOF-MS 

 

MALDI - TOF analysis was conducted due to its potential ability to observe the 

oligomers present within the final resin sample.
63

 ESI - MS analysis was also carried 

out on the final resin however, results were unreliable. Figure 4.12 shows the MALDI 

spectrum of the final resin resin, with the use of dithranol as the matrix. 

 

 

Figure 4.15 MALDI - TOF spectrum of sample with dithranol as a matrix 
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Table 4.3 The area and intensity of the mass peaks of interest 

       m/z 
   
Intensity 

      
Area 

128.063 107384.6 12237 

140.065 104306.5 15270 

158.067 113043.5 14732 

170.063 108006.4 17848 

188.055 110670.4 12949 

200.053 96369.01 11388 

218.024 77095.33 6865 

264.905 2092.74 219 

295.967 11875.7 1206 

325.928 11057.91 1167 

355.895 5042.71 547 

385.877 1169.57 181 

415.846 371.33 41 

445.82 1261.71 142 

475.783 1480.3 210 

 

The series of peaks with m/z values 140,170 and 200 Da could possibly result from 

M-CH2
+
 or M=CH2, OHCH2-M-CH2

+
 and CH2=M-(CH2OH) 2 fragments respectively. 

If the mass difference of 1 Da is disregarded then this set of data is comparative to 

Zanetti et al.
45

 

Table 4.4 Mass to charge ratio of substituted melamine determined by MALDI - TOF 

 

Mass to charge ratio (m/z) 

Mass 
[M+H]

+
 

Observed Expected 

Melamine 126 128 127 

Monomethylol  

melamine 
156 158 157 

Dimethylol melamine 186 188 187 

Trimethylol melamine 216 218 217 

 

The mass peaks corresponding to two melamine molecules with different link group(s) 

were also observed. The peak at m/z 265 corresponds to the two melamines linked by 
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a CH2 group, i.e. M-CH2-M, whereas m/z 325, 355, 385, 415, 445 and 475 are the 

signals that result from ether linkages (X = CH2OCH2 or H) between the two 

melamine groups, shown in  Figure 4.11 (where n = 1-7).  

 

 

Figure 4.16 The structure of 2 melamine molecules with different numbers of linkage groups 

 

Although the MALDI-TOF analysis method is not a quantitative technique, the 

intensities of the mass peaks of the ether species compared to the methylene species 

suggests that there are more ether species in the final resin. This supports the results 

from the NMR section whereby the ratio of ether linkages is higher than that of the 

methylene linkages. 



Conclusion and Recommendations 

107 

 

5  Conclusion and Recommendations 

 

5.1  Conclusion 

 

This investigation of melamine formaldehyde resin showed in situ formation 

reactions can be monitored with a 400 MHz NMR using a 5 mm probe, despite the 

reduced sample size compared with the NMR methods previously employed by Zeng 

and Woolley to obtain quantitative results through the use of a qualitative NMR 

acquisition method. 

The main parameter that was required when applying these methods to melamine 

formaldehyde resins was the determination of the longitudinal relaxation time (T1) of 

all species in the reaction. Once the T1s were deduced, the repetition times of the 

quantitative and the qualitative NMR acquisition methods could be established.  

It was found that the sequential addition of melamine followed by formaldehyde was 

not the best way of sample preparation for NMR real time analysis since the NMR 

spinning of 20 Hz did not adequately mix the reagents. Vigorous premixing of all the 

reagents prior to introduction into the NMR for analysis provided results which were 

not affected as much. 

NMR methods were developed in this study, which allow the identification and 

quantification of the chemical species involved in the formation reaction. The 

monitoring of the reaction via reaction profiles of each species shows the relative 

concentration changes of these species during a real time in situ NMR experiment of 

melamine formaldehyde resins. 

The results of real time monitoring by the reaction profile shows that the requirement 

of the relative ratio of cross linkage between the melamine for a resin which has 

reached the IRE is ether to methylene ratio of 2:1. This information can contribute to 
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further research in the field of quantitative real time reaction monitoring of melamine 

formaldehyde resins for the plywood and LVL industries 

 

5.2  Future development 

 

Future development could include variation of resin synthesis parameters such as pH, 

stoichiometry, addition of catalyst and temperature to investigate the structural 

changes and compare them to the physical properties of the effects of each parameter. 

The enrichment of 
15

N to the resins could enable 
15

N NMR studies This could offer 

new information on the structure since the backbone of melamine resins contain high 

levels of nitrogen. 

More work needs to be carried out on using MALDI - TOF - MS and ESI - MS to 

confirm the results acquired and provide further details to the sub reactions during the 

reaction course.  

Since there are a wide range of mixed melamine resins, including  melamine urea 

formaldehyde (MUF) and MUF with a portion of phenol added to it (PMUF). The 

parameters obtained from this research can be used as a guide, and further adapted for 

in situ real time quantitative analysis of the reaction process of these resins. 
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7  Appendix 1 

 

The quality control charts of all the species carried out using quantitative and 

qualitative conditions. Integrals represent different species specified below 

Integral Signal 

1 CH3COOH 

2 Triazine carbon with 1°/2° amine 

3 Triazine carbon of with tertiary amine 

4 Methylene from hemiacetal 

5 Dimeric methylene glycol HOCH2OCH2OH 

6 Monomeric methylene glycol HOCH2OH 

7 Branched dimethylene ether with methylol 

8 Branched dimethylene ether with hemiformal methylol 

9 Branched methylol 

10 Linear dimethylene ether and linear hemiformal methylol 

11 Linear methylol 

12 Methoxy for hemiacetal 

13 Branched methylene 

14 Methanol 

15 Linear methylene 

16 DMSO-d6 

17 CH3COOH 

 

(SL on the quality control charts represent the 95% confidence intervals (2SD) 
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Quantitative quality control charts 
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Qualitative quality control charts 
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