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Abstract 

Lake Rotoroa (37º48’S, 175º16’E) is a small, shallow, polymictic lake located on 

the western side of Hamilton City. The lake covers an area of 0.54 km
2
 with a 

mean depth of 2.4 m, catchment and riparian margins have been significantly 

modified into a suburban park-like setting. Due to its urban location and 

recreational value, exotic flora and fauna have been intentionally and 

unintentionally introduced. This has resulted in fluctuations in water quality and 

changes in phytoplankton, fish, and macrophyte assemblages over the past 60 

years. The overall aim of this thesis is to summarise the fluctuations in water 

quality and macrophyte community of Lake Rotoroa associated with introduction 

of exotic species, and to develop a general understanding of the ecosystem 

response. This study involved collating and analysing available information on 

fish assemblages, macrophyte community, and water quality in Lake Rotoroa. 

Data from nine fish surveys undertaken between 1976 and 2012 has been 

combined. Water quality and macrophyte data was supplied by NIWA, who have 

undertaken monitoring for Hamilton City Council as part of the national lakes 

monitoring programme. 

 

Fishing methods have varied from gill, trap, and fyke netting between 1976 and 

2001, with boat electrofishing surveys between 2003 and 2012. Lake Rotoroa has 

a relatively diverse freshwater fish fauna, comprising two native and six exotic 

fish species. The fish assemblage is now dominated by the native shortfin eel 

(Anguilla australis), European perch (Perca fluviatilis), brown bullhead catfish 

(Ameiurus nebulosus), and tench (Tinca tinca), with low densities of rudd 

(Scardinius erythrophthalmus) and goldfish (Carassius auratus). Fish density and 
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biomass have varied throughout the survey period, to some extent related to the 

environmental conditions and macrophyte cover.  

 

Macrophyte coverage and water quality have undergone considerable changes in 

the last 30 years, with the collapses of macrophytes stimulating decreases in water 

quality and increased perch abundance. In 1990, the macrophyte community 

collapsed with an associated release of nutrients into the water column, causing 

the lake to become supertrophic. Between 1992 and 2010, water quality improved, 

with a decrease phosphorus concentrations that apparently limited phytoplankton 

biomass and improved water clarity. This allowed macrophytes to recolonise the 

lake to 30% lake bed coverage in 2005 and a consequent improvement from 

supertrophic to a eutrophic state. Since 2009, the macrophyte community has 

undergone another collapse, with only a few clumps of native charophytes and 

Egeria densa present in 2011. The reduction of macrophytes has been 

accompanied by a decrease in water clarity. The collapse has been attributed to 

disturbance by grazing from the herbivorous rudd and foraging benthic feeding 

fish, although other stresses such as decreased water clarity and microcystins may 

also have had an influence.  

 

Further research is needed on the selectivity between passive and active fish 

capture methods used to allow accurate comparisons between the two methods. 

This will allow for density and biomass estimates to be made for the passive 

fishing methods previously used and allow greater insight into changes in 

abundance of fish populations in Lake Rotoroa.  
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Chapter 1: Introduction 

Lake Rotoroa is situated on the western side of Hamilton City on the North Island 

of New Zealand (37º48’S, 175º16’E). Its catchment and riparian margins have 

been significantly modified into a suburban park like setting. Due to its urban 

location and recreational value, exotic flora and fauna have been intentionally and 

unintentionally introduced (Clayton and de Winton, 1994a). The consequences of 

this modification have resulted in fluctuations in water quality and changes in 

phytoplankton, fish and macrophyte assemblage over the past 60 years (Clayton 

and de Winton, 1994b).  

 

This study reports on the changes in fish assemblage macrophyte cover, and water 

quality over the last 36 years in the context of the theory of alternative stable 

states in shallow lakes, as well as investigating the impact of exotic coarse fish 

have on the lake ecosystem.  

 Shallow lakes  1.1

Shallow lakes are defined as having depth that is low enough to allow year-round 

mixing to a point where it is “non-stratifying” ie. lacks a persistent vertical 

stratification because of mixing through cooling or wind turbulence (Padisák and 

Reynolds, 2003). The main point of difference between deep lakes and shallow 

lakes is that the ecology of shallow lakes is dominated by the intense sediment-

water interactions as a result of persistent mixing. This allows a continual 

recycling of nutrients, increasing lake productivity (Scheffer, 2004). Due to 

mixing of the hypolimonion and the penetration of light to the sediments aquatic 

macrophytes play are important role in stabilising shallow lakes (Scheffer, 2004). 
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New Zealand has approximately 3620 shallow lakes grater then 1 ha with the 

biggest Lake Ellesmere at 197.81 km² (NIWA, 2007, Scheffer, 2004). Due to the 

lower volume of shallow lakes compared to deep lakes they respond more rapidly 

to catchment modification. The ecological functioning of shallow lakes in New 

Zealand has received less research effort then deep lakes and is less well 

understood. This leads to difficulties in managing and restoring these lake 

ecosystems (NIWA, 2007). 

 

1.1.1 Nutrient relationships of shallow lakes 

The relationship between sediment and nutrients in shallow lakes is more 

important than in deep lakes as the sediment is in direct contact with the photic 

zone throughout the year. Allowing nutrient exchange between the sediment and 

water column year round due to polymictic mixing of shallow lakes (Rip et al., 

2005). Phosphorus and nitrogen are the fundamental two nutrients in lakes that 

both undergo different processes that influence there availability to biota 

controlling the status of a lake.  

1.1.1.1 Phosphorus 

Phosphorus availability is an important factor in determining water quality as it 

usually acts as the limiting nutrient controlling phytoplankton growth. 

(Søndergaard et al., 2003). Under aerobic conditions phosphorus is bound to the 

sediment by iron (Fe). During periods of the year when bottom waters become 

anoxic (when turbulence is low and microbiological consumption of oxygen is 

high) Fe(III) is reduced to Fe(II) causing both iron and phosphorus to come into 

solution and making them available for uptake by phytoplankton (Scheffer, 2004, 
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Søndergaard et al., 2003). Turbulence in shallow lakes is a key factor controlling 

phosphorus release. An optimal level of turbulence mixes the water column 

keeping the lake aerobic. When turbulence becomes too great, sediment becomes 

resuspended in the water column resulting in release of phosphorus (Scheffer, 

2004, Søndergaard et al., 2003). Ogilvie and Michell (1998) state as much as 80% 

of annual average total phosphorus concentrations can be due to sediment 

resuspension. The frequent mixing of shallow lakes in comparison to deep lakes 

results in resuspension of phosphorus over the length of summer allowing 

continued phytoplankton growth, whereas in deep, stratified lakes phosphorus is 

lost from the epilimnion until lake mixing in autumn (Jeppesen et al., 1997a).  

1.1.1.2 Nitrogen 

Nitrogen is less frequently a limiting nutrient in lakes (Abell et al., 2010) and 

differs from phosphorus in three main aspects; (1) nitrogen does not accumulate in 

sediment that strongly; (2) denitrification can result in a loss of nitrogen to the air; 

(3) some cyanobacteria are able to fix N2 as a nutrient (Scheffer, 2004). The 

decomposition of nitrate in organic material through ammonification by 

heterotrophic bacteria, leads to a release nitrogen in the form of ammonium (NH4
+
) 

(Wetzel, 2001). In the top aerobic layer of sediments microbes transform 

ammonium to nitrate (NO3
-
) in a process called nitrification (Scheffer, 2004). As 

ammonium and nitrate are not readily bound to sediment particles like phosphorus 

there is less accumulation in the sediments, they are released into the water 

column where they are readily available for uptake by phytoplankton and 

macrophytes (Scheffer, 2004). Nitrogen is removed from most lakes either by 

permanent burial in sediments, outflow, or by denitrification (Windolf et al., 1996) 
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the processes where nitrate is microbially transformed into nitrogen (N2) gas 

(Scheffer, 2004). 

 

1.1.2  Structuring role of submerged macrophytes in shallow lakes 

Macrophytes have a key stabilising effect on a lake ecosystem through several key 

buffer mechanisms. These include providing a refuge for pelagic zooplankton 

(Jeppesen et al., 1997a), habitat for macroinvertebrates (Diehl and Kornijo, 1997), 

supressing phytoplankton growth through the release of alleopathic substances, 

nutrient uptake, enhanced denitrification (Sondergaard and Moss, 1997, van Donk 

and van de Bund, 2002), reducing turbulence and resuspension, and increasing 

sedimentation rates (Barko and James, 1997).  

 

Diurnal vertical migration is expressed by pelagic zooplankton as behaviour to 

avoid visually feeding planktivores fish. Vertical migration can range over a few 

to 100 m, with the normal pattern of accent in the evening and decent in the early 

morning (Lampert, 1989). In shallow lakes this migration is limited by depth of 

the lake, causing pelagic zooplankton to be exposed to predation (Jeppesen et al., 

1997a). Macrophytes provide a refuge for pelagic zooplankton during the day, this 

can contribute to a higher zooplankton abundance and increased grazing pressure 

on phytoplankton (Jeppesen et al., 1997a, Jeppesen et al., 1997b). Lauridsen et al. 

(1996) found that vertical migration of pelagic zooplankton from dense plant beds 

covering only 3% of the lake is enough to increase the grazing potential of 

zooplankton in open water by 100%. Macrophytes also increase the diversity of 

habitats and resources for macroinvertebrates while reducing the predation 

pressure from fish (Eklöv and Diehl, 1994). This effects the survival and growth 
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of macroinvertebrate feeding fish, ultimately feeding back on the population 

dynamics of fish and other components of the lake food web (Diehl and Kornijo, 

1997).  

 

Macrophytes have the ability to store nutrients thus reducing phytoplankton 

biomass and growth. Van Donk & Gulati (1995) found that rapid growth of 

Elodea in Lake Zwemlust resulted in a limitation of nitrogen in the following 

summer and it was calculated that 64% of total lake nitrogen and 61% of total 

lake phosphorus (excluding the sediment pool) were found in the macrophytes.  

 

Macrophytes have been suspected of suppressing phytoplankton growth through 

the excretion of chemical substances (allelochemicals) (van Donk and van de 

Bund, 2002). Jasser (1995) found that under experimental conditions, extract from 

live Ceratophyllum demersum, Myriophyllum spicatum, Potamogeton lucens, 

Statiotes aloides, and Chara fragilis resulted in a decline in the biomass and 

percentage contribution of cyanobacteria to total algal biomass. The effects of 

allelopathy by macrophytes at an ecosystem level have yet to be tested (van Donk 

and van de Bund, 2002).  

 

Aquatic macrophytes can reduce sediment resuspension and erosion by reducing 

or redirecting turbulent water conditions while also acting as sediment traps via 

the interception of suspended sediments (Carpenter and Lodge, 1986). This has 

important role regulating sediment related to water quality problems such as 

reduced water clarity, enhanced nutrient cycling, and high phytoplankton biomass 

(Barko and James, 1997).  
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1.1.3 Alternative stable states 

Shallow lakes are generally considered to be in one of two alternative stable states; 

a clear water, macrophyte-dominated state or a turbid state, where phytoplankton 

dominate with few submerged macrophytes (Scheffer, 2004). A number of 

mechanisms control the stability of each state these include, wave action, nutrient 

availability, turbidity, population dynamics of submerged macrophytes, and both 

piscivorous and benthos/zooplankton-feeding fish (Blindow et al., 1993, Scheffer 

and Van Nes, 2007). A lakes’ trophic state switches when water clarity is reduced 

to a point where light is inhibited enough to cause significant stresses on the 

macrophyte beds resulting in a die back (Scheffer and Van Nes, 2007). This 

causes a large release in nutrients and an increase in resuspension of sediment, 

further increasing turbidity and preventing reestablishment of macrophytes while 

promoting phytoplankton growth. Scheffer et al. (1993) illustrated a mechanism 

leading to a changing trophic state in a simple geographical model (Figure 1.1). 

This model is based on three assumptions; (1) turbidity increases with the nutrient 

level due to increased phytoplankton growth; (2) aquatic vegetation reduces 

turbidity, and (3) vegetation disappears when a critical turbidity is exceeded.  
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Figure 1.1 Alternative equilibrium turbidities caused by disappearance of submerged vegetation 

when a critical turbidity is exceeded (from Scheffer et al., 1993) 

 

The Scheffer et al. (1993) model excludes complex environmental factors that can 

influence the state of shallow lakes. These factors can include seasonality effects, 

extreme weather conditions and spatial heterogeneity within the lake, and can 

cause lakes to switch between clear and turbid states over a short period of time 

(Scheffer and Van Nes, 2007). For example in 1968, Lake Ellesmere, South Island, 

New Zealand switched from a clear state to a turbid state when a tropical cyclone 

destroyed extensive submerged macrophyte beds of Ruppia megacarpa and 

Potamogeton pectinatus, allowing sediment to be resuspended year round and 

allowing phytoplankton to dominate (McKinnon and Mitchell, 1994, Williams, 

1979). A switch between alternative states generally occurs irregularly, but some 

lakes show periodic shifts between clear and turbid states (Scheffer and Van Nes, 

2007). For example, Lakes Grote Wije and Kleine Wije, Botshol, Netherlands, are 

two naturally clear shallow lakes that had become turbid due to eutrophication. In 

an effort to switch the lakes back to the natural state, external phosphorus loading 
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were reduced. After four years both lakes switched back to a clear state but this 

was not stable and in the 15 years following both lakes switched between 

alternative states four times (Rip et al., 2005). Periodic switching is predicted to 

occur when the critical nutrient levels for both lake states are close together and 

there is a strong relationship between nutrient levels and vegetation (Scheffer and 

Van Nes, 2007).  

 

1.1.4 Trophic interactions and nutrient conditions 

An increase in nutrients through an alteration of land use such as intensification of 

agriculture (MacLeod and Moller, 2006), can lead to changes in phytoplankton 

biomass and species composition (Williams and Moss, 2003). Alterations to the 

ecosystem can also occur through top-down or bottom-up trophic mechanisms. 

Top-down mechanisms imply that the alteration of a lake ecosystem through 

changes made at the top trophic level that flow down through the ecosystem to 

lower trophic levels. Bottom-up mechanisms imply that the processes are 

dominated by the modification of nutrient availability, which flows up to the 

higher trophic levels through the ecosystem (Jeppesen et al., 1997a, Scheffer, 

2004, Williams and Moss, 2003). 

  

1.1.4.1 Top down modifications 

The top-down control is manipulated by modifying the effect of fish predation on 

determining the size and composition of zooplankton communities, with the flow 

on effect of increased grazing of phytoplankton (Williams and Moss, 2003, 

Scheffer, 2004). This is supported by trophic cascade theory, which states that 

piscivorous fish keep planktivorous fish at a low density, which results in higher 
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abundance of large zooplankton which are efficient at causing significant decline 

in phytoplankton biomass (Carpenter et al., 1985, Friederichs et al., 2011). In 

lakes without piscivores, there should be a high phytoplankton due to low 

zooplankton grazing pressure (Friederichs et al., 2011). For example, in Lake 

Wolderwijd, Netherlands, the biomass of bream (Abramis brama) and roach 

(Rutilus rutilus) was reduced, and pike fingerlings (Esox lucius) were introduced. 

This resulted in a short term improvement in water clarity through reducing 

grazing predation on Daphnia galeata. In the long term this allowed gradual 

spread of Chara meadows, decreasing sediment resuspension with associated 

improvements in water clarity (Meijer and Hosper, 1997). Danner and Hambright 

(2002) revised 17 studies of top-down control and found only seven cases had 

reduced phytoplankton biomass due to manipulation of piscivore density. They 

also noted that phytoplankton abundance per unit of phosphorus was significantly 

lower in lakes with piscivores relative to those lakes without, suggesting some 

type of top-down control.  

 

Effect of top-down control in shallow lakes is limited by depth, through 

preventing vertical migration of zooplankton and providing alternative benthic 

food sources for planktivores. Vertical migration by zooplankton is known to be a 

means of avoiding predation from fish, is limited by depth in shallow lakes 

(Jeppesen et al., 1997a). Secondly, plankti-benthivorous fish such as rudd 

(Scardinius erythrophthalmus) rely more on benthic feeding in shallow lakes as 

benthic invertebrate biomass and production at a given total phosphorus level is 

higher in shallow lakes. This means that fish are less sensitive to variations in 

zooplankton abundance, allowing fish population density to remain high when 
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zooplankton levels are low (Jeppesen et al., 1997a). Controlling benthivorous fish 

also influences bottom up processes with fish forging for benthic invertebrates 

resulting in the sediment resuspension (Havens, 1993). Alternatively, increased 

grazing zooplankton abundance can result in dominance by large filamentous 

cyanobacteria that are not easily consumed by zooplankton (Schoenberg and 

Carlson, 1984). 

 

1.1.4.2 Bottom up interactions 

Bottom-up processes are influenced by nutrients in the lake ecosystem. 

Controlling nutrient loading in lakes limiting phytoplankton growth increasing 

water clarity and potentially promoting macrophyte development (Scheffer, 2004). 

Jeppesen et al. (2007) found that by reducing phosphorus loading in 22 lakes 

resulted in slow recoveries (10-15 years) from eutrophic state. This long delay is 

due to the internal loading of phosphorus within the lake which requires at least 

three retention times to wash out 95% of the excess pool of phosphorus in a fully 

mixed lake (Jeppesen et al., 2005). External nutrient loadings can be reduced 

through improved waste water treatment (Jeppesen et al., 2007), treatment of 

agricultural runoff through constructed wetlands (Tanner et al., 2005) and riparian 

margins (Özkundakci et al., 2010). The reduction of internal loading of 

phosphorus can be achieved by phosphorus precipitation (Özkundakci et al., 2010) 

or by the capping of sediments with clay minerals (Berg et al., 2004, Robb et al., 

2003). The application aluminium sulphate and zeolite to the small eutrophic Lake 

Okaro, resulted in a 41% decrease of total phosphorus from the water column 

between 2004-2005 and 2007-2008 (Özkundakci et al., 2010).  
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 Aims and objectives 1.2

The overall aim of this thesis is to develop a general understanding of the 

fluctuations in water quality and macrophyte community of Lake Rotoroa 

associated with introduction of exotic species into the ecosystem, by addressing 

four key objectives: 

1. Review previous studies of ecology and water quality to provide a 

summary on the current state of Lake Rotoroa.  

2. Summarise changes in fish assemblage within Lake Rotoroa.  

3. Provide a review of changes in the lake’s water quality and nutrients over 

the past 20 years. 

4. Evaluate relationships between lake water quality, fish assemblages and 

fluctuations in macrophyte cover within Lake Rotoroa.  

 

These objectives were addressed by;  

1. Collating available fish surveys in Lake Rotoroa and analysing data for 

changes in species assemblage catch rates, size and relative abundance.  

2. Analysing lake monitoring data (nutrients, Secchi depth, chlorophyll a, 

and total suspended solids), lake’s trophic status, and associate changes in 

key nutrient variables.  

3. Identifying possible causes of the decline of macrophytes in Lake Rotoroa. 

 

 Study site – Lake Rotoroa 1.3

Lake Rotoroa (37º48’S, 175º16’E) is a small shallow lake located on the western 

side of Hamilton city, managed by the Hamilton City Council as a park reserve. 
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Lake Rotoroa covers an area of 0.54 km
2
 with a mean depth of 2.4 m, with a 

northern and southern basin with depths of 5.4 m and 6.5 m, respectively (Clayton 

and de Winton, 1994b). Over 54% of the lake is less than 2 m deep and 25% less 

than 1 m deep (Figure 1.2) (Tanner et al., 1990). The lake’s catchment is 1.38 km
2
 

compromised of 40% lake surface, 25% residential housing, and 35% recreational 

reserve (Tanner et al., 1990). Water enters the lake directly via numerous storm 

water outlets around the lake margin, overland flow, or through ground water 

seepage. The outflow is maintained artificially via a weir on the western side of 

the lake, which flows into the Waitewhiriwhiri Stream via a piped drain 

(Hamilton City Council, 2010). Lake Rotoroa has a volume of 1.3x10
6
 m

3
 with an 

estimated residence time of 2.4 years (Dugdale et al., 2006).  
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Figure 1.2: Bathymetric contours for Lake Rotoroa, winter 2004, as measured by differential 

GPS/sonar and plotted by GIS software application Arc Map (de Winton et al., 2004) 
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 General setting 1.4

The Hamilton basin is located in the Waikato region of the North Island, New 

Zealand. The surrounding area consists of a broad alluvial plain with prominent 

widely spaced rounded hills ranging between 30 m and 70 m in height (Edbrooke, 

2005). The underlying geology is late quaternary pumice dominated alluvium 

which blankets the plain derived from remobilisation of sediment by the Waikato 

River following the Orunanui eruption 26,500 years ago. The river overtopped the 

Maungatautari Gorge flowing into the Hamilton basin depositing large amounts of 

sediment partially filling the valleys of the existing landscape. 17,000 years ago 

the supply of sediment reduced causing the erosion of the current Waikato River 

valley through the Hamilton basin (Collier et al., 2010b). 

 

1.4.1 Hamilton City  

Hamilton City is the fourth largest urban area in New Zealand with a population 

of 171,600, covering a highly modified area of 9,427 ha (Clarkson and McQueen, 

2004). The natural environment of Hamilton was originally dominated by lowland 

hills, and large peat bogs drained by an extensive gully system. Indigenous 

vegetation consisted of rimu-tawa forest on the lowland hills, a mixed conifer-

broadleaved forest on the well-drained ridges, swamp forest and shrub land on the 

margins of the peat bogs, with sedge shrub land in the peat bogs (Clarkson et al., 

2007). Extensive modification of the natural environment has occurred since the 

arrival of humans, early Maori first transformed the landscape through fire and 

cultivation. Since the arrival of European the landscape has been transformed 

dramatically with agricultural development, urbanisation and their associated 
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infrastructure causing large destruction of natural vegetation, little now remains 

(Hamilton City Council, 2007).  

 

1.4.2 Climate 

Hamilton has a temperate, damp climate characterised by warm humid summers, 

mild winters and moderate rainfall (Collier et al., 2010b). Mean annual daily 

maximum temperature of 18.8 °C with a mean of 23.6 °C in summer (December 

to February) and 14.1 °C in winter (June to August). Annual rainfall is 1230 mm 

yr
-1

 with rainfall typically higher in winter then summer, mean annual relative 

humidity of 85%. The prevailing wind direction is from the west (long term 

means from NIWA climate database 1990-2011).  

 

 Lake history 1.5

1.5.1 Origin 

Lake Rotoroa has similar geomorphological history to many other small peat 

lakes in the Hamilton basin. These lakes originated 15,000 -17,000 years ago 

during the final stages of the deposition of the Hinuera Formation by the ancestral 

Waikato River (McCraw, 2011). The formations consist of muds, sands and 

gravels deposited by the river to form a low angled alluvial fan forming at the 

south near Cambridge. During this period the river consisted of multiple braided 

channels that migrated across the surface of the fan. As these channels drifted 

across they formed levees, bars, and cut off embankments in the older hilly 

landscape impounding the water to form small lakes (Green and Lowe, 1994). 

Once the river settled in its current channel peat bogs began to develop 
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encroaching on the many lakes within the Hamilton basin causing the water levels 

to rise and turning their waters acidic and brown (Green and Lowe, 1994). 

 

Lake Rotoroa formed originally as two small lakes, the current northern and 

southern basins approximately 4 and 5 m deep, respectively. The growth of the 

Rukuhia bog caused the water level to rise as the peat level grew higher, 

submerging the low spur to form one lake (McCraw, 2011).  

 

1.5.2 Palaeolimnology of Lake Rotoroa 

The Waikato lakes are among the oldest lakes of New Zealand forming between 

15,000 and 17,000 years ago. Their sedimentary record spans major climatic 

changes between the end of the last glaciation and the warmer climates in the last 

10,000 years. Speirs (1995) described four sediment core samples from the 

southern basin, sampling 3.5 m of sediment from the lacustrine sediment down to 

and the Hinuera formation dating back to the initial formation of the lake. The 

average sedimentation rate was calculated at 0.2 mm yr
-1

 but had considerable 

variation between 0.02 mm yr
-1

 and 3.2 mm yr
-1

. Speirs (1995) attributed the high 

rates of sedimentation to the early lake development and erosion of the newly 

deposited Hinuera formation. After this period the sedimentation rates decline to 

between 0.04 mm yr
-1

 and 0.85 mm yr
-1

.  

 

1.5.3 Developmental history of Lake Rotoroa 

Speirs (1995) divided the development of the lake into five periods based on the 

analysis completed on the sediment cores. This includes analysis of 
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sedimentology, fossil pigments, cladocera and Chironomidae which were related 

to water quality and climate.  

 

Sediment deposits from the river spans the period of lake formation and 

development (17,000 – 14,400 years B.P). Sediments grade from alluvial sands 

and muds to lacustrine, the lake appeared to be shallow with low productivity. 

After 16,000 years, the lake appears to have deepened and increased in size with a 

change in planktonic species. Evidence also suggests that there were frequent 

inputs of allochthonous material from flooding of the Waikato River.  

 

The further deepening of the lake and decline of allochthonous inputs occurred as 

the Rukuhia peat bog began to develop, 14,400 - 5,300 years B.P. The change to a 

wetter climate is associated with an increase of lake area and establishment of 

littoral macrophytes, leading to increased habitat and greater species diversity. 

Later during this period increased peat development would have caused the lake 

to continue to deepen, flooding the shallow littoral macrophytes, declining water 

clarity, and increasing acidity.  

 

The drying of the climate resulted in the reduced growth of the peat bog 5,300 - 

3,300 B.P. The drying of the marginal peat allowed the reestablishment of shallow 

clear water areas with growth of littoral macrophytes, increases in productivity, 

and continued low clarity of the lake waters. 

  

Lake productivity continued to rise in Zone four, 3,300-1,650 B.P., dominated by 

submerged and littoral macrophyte development. The climate may have become 
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wetter and inputs of allochthonous material eroded form the regressing peat by 

streams. The lake continued to deepen and water clarity was poor.  

 

From 1,650 B.P. to present the lake was characterised by a massive increase in 

productivity over a 100-year period, and productivity remained high throughout 

the rest of the period; the cause of the rapid eutrophication is undefined (Speirs, 

1995). It is possible this relates to the arrival of humans into the Waikato and the 

large scale modification of the terrestrial environment leading to increased 

nutrient inputs.  

 

 Management history of Lake Rotoroa  1.6

Lake Rotoroa is a crown-owned recreational reserve controlled by the Department 

of Conservation but managed by the Hamilton City Council in terms of the 

Reserves Act 1977 (Featherston, 1994). Lake Rotoroa and the surrounding 

recreational reserve, collectively known as the Hamilton Lake Domain, is highly 

valued by the Hamilton community for its recreational and biodiversity values 

(Hamilton City Council, 1985).  

 

1.6.1 Historical management  

The Lake Domain was set aside during the original survey of Hamilton West in 

1864 as part of the “west town belt”. The domains’ appearance at this time 

reflected a history of fires and bush clearance. Initial clearing and planting at the 

southern end of the lake was the first attempt to create formal gardens, the rest of 

the lake remained in scrub with some grazing in the well-drained areas. The use of 
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the lake and the surrounding reserve gradually increased with the reserve being 

used for concerts, boat carnivals, moonlight parties, and rowing races. From 1913 

onwards the rest of the lake domain was cleared and developed for recreational 

use, starting on the eastern side before the development of the western side in the 

1950’s into what now is referred to as “Innes Common” (Hamilton City Council, 

2010). 

 

1.6.2 Hamilton City Council management plans 

In 1985 the Hamilton City Council was one of the first territorial authorities in 

New Zealand to create a formal management plan for the lake (Coffey et al., no 

date). The objectives of this plan included; the enhancement of the aesthetic 

appeal; its maintenance as a scenic and recreational attraction; to maintain and 

improve the water quality; management of species diversity for birdlife, fish, and 

aquatic vegetation; and the maintenance of Lake Rotoroa in such a manner that 

established water based recreation activities could continue to use the lake 

(Hamilton City Council, 1985, Coffey et al., no date). Until the first plan was 

implemented in 1985 the water quality and aquatic vegetation of the lake was 

managed on a narrow set of criteria and limited access to scientific expertise. This 

plan focused on eliminating aquatic weed for increasing the lake suitability for 

yachting. Hamilton City Council has continually revised the management plan for 

the lake domain. The most recent revision became operational in 2010 with the 

overriding aim to “protect the natural environment, while providing for public 

access, outdoor recreation activities and open space” (Hamilton City Council, 

2010). The key ecological objectives are;  
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1. To manage Hamilton Lake Domain and its catchment as a balanced 

sustainable and diverse ecological system giving particular recognition to 

the importance of water quality. 

2. To conserve and enhance the natural character and scenic environment of 

Hamilton Lake Domain. 

3. To manage activities at the lake to minimise exposure to contaminants in 

the lake bed sediments. 

4. Retain a wide range of recreation opportunities and enhance existing 

facilities, consistent with the need to protect and enhance natural habitat.  

 

 History of Lake Rotoroa water quality monitoring 1.7

Water quality monitoring in Lake Rotoroa first began in the late 1970s (de Winton, 

1994b). Early sampling was done in relation to other scientific studies, not on a 

basis of identifying the lake status. In 1976 and 1977 Hamilton City health 

inspectors collected two years of water quality data to supplement the perch 

(Perca fluviatilis) fishery research during the same period (Graynoth, 

Unpublished). Lake Rotoroa at this time was oligotrophic or marginally 

mesotrophic. The next sampling occurred 1978 and 1979 by the Waikato Valley 

Authority (now Waikato Regional Council) in relation to the use of diquat 

herbicide to control the exotic macrophyte Egeria densa (Henriques, 1979). The 

University of Waikato subsequently collected samples from 1978 to 1980 as a 

component a plankton studies (Chapman & Green, unpublished data). Since 1981 

continued monitoring has been carried out initially by the Water Quality Centre 

(now NIWA) as part of a survey of small Waikato lake survey (Town, 1981, 

Boswell et al., 1985). From 1985 the Aquatic Plant Group, MAF, (now NIWA) 
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where contracted by the Hamilton City Council to undertake water quality 

monitoring as a requirement for using the herbicide diquat. This was run 

concurrently with a monitoring programme by the Waikato Valley Authority from 

1988. Since 1992 Lake Rotoroa was included in the national water quality 

network run by NIWA and sampling has continued under contract from Hamilton 

City Council (de Winton, 1994b). 

 

 Ecology of Lake Rotoroa 1.8

1.8.1 Phytoplankton species 

Etheredge (1987) found Lake Rotoroa contained 146 phytoplankton species with 

38 major species. Ten species of euchlorophytes and 7 species of diatoms where 

the most common classes, Tetrastrum triangulare, Dinobryon cylindricum and 

Cyclotella stekkigera where the most abundant, but due to its larger size 

Peridinium sp. made up 69% of the biomass (Etheredge, 1987). By 1990 the 

dominant phytoplankton had changed with Edgar (1993) noting that the dominant 

phytoplankton was Botryococcus braunii forming over 90% of the biomass. Since 

the 1990s monitoring has shown that changes in phytoplankton population occur 

seasonally through a range of species with an overall decrease in biomass 

observed from 1992 to 2003. Between 1992 and 1999 four species dominated the 

biomass, green algae (Botryococcus braunii and Coelastrum reticulatium), 

chrysophyte (Dinobryon divergens), and the dinoflagellate, Peridinium playfairii 

(de Winton et al., 1999). Between 1995 and 1999 the dominance of green algae 

declined with periods of dominance by diatoms (Asterionella formosa, Cyclotella 

meneghiniane), desmids (Coelastrum reticulatium, Cosmarium bioculatum) and 
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dinoflagellates (Peridinium playfairii, and Certium hirundinella) (de Winton et al., 

2000). Phytoplankton species were stable until 2003 when the chlorophyta species 

Coelastrum cambricum and Botryococcus braunii became increasingly dominant 

(de Winton et al., 2005). Between 2005 and 2009 dinoflagellates were again the 

dominant contributor to biomass with Peridinium sp. the largest contributor, 

Ceratium hirundinella and Gymnodinium sp. were also significant (de Winton et 

al., 2011). Since 2009 summer blooms of toxic cyanobacteria have occurred 

consisting of Microcystis sp., Chroococcus sp., Dolichospermum sp. (previously 

named Anabaena) and Coelosphaerium sp. The levels of biovolumes varied over 

the summer seasons with the bloom continuing into autumn of 2011 (de Winton et 

al., 2011). 

 

1.8.2 Zooplankton community  

Waikato Lakes have a generally diverse zooplankton community. Lake Rotoroa 

consists of a range of copepod and rotifers. In the year 2000 the copepod 

community was dominated by the copepod nauplii shared with Daphnia, with 

other Crustacea being calanoid copepodites, Bosmina and Biapertura (White, 

2000). The Rotifer community consists of eight individual species (Duggan et al., 

2002). Rotifer community likely changes with trophic condition inorganic 

turbidity, important in determining rotifer distributions in some Waikato Lakes 

(Duggan et al., 2002). 

 

1.8.3 Submerged macrophytes 

Submerged macrophytes communities in Lake Rotoroa have undergone major 

changes in species composition and abundance (Table 1.1). Tanner (1990) noted 
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that changes in submerged macrophyte community represent a complex interplay 

between species presence, competition, succession and the effect of weed control 

measures. Prior to 1950 Lake Rotoroa was colonised by underwater meadows of 

characean algae and native vascular hydrophytes in the shallower waters (Coffey 

et al., no date). During the early 1950s the oxygen weed Elodea canadensis was 

present but coexisted with native vegetation (Table 1.1). In the late 1950’s 

Lagarosiphon major was introduced and displaced the native vegetation. Growing 

to a maximum depth of 5.0 m and reached the surface in depths less 4.0 m 

interfering with recreational yachting activities and posing a hazard for swimmers. 

In 1977 Egeria densa was first recorded and rapidly replaced Lagarosiphon major 

as the dominant submerged macrophyte (Coffey et al., no date). Native 

macrophytes (Table 1.1) continued to occupy shallow areas out of Egeria densa 

and Lagarosiphon major depth range. In 1989 the macrophyte community 

collapsed with no submerged macrophytes recorded between 1989 and 1992 

before a slow reestablishment of native charophytes beginning in 1994 (Burns et 

al., 1995) to a peak in 2006 (de Winton et al., 2006) where a gradual decline 

began with almost a complete loss of charophyte cover in 2011 (de Winton et al., 

2011).   
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Table 1.1: Submerged macrophyte records for Lake Rotoroa.  

1973-1989 Adapted from Coffey et al. (no date). 1994 (Burns et al., 1995), 1997 (Burns et al., 

1997), 2003(de Winton et al., 2004), and 2011 (de Winton et al., 2011). m= depth range (m), NS = 

present but coverage not surveyed, NR = Not recorded as an individual species, P = Present, (S) 

sparse coverage (< 50%), (A) abundant coverage (> 50%). 

Species 1973 1976 1986 1989 1994 1997 2003 2011 

Charophytes 
        

Chara corallina P P 
0.2-4.0 

m 
- 

1-1.5 

m (S) 
0.7 (S) 

0.5-1.8 

m (A) 
- 

Nitella cristata NR NR P - 
1-1.5 

m (S) 

0.7-1.6 

m (S) 

0.5-1.8 

m (A) 
- 

Nitella hookeri P P 
0.3-5.2 

m 
- 

1-1.5 

m (S) 

0.7-1.6 

m (S) 

0.5-1.8 

m (A) 
- 

Nitella 

pseudoflabellata 
P P 

0.4-2.0 

m 
- 

1-1.5 

m (S) 
0.7 (S) 

0.5-1.8 

m (A) 
- 

         

Trachoephytes 
        

Callitriche 

hamulata 
NS NS P - - - - - 

Egeria densa - P 
0.2-5.0 

m 
- - - (S) (S) 

Elodea canadensis 0.4-5.0 m 
1.0-3.0 

m 

1.0-1.2 

m 
- - - - - 

Glossostigma 

submersum 
P P 0.5 m - - 

- 
- - 

Lagarosiphon 

major 
0.4-5.0 m P 

0.2-5.0 

m 
- - - - - 

Limosella lineata NS NS 
0.2-0.4 

m 
- - - - - 

Myriophyllum 

proinquum 
NS NS 

0.5-1.0 

m 
- - - - - 

Potamogeton 

cheesmanii 
1.0-2.5 m P 

0.2-2.0 

m 
- - - - - 

Potamogeton 

crispus 
0.3-2.0 m P 

0.3-1.5 

m 
- 

1-1.5 

m (S) 
- - - 

Potamogeton 

ochreatus 
0.5-4.0 m P 

1.0-4.5 

m 
- - - (S) - 

 

1.8.3.1 Submerged macrophyte control 

Disruption of recreational activities due to growth of Lagarosiphon major and 

Egeria densa in the 1950’s lead to the Hamilton City Council to review weed 

control options. The most effective was the application of sodium arsenite in 1959, 

which has been described as having “spectacular results” with a complete absence 
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of submerged macrophytes for about five years. However, concerns on the 

toxicity persistence of sodium arsenite it was discouraged from further use 

(Tanner et al., 1990). Regrowth of Egeria densa beds were treated with diquat, an 

herbicide that affects vascular species with native charophytes recovering quickly 

post treatment. Diquat has been used on several occasions with whole lake 

coverage in 1971, 1974, 1982, 1985, and 1986 with targeted placement between 

1987 and the macrophyte collapse in 1989 (Tanner et al., 1990). Since the 

reintroduction of Egeria densa in 2004 hand removal and selective diquat 

applications have been used to minimise spread (de Winton et al., 2011).  

 

1.8.4 Emergent macrophytes  

Emergent macrophytes are important as habitat for nesting birds providing an area 

for nest establishment. As well as protection of lake banks from wave erosion, 

covering approximately 50% of the lake shore. The dominant species are listed in 

Table 1.2. Iris pseudacorus is heavily controlled with herbicide, with only a small 

quantity of viable rhizomes present (Hamilton City Council, 2010). 

 

Table 1.2: Dominant emergent macrophyte species in Lake Rotoroa 1993-2012 (Champion et al., 

1993) 

Species  Abundance 

Baumea articulata Common 

Eleocharis sphacelata Common 

Iris pseudacorus Sparse (Controlled) 

Nymphaea spp. Common 

Typha orientalis Common 
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1.8.5 Heavy metal and arsenic build up in the lake sediments and biota.  

The application of sodium arsenite to Lake Rotoroa has resulted in health 

concerns over the toxicity levels of arsenic in sediments, fish and aquatic 

macrophytes. Results by Tanner and Clayton (1990) showed that arsenic levels 

where high in macrophytes and surficial sediments with 193-1200 mg kg
-1

 wet 

weight, and 540-780 mg kg
-1

 wet weight, respectively.  Arsenite levels where low 

in flesh samples from fish and birds, with rudd having the highest concentration of 

5.5 mg kg
-1 

wet weight in gut contents. Arsenic levels in flesh where all well 

below the maximum level of arsenic permissible for human consumption of 2 mg 

kg 
-1

 (Tanner and Clayton, 1990, Department of Health, 1984). Kane (1995) 

confirmed the low arsenic levels previously reported with the highest levels 

recorded in catfish (Ameiurus nebulosus) with 0.778 mg kg 
-1 

wet weight.  

 

Storm water has been confirmed to be a source of heavy metals other than arsenic 

entering the lake. Analysis of concentration of heavy metals in fish flesh by Kane 

(1995), found that lead and copper were well below maximum permitted levels 

for human consumption of 2 mg kg
-1 

and 30 mg kg
-1

, respectively. Zinc recorded 

in goldfish (Carassius auratus), rudd and shortfin eel (Anguilla australis) were, 

11.9 mg kg
-1

, 11.2 mg kg
-1

, and 11.6 mg kg
-1

, respectively. Considered high but 

still below the maximum permitted levels for human consumption of 40 mg kg
-1

 

(Department of Health, 1984).  
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Chapter 2: Fish assemblage of Lake Rotoroa 1976-2012 

 Introduction 1.9

Lake Rotoroa has a relatively diverse freshwater fish fauna by New Zealand 

standards, comprising two native and six exotic species (Table 2.1). This chapter 

will summarise changes in fish assemblage between 1976 and 2012, providing 

possible explanations into the population structure and condition of fish in Lake 

Rotoroa. 

 

1.9.1 Native fish 

Lake Rotoroa originally comprised of four native fish species (Table 2.1). 

Shortfin and longfin eels, both diadromous species, requiring passage upstream 

from the sea as juveniles and passage downstream to spawn as adults (Hicks, 

1994). Common bullies can be catadromous or land locked, it is unknown if 

common bullies in Lake Rotoroa were once seagoing (McDowall, 1990). The 

current status of common smelt and longfin eel in Lake Rotoroa is unknown. It is 

likely that due to predation by perch, smelt are now eradicated from the lake 

(Coffey et al., no date).  
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Table 2.1 Fish species of Lake Rotoroa 

Common Name Scientific name  Abundance 

Native: 

  
 Common bully Gobiomorphus cotidianus Sparse 

 Common smelt Retropinna retropinna Unknown 

 Longfin eel Anguilla dieffenbachii Unknown 

 Shortfin eel Anguilla australis Common 

   
Exotic: 

  
 Brown bullhead catfish Ameiurus nebulosus Common 

 Goldfish Carassius auratus Sparse 

 Mosquitofish Gambusia affinis Common 

 European perch Perca fluviatilis Common 

 Rudd Scardinius erythrophthalmus Common 

 Tench Tinca tinca Common 

 

1.9.2 Exotic fish 

Since the settlement of Europeans into Waikato area the fauna of Lake Rotoroa 

has changed significantly. Six exotic fish species have successfully been legally 

and illegally introduced. European perch were the first exotic fish to be introduced 

and were released by the Waikato Angling Club in approximately 1907 in an 

effort to create a coarse fishery. A previous introduction into New Zealand 1885 

was unsuccessful. Perch were one of the first exotic fish introduced and liberated 

throughout New Zealand between 1868 and 1877. Their diets range between 

invertebrates, zooplankton and small fish (McDowall, 1990). Mosquitofish and 

goldfish were introduce some time before 1976 as they were both well-established 

before the first fish survey by Graynoth in 1976 (Table 2.2). Goldfish are thought 

to be either introduced intentionally as part of an effort to create a course fishery, 

or released as unwanted aquarium fish (Coffey et al., no date). Mosquitofish were 

introduced into New Zealand for experimental control of mosquitos, and can now 

be found almost anywhere there are suitable habitats north of the Waikato and 

Bay of Plenty (McDowall, 1990). Brown bullhead catfish where first caught in 
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1977 (Graynoth, 1978 Unpublished data), it is unknown if they were released 

intentionally, unintentionally transferred by fyke net (used for commercial capture 

of eels), or migrated into the lake from the Waikato River. Catfish have been 

present in the Waikato River since 1900s (McDowall, 1990). Rudd was 

introduced into New Zealand in 1967 and has since been spread to a number of 

lakes, ponds, and rivers. Rudd are omnivores, and eat a wide verity of vegetation 

and invertebrates, with a normal size range of 200-250 mm although can reach up 

to 410 mm (Hicks, 2001, McDowall, 1990). Tench were introduced into Lake 

Rotoroa in 1990 by Auckland/Waikato Regional Fish and Game Council, as part 

of an effort to increase the opportunities for course fishing in the Waikato (Kane, 

1995, Hicks, 1994). Tench are large (up to 700 mm), olive-green to dark bronze, 

mainly found in shallow, still or slow moving water. Diet studies indicate tench 

are benthivorous and planktivores consuming macroinvertebrates and zooplankton. 

Tench are regarded slow-growing species that undergo large periods of inactivity 

with a low intake of prey (Perrow et al., 1996). They been shown to reduce 

macrophyte development by stimulation greater periphyton growth (Rowe, 2004, 

Williams et al., 2002).  

 

 

 Methods 1.10

1.10.1 Fishing method 

Method of fishing has changed over time (Table 2.2). Each scientific study has 

used different sampling methods and/or sampling effort focused around specific 

objectives. Graynoth (unpublished data) (survey 1) focused on assessing the value 
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of a perch sports fishery. Wise (1990) (survey 2) sampling focused on the biology 

of the exotic species, perch, rudd, and brown bullhead catfish. Sampling of native 

species was not recorded. Kane (1995) (survey 3) and Roberts (2002) (survey 4 

focused on estimating the biomass, abundance and population structure of all fish 

in the lake. Hicks (unpublished) (surveys 5-9) focused on mean fish density and 

mean fish biomass. Alternative methods other than those listed below have been 

used but there results or effort proved poor or were not replicated over time 

therefor have not been used in this research. In all surveys, fish length was 

recorded.  

 

Table 2.2 Scientific fish surveys completed on Lake Rotoroa. 

Survey 

Number 
Start  Finish Net/type Sites Fish recorded Source 

1a July 1976 April 1977 Gill/Fyke/Trap 
Northern 

Basin  
Perch, Eel, Goldfish 

Graynoth 

(unpublished) 

1b July 1977 July 1978 Gill/Fyke/Trap 
Northern 

Basin  
Perch, Eel, Goldfish 

Graynoth 

(unpublished) 

2 
March 
1989 

February 
1990 

Fyke/Gill 
3 Shore, 2 
Centre 

Perch, Rudd, Catfish Wise (1990) 

3 
December 
1993 

February 
1994 

Fyke/Gill 
8 Shore, 3 
Centre 

Perch, Rudd, Catfish, 
Goldfish, Trench, Eel 

Kane (1995) 

4 
February 
2001 

May 2001 Fyke/Gill 
6 Shore, 1 
Centre 

Perch, Rudd, Catfish, 
Goldfish, Trench, Eel 

Roberts 
(2002) 

5 
August 3, 
2003 

August 3, 
2003 

Boat 
Electrofishing  

Shore fished: 
1138 m 

Perch, Rudd, Catfish, 
Goldfish, Trench, Eel 

Hicks 
(unpublished) 

6 
October 26, 
2005 

October 26, 
2005 

Boat 
Electrofishing 

Shore fished: 
684 m 

Perch, Rudd, Catfish, 
Goldfish, Trench, Eel 

Hicks 
(unpublished) 

7 
March 16, 

2006 

March 16, 

2006 

Boat 

Electrofishing 

Shore fished: 

524 m 

Perch, Rudd, Catfish, 

Goldfish, Trench, Eel 

Hicks 

(unpublished) 

8 
September 

4, 2008 

September 

4, 2008 

Boat 

Electrofishing 

Shore fished: 

597 m 

Perch, Catfish, Trench, 

Eel, Common bullies 

Hicks 

(unpublished) 

9 
January 9, 

2011 

January 9, 

2012 

Boat 

Electrofishing 

Shore fished: 

2855 m 

Perch, Catfish, Trench, 

Rudd, Eel 

Hicks 

(unpublished) 

 

Gill nets are a highly effective method of fish capture for larger bodied, pelagic 

species, but are selective on species, fish activity, and size (Erős et al., 2009). Fish 

are caught by swimming partway through the net and having the net slip behind 

the opercula (gill covers) or by becoming entangled in the net by spines or fins. 
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To minimise size selectively of gill nets, all surveys have used a range of mesh 

sizes (Table 2.3). The use of more than one mesh sizes gives a greater range of 

fish length, and results are a more accurate estimate of population. Net lengths 

and mesh sizes have varied over time but in all surveys gill nets were set 

overnight with an average set time between 16-24 h (Table2.3).  

 

Fyke nets were used to capture fish in the shallow water around the margins of 

water ways and are selective towards benthic cover seeking, and mobile species 

(Lapointe et al., 2006). Fyke nets used consisted of three interconnected funnels 

leading into a closed chamber at the end. The mouth of the first tunnel was 

connected to a wing supported by float line. The wing was anchored to the lake 

bank by a stake, with the fyke net perpendicular to the lake shore. The wing acts 

as a barrier to fish moment, guiding fish into the trap. Mesh size varied between 

surveys and is unspecified by Wise (1990). 

 

Sampling by boat electrofishing was completed using the University of Waikato 

4.5-m long electro-fishing boat. The boat has a rigid aluminium pontoon hull with 

a 2-m beam, and was fitted with a 6-kilowatt Honda-powered custom-wound 

generator and a 5-kilowatt gas-powered pulsator (Smith-Root, Inc., model 5.0 

GPP); two anode poles created the fishing field at the bow. The two adjustable 

anode arrays each had l-m long stainless steel rat tails that dangled in the water, 

and the boat hull itself acted as the cathode (Hicks et al., 2006.) Distance fished 

was calculated using a Garmin GPSMAP 60CSx global positioning system. 

Fishing methods have altered over time as research refined the fishing technique 

(Table 2.3). Fishing effort 2003 to 2006 involved a signal timed shot where a 
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continuous length of shore was fished. 2008 and 2012 involved a series of short 

timed shots of ten minutes at different shore locations throughout the lake.  

 

Table 2.3: Survey sampling effort; A. gill net fishing effort; B fyke net effort; C. boat electric 

fishing effort.  

A. Gill net fishing effort. 

 Fish 

Survey 

Fishing Year Effort  

Sample 

Location  

Net Size 

Start  Finish 

Set 
time 

average 

(h) 

Period 
Total 

Hours 
Mesh Size (cm) 

Combined 
Net 

Length 

(m) 

1a. July 1976 
April 

1977 
24 Quarterly - 

Northern 

Basin 
3.8/5.2/5.7/6.7/10.8/13.3 429 

1b. July 1977 
July 
1978 

24 Quarterly - 
Northern 

Basin 
3.8/5.2/5.7/6.7/10.8/13.3 429 

2 
March 

1989 

February 

1990 
24 Monthly 288 

 One set 

in each 
basin  

2.5/5.7/8.9 90 

3 
December 

1993 

February 

1994 
15.6 Weekly 133.6 

8 Shore, 

3 Centre 
2.5/3.8/5.6/8.4/10.6 120 

4 
February 

2001 

May 

2001 
22 Weekly 154 

6 Shore, 

1 Centre 
2.5/3.8/5.6/8.4/10.6 120 

B. Fyke Net Fishing Effort 

 Fish 

Survey 

Fishing Year Effort  

Sample 

Location  

Net Size 

Start  Finish 

Set 
time 

average 

(h) 

Total Net 

Hours 
Period 

no. of 

nets per 
site 

Mesh 

Size 
(cm) 

Wing 

Length 
(m) 

2 
March 
1989 

February 
1990 

24 864 monthly 3 3 shore  
 

3 

3 
December 

1993 

February 

1994 
16.2 562 weekly 3 

8 Shore, 3 

Centre 
2.5 4 

4 
February 
2001 

May 
2001 

22 1716 monthly 6 
6 Shore, 1 

Centre 
2 3 

C. Boat electric fishing effort             

 Fish 

Survey 
Fishing Date 

Effort  

Area 

(m2) 

Fishing 

Location   Total time (min) Period 
Length 

Fished (m) 

5 August 3, 2003 65 1 x 65 shot 1138 4552 Shore 

6 October 26, 2005 - - 684 2736 Shore 

7 March 16, 2006 39 - 524 2096 Shore 

8 September 4, 2008 30 3 x 10 min shots 597 2388 Shore 

9 January 9, 2011 100 10x 10 min shots 2855 11420 Shore 

 

1.10.1 Sampling sites 

Sample sites differed between all surveys except Kane and Roberts. Graynoth 

intensively sampled the northern basin (Figure 2.1) with series of gill nets and trap 
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nets. Wise (1990) sampled five sites, two with gill nets in the northern and 

southern basins (sites 2a and 2b) and three shore sites with fyke nets (sites 2c, 2d 

and 2e, Figure 2.1). Kane (1995) and Roberts (2002) sampled the same sites (3#, 

Figure 2.1) with fyke and gill nets at every location. Roberts (2002) Data from 

sites 3a and 3h have been excluded as these sites were extensively sampled as part 

of an enclosure removal programme. Boat electrofishing sampled shore locations 

only, varying in location and length depending on methods used.  
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Figure 2.1: Sample locations for Graynoth (northern basin), Wise (sites 2#), Kane and Roberts 

(sites 3#). 

 

1.10.2 Analysis 

1.10.2.1 Catch per unit effort 

Catch per unit effort (CPUE) is used to compare surveys, this has been given as 

catch per set. Fish capture has shown to be greatest during the time of dawn and 
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dusk (Prchalová et al., 2010). It is expected that once a set has been set overnight, 

an increase in time dose not result in a further relative increase in the catch. To 

reduce the effect of deferring set times between surveys, CPUE per set has been 

calculated.  

 

1.10.2.2 Boat electrofishing quantitative bioestimates 

Quantitative biomass estimates for boat electrofishing where calculated by 

correcting signal pass boat electrofishing fish captures by Equation 2.1. Equation 

2.1 represents the relationship between the population estimate from Zippin 

method (Y) of multiple pass removal and the number of fish caught in a first 

removal (X) (Hicks et al., 2006). Corrected fish captures where then used to 

correct mean fish density and mean fish biomass. 

 

Equation 2.1: Boat electrofishing signal pass population correction (Hicks et al., 2006) 

            

 

1.10.2.3 Fish Condition 

Fish condition has been analysed using the linear equation of the natural log-log 

length and weight relationship (Equation 2.2). Where weight (Y), length (X), 

slope (b), and Y intercept (a) 

Equation 2.2: Length-weight relationship 

           

 

Length-weight relationships between studies where analysed for significance 

using analysis of covariance (ANCOVA). Analysis was run with “study year” and 
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“length” as the covariate, to test significant of slope (Equation 2.3). If this was not 

significant then a separate ANCOVA was run with a single factor “study year” 

tested for significance separately (Equation 2.3).  

 

Equation 2.3: Analysis of covariance with the covariate length and study year  

                                   

 

Equation 2.4: Analysis of covariance with the single factor study year 

                   

 

 Results 1.11

Total catch has varied between scientific surveys mainly due to differences in 

methods and effort (Table 2.4). The most notable change in fish assemblage was 

the introduction of new species with rudd introduced between 1978 and 1989, and 

the introduction of tench in 1990 shortly after Wise (1990) survey (2) finished. No 

goldfish have been caught since 2006 and a reduction in fish caught since 2003. 
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Table 2.4: Total fish caught from gill netting, trap netting, fyke netting and boat electrofishing in 

fish surveys in Lake Rotoroa between July 1976 and January 2012 

Fish 

survey 

Fishing year 
Perch Rudd Tench Goldfish Catfish 

Shortfin 

eel 

Common 

bullies 
Total 

Start  Finish 

1a* July 1976 April 1977 625 0 0 16 0 50 0 691 

1b* July 1977 July 1978 999 0 0 7 15 89 0 1110 

2** 
March 

1989 

February 

1990 
114 280 0 23 162 - 0 579 

3 
December 

1993 

February 

1994 
485 305 57 24 78 26 0 975 

4 
February 

2001 
May 2001 693 223 80 11 2000 85 0 3092 

5 
August 3, 

2003 

August 3, 

2003 
20 10 10 2 23 16 0 81 

6 
October 
26, 2005 

October 
26, 2005 

21 0 10 15 26 19 0 91 

7 
March 16, 

2006 

March 16, 

2006 
11 1 3 4 6 56 0 81 

8 
September 
4, 2008 

September 
4, 2008 

14 0 1 0 9 15 1 40 

9 
January 9, 

2012 

January 9, 

2012 
57 2 8 0 9 19 0 95 

* Graynoth used unspecified trap nets, eel species not specified. ** Wise (1990) - eel captures not 

recorded. 

 

1.11.1 Gill netting 

Gill net total catch relates to effort, with the significant effort by Graynoth’s 

showing in a relatively large catch of perch. The introduction of catfish occurred 

around 1976-1977 with this species first caught July 1977. CPUE shows a trend of 

increased fish abundance from survey 1 Graynoth, to survey 4 Roberts, excluding 

perch in 1990 and goldfish in 2001 (Table 2.5). This increased abundance was 

attributed to increasing catch of perch and catfish, and the addition of rudd and 

tench to the fish population.  
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Table 2.5: Fish caught in Lake Rotoroa from 1976 to 2001. A. gill net total catch. B. gill net catch 

rate per set per 100 m. 

Fish 

survey 

Fishing year 
Perch Rudd Tench Goldfish Catfish Total 

Start  Finish 

A. Gill net total catch    

1a July 1976 
April 

1977 
347 0 0 16 0 363 

1b July 1977 
July 

1978 
334 0 0 3 5 342 

2* March 

1989 

February 

1990 
89 274 0 - 13 376 

3 December 

1993 

February 

1994 
436 259 36 23 52 806 

4 March 

2001 

May 

2001 
563 190 40 6 48 847 

B. Gill net catch rate (fish 100 m net -1 set-1)  

 
1a* July 1976 

April 
1977 

0.71 0.00 0.00 0.03 0.00 0.75 

1b* July 1977 
July 

1978 
0.57 0.00 0.00 0.01 0.01 0.58 

2 March 
1989 

February 
1990 

7.88 11.09 0.00 - 1.04 20.00 

3 December 

1993 

February 

1994 
36.33 19.62 3.52 2.13 4.81 66.41 

4 March 
2001 

May 
2001 

86.55 28.33 5.00 0.71 8.33 128.93 

* Wise (1990) net type not given for goldfish capture. 

 

1.11.2 Fyke netting 

Fyke net total catch shows variability in relation to effort and species, goldfish 

catch was continuously low. Graynoth caught a large amount of perch using 

unspecified trap nets, these were set mid-lake rather than the shore-dominated sets 

in surveys 2 to 4. All species apart from goldfish showed increase in relative 

abundance. Catfish relative abundance increase was the most significant 

increasing dramatically between 1994 and 2001.  
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Table 2.6: Fish caught in Lake Rotoroa from 1976 to 2001. A. fyke nets total catch, B. fyke net 

catch rate. 

Fish 

survey 

Fishing year 
Perch Rudd Tench Goldfish Catfish 

Shortfin 

eel 
Total 

Start  Finish 

A. Fyke nets total catch   

1a* July 1976 
April 

1977 
278 0 0 0 0 50 328 

1b* July 1977 
July 

1978 
665 0 0 4 10 89 768 

2** 
March 

1989 

February 

1990 
25 6 0 - 149 - 180 

3 
December 

1993 

February 

1994 
49 46 21 1 26 26 169 

4 
February 

2001 

May 

2001 
130 33 40 5 1952 85 2245 

B. Fyke net catch rate (fish net-1 set-1)    

1a* July 1976 
April 
1977 

1.75 0.00 0.00 0.00 0.00 0.31 2.06 

1b* July 1977 
July 

1978 
2.79 0.00 0.00 0.02 0.04 0.37 3.22 

2 
March 
1989 

February 
1990 

0.68 0.28 0.00 - 4.13 - 5.10 

3 
December 

1993 

February 

1994 
1.63 1.92 1.40 0.04 0.96 2.53 8.48 

4 
February 
2001 

May 
2001 

1.43 0.36 0.44 0.05 21.45 0.93 24.67 

* Graynoth used unspecified trap nets, eel species not specified. ** Wise (1990) net type not given 

for goldfish capture. 

 

1.11.3 Boat electric fishing  

Water conductivity during boat electrofishing ranged from 106 µS cm
-1

 to 113 µS 

cm
-1

 specific conductivity with water temperature between 11 °C and 20 °C. 

Perch, catfish and shortfin eel were the most numerous species caught (Table 2.7). 

Goldfish have not been caught since 2006, and rudd capture rates have also 

decreased over the same time period. Tench had a high biomass when compared 

with their density due to the large size of this species (mean weight 968 g).  
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Table 2.7: Fish caught in Lake Rotoroa from August 2003 - January 2012. A. boat electrofishing 

total catch. B. boat electrofishing mean fish density. C. boat electrofishing mean fish biomass. 

Fish 

survey 
Fishing year Perch Rudd Tench Goldfish Catfish 

Shortfin 

eel 
Total 

A. Electrofishing total catch 

 
5 

August 3, 

2003 
20 10 10 2 23 16 81 

6 
October 26, 

2005 
21 0 10 15 26 19 91 

7 
March 16, 
2006 

11 1 3 4 6 56 81 

8 
September 4, 

2008 
14 0 1 0 9 15 39 

9 
January 9, 
2012 

57 2 8 0 9 19 95 

 B. Electrofishing mean fish density (fish 100 m-2)  

 5 
August 3, 

2003 
0.64 0.32 0.32 0.06 0.73 0.51 2.58 

6 
October 26, 

2005 
0.77 0.00 0.37 0.55 0.95 0.69 3.33 

7 
March 16, 

2006 
0.40 0.04 0.11 0.15 0.22 2.05 2.96 

8 
September 4, 

2008 
0.55 0.00 0.04 0.00 0.56 0.67 1.82 

9 
January 9, 

2012 
0.50 0.01 0.06 0.00 0.09 0.17 0.83 

C. Electrofishing mean fish biomass (g m-2)  
 

5 
August 3, 
2003 

0.97 0.65 1.90 0.14 0.96 1.40 5.2 

6 
October 26, 

2005 
1.10 0.00 2.50 1.40 2.00 1.80 8.8 

7 
March 16, 

2006 
0.90 0.00 0.90 0.00 0.70 7.00 9.5 

9 
January 9, 
2012 

0.67 0.01 0.80 0.00 0.31 0.45 2.24 

 

1.11.3.1 Quantitative estimates of boat electrofishing fish abundance 

By adjusting fish captures in Table 2.7 with Equation 2.1, perch, catfish, and 

shortfin eel have the highest density in Lake Rotoroa (Table 2.8). The logarithmic 

equation 2.1 results in a larger increase where higher numbers are caught. 

Corrected the biomass now shows tench biomass lower in relation to the biomass 

of perch, catfish and shortfin eels, when compared with uncorrected fish biomass 

as tench were less numerous then the other species (Table 2.7).  
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Table 2.8: Lake Rotoroa boat electrofishing August 2003 - January 2012. Values adjusted using 

equation 2.1, A. corrected boat electrofishing fish catch, B. corrected boat electrofishing mean fish 

density, C. corrected boat electrofishing mean fish biomass.  

Fish 

survey 
Fishing year Perch Rudd Tench Goldfish Catfish 

Shortfin 

eel 
Total 

A. Corrected boat electrofishing fish capture 

5 August 3, 2003 62 26 26 4 73 47 238.3 

6 October 26, 2005 66 9 26 43 85 58 287.0 

7 March 16, 2006 30 2 6 9 14 219 278.8 

8 September 4, 2008 40 0 2 0 23 43 107.8 

9 January 9, 2012 224 4 20 0 23 58 328.6 

B. Corrected mean fish density (fish 100 m2) 

5 August 3, 2003 1.98 0.84 0.84 0.12 2.35 1.50 7.64 

6 October 26, 2005 2.40 0.31 0.96 1.58 3.12 2.12 10.49 

7 March 16, 2006 2.91 0.15 0.59 0.84 1.38 21.56 27.44 

8 September 4, 2008 1.67 0.00 0.06 0.00 0.97 1.82 4.52 

9 January 9, 2012 1.96 0.03 0.18 0.00 0.20 0.51 2.88 

 C. Corrected mean fish biomass (g m2) 

5 August 3, 2003 3.02 1.73 5.00 0.26 4.61 4.16 18.78 

6 October 26, 2005 3.41 1.45 6.69 3.92 6.43 5.63 27.54 

7 March 16, 2006 5.18 0.01 3.87 0.06 3.34 56.54 69.00 

9 January 9, 2012 2.61 0.04 2.18 0.00 0.69 1.34 6.85 

 

1.11.1 Relative fish abundance  

Relative abundance of fish species in Lake Rotoroa has fluctuated depending on 

species present, population growth of a single species, and methods of capture 

(Table 2.9). Perch and catfish are the most abundant species in Lake Rotoroa in 

most years except when there is an extreme population growth for a short period 

of time. Before the introduction of rudd and catfish, perch relative abundance 

dominated fish captures, Graynoth caught 90% perch in two years fishing. A 

reminder needs to be made that effort was dominated by gill nets and trap nets not 

targeting shortfin eels, the dominate native species. Rudd once introduced 

underwent rapid population increase and had high abundance in 1989 to 1990. 

Since this time the population has gradually deceased with low abundance since 

2005. Perch have had relatively stable population with constant 20-35 percentage 
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of total catch apart from 2006. Catfish also have had a relatively consistent 

abundance since 1989-1990 with a population boom in 2001. Relative abundance 

in 2006 is dominated by shortfin eels due to sampling of eel specific habitat at the 

southern end of the lake, this likely results in a under estimate of relative 

abundance of other species. Goldfish and tench show a stable low relative 

abundance peaking 2005 before dropping after this survey. 

 

Table 2.9: Fish caught as a percentage of total fish caught from gill netting, trap netting, fyke 

netting and boat electrofishing in fish surveys in Lake Rotoroa between July 1976 and January 

2012 

Fish 

Survey 

Fishing Year Perch 

(%) 

Rudd 

(%) 

 

Tench 

(%) 

Goldfish 

(%) 

Catfish 

(%) 

Shortfin 

eel (%) 

Common 

bullies 

(%) 

Total 

catch Start  Finish 

1a* July 1976 April 1977 90.4 0.0 0.0 2.3 0.0 7.2 0.0 691 

1b* July 1977 July 1978 90.0 0.0 0.0 0.6 1.4 8.0 0.0 1110 

2** 
March 

1989 

February 

1990 
19.7 48.4 0.0 4.0 28.0 - 0.0 579 

3 
December 

1993 

February 

1994 
49.7 31.3 5.8 2.5 8.0 2.7 0.0 975 

4 
February 

2001 
May 2001 22.4 7.2 2.6 0.4 64.7 2.7 0.0 3092 

5 
August 3, 

2003 

August 3, 

2003 
24.7 12.3 12.3 2.5 28.4 19.8 0.0 81 

6 
October 

26, 2005 

October 

26, 2005 
23.1 0.0 11.0 16.5 28.6 20.9 0.0 91 

7 
March 16, 

2006 

March 16, 

2006 
13.6 1.2 3.7 4.9 7.4 69.1 0.0 81 

8 
September 

4, 2008 

September 

4, 2008 
35.0 0.0 2.5 0.0 22.5 37.5 2.5 40 

9 
January 9, 

2012 

January 9, 

2012 
60.0 2.1 8.4 0.0 9.5 20.0 0.0 95 

 

1.11.2 Length frequency distribution 

Juvenile fish with a fork length <70 mm, were not caught, which is expected due 

the size selectivity of gill nets and the small distance travelled by juvenile fish. 

Perch have showed a reduction in fork length >300 mm since 2001 (Figure 2.2) 

although boat electric fishing may target a select size range as all fish captured 

were within a fork length between 190 mm and 280 mm. Catfish show a trend of 
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increasing size (Figure 2.3), which might be representative of increasing age, 

though no aging of fish was done confirm this. Tench showed a range of size 

classes (Figure 2.3) with an absence of fish with a fork length <300 mm in 1995 

and 2012. Length frequency distribution of shortfin eels (Figure 2.6) showed a 

large decrease in length since the original survey by Graynoth, this could be due 

to commercial fishing or that Graynoth (unpublished) did not specify eel species 

and included a mix of shortfin and longfin eels. Roberts (2002) length frequency 

analysis included data from an intensively fish enclosure so may not be 

comparable to other studies.  
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Figure 2.2: Length frequency distribution of perch in Lake Rotoroa 1976-2012. 1976-2001 gill 

and fyke nets, 2003-2012 boat electrofishing 
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Figure 2.3: Length frequency distribution of catfish in Lake Rotoroa 1978-2012. 1977-2001 gill 

and fyke nets, 2003-2012 boat electrofishing. 
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Figure 2.4: Length frequency distribution of tench in Lake Rotoroa 1994-2012. 1994-2001 gill 

and fyke nets, 2003-2012 boat electrofishing 
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Figure 2.5: Length frequency distribution of rudd in Lake Rotoroa 1989-2003. 1989-2001 gill and 

fyke nets, 2003 boat electrofishing. 
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Figure 2.6: Length frequency distribution of shortfin eel in Lake Rotoroa 1978-2012. 1978 - 2001 

gill and fyke nets, 2003 - 2012 boat electrofishing. Graynoth (unpublished) did not specify eel 

species. 
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1.11.3 Length-weight relationships 

 Length weight relationship of fish species is shown in Table 2.9. Weight data was 

only available for surveys 2-4, 6, and 9. Analysis of rudd was limited, as surveys 

6 and 9 are excluded in from the analysis because of low catches rates. Caution is 

needed when comparing tench length-weight regressions as survey 9 had a 

different size range compared to the previous studies. No length frequency and 

length weight analysis has been completed on goldfish due to relatively low catch 

numbers.  

 

ANCOVA analysis confirms that catfish are significantly different (P< 0.05) in 

study and length-weight relationship. Indicating a decrease in condition with time 

as slope reduces representing longer but leaner fish. Rudd was non-significant 

(P=0.71) between ANCOVA with the covariates study and length, but were 

significant (P<0.05) between weight and the covariate, study year. This represents 

a decrease in the condition of rudd. Perch, shortfin eel, and tench were not 

significant in both the ANCOVA of weight between study year and length, and 

the ANCOVA between study and weight. P values, P = 0.685 and P = 0.872 

respectively for perch, P = 0.154 and P = 0.844 respectively for shortfin eel, P = 

0.213 and P = 0.355 respectively for tench. All species met the assumption of 

homogeneity of slopes.  
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Table 2.10: Natural log fish length (mm) (X) vs. natural log fish weight (g) (Y) relationship of 

fish caught in Lake Rotoroa between 1990 and 2012 (lnY = lna + bX). 

Fish 

Survey 
n Slope (b) lna R2 

Length  

Min Mean Max 

Catfish 

2 161 3.29 -12.76 0.96 103 189 346 

3 84 3.26 -12.68 0.93 124 197 344 

4 736 3.00 -11.35 0.96 35 212 389 

6 27 2.93 -10.79 0.90 173 237 334 

9 9 2.82 -10.23 0.89 270 293 330 

Perch 

2 113 2.77 -9.96 0.86 115 220 330 

3 530 3.00 -11.33 0.89 75 167 388 

4 305 2.77 -10.01 0.97 100 213 264 

6 21 3 -10.99 0.93 134 221 285 

9 57 3.01 -11.32 0.70 186 214 282 

Rudd 

2 280 3.19 -11.83 0.97 107 218 296 

3 308 3.28 -12.43 0.89 78 146 281 

4 158 3.17 -11.77 0.99 115 152 252 

Shortfin eel 

3 80 3.30 -15.05 0.92 257 560 978 

4 63 2.94 -12.16 0.96 381 534 910 

6 19 3.24 -14.65 0.87 276 491 665 

9 18 3.29 -14.94 0.92 315 487 690 

Tench 

3 59 2.93 -10.76 0.74 310 401 485 

6 10 2.94 -10.75 0.99 250 360 470 

9 7 2.12 -5.76 0.96 365 436 540 

 

 

1.11.4 Net selectivity 

A comparison between net selectivity of gill nets and trap nets 1976-1978 is 

shown in Figure 2.2. Trap nets caught a higher percentage of young perch (<150 

mm), whereas gill net favoured fish larger than 150 mm while capturing a greater 

number of perch over 300 mm. Trap nets show perch population with a bimodal 

distribution, clearly showing multiple age classes, whereas gill nets showed a 

normal distribution under-representing fish smaller than 140 mm.  
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Figure 2.7: Net selectivity compassion between unspecified trap nets and gill net (mesh size 2.5, 

3.8, 5.2, 5.7, 6.7, 10.8, 13.3 cm) in Lake Rotoroa July 1976 – April 1978 (data from Graynoth 

unpublished). 

 

 Discussion 1.12

1.12.1 Comparative changes in relative abundance  

Gill net CPUE (Table 2.5) shows that perch have the highest relative abundance in 

all years except for 1990, with increasing abundance through time. An increasing 

abundance of rudd, catfish and tench is also evident up to 2006 (Table 2.7). 

Capture rates for catfish show rapid population growth between 1994 and 2001 

with the CPUE increasing four fold. The low CPUE for Kane’s (1995) fyke 

netting is expected to be due to the low effort put into fyke netting (3 nets per set), 

resulting in an skewed representation of relative abundance. In 2006, shortfin eel 

density was extremely high, specific targeting of this species or sampling of a 

single habitat type at the southern end of the lake is the likely cause. Hicks (pers. 
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com., 2012) advised that that shortfin eel catch rates could vary significantly 

depending on habitat sampled and cover present. Rudd has decreased significantly 

when comparing gill netting and electrofishing. In 2001 rudd consisted of 21% of 

the total catch, this had dropped to 10% in 2003 and 2% in 2012 with no fish 

caught on two occasions 2005 and 2008. The reasons for this decline are unknown. 

Tench relative abundance between 1994 and 2001 appeared to be increasing 

associated with higher CPUE. Comparatively boat electrofishing shows a stable 

population over the 2003 to 2005 period then a decrease in density to 2012. 

 

1.12.2 Capture method selectivity  

Different sampling methods capture different fish species or proportion of the 

assemblage. Passive methods capture mobile species while active methods capture 

more inactive species (Weaver et al., 1993). The use of multiple sampling gear 

provides a better representation of fish assemblage composition and size structure 

(Ruetz et al., 2007). Graynoth (unpublished), Wise (1990), Kane (1995), and 

Roberts (2002) all used at least two methods gill nets and trap or fyke nets. Beach-

seine, purse-seine and Gee-minnow traps were also used but proved to be largely 

unsuccessful with few fish caught (Kane, 1995, Roberts, 2002, Wise, 1990). 

Daniel & Morgan (2011) found that in a shallow Waikato lakes species capture 

was highly dependent on net type with baited traps proving successful in 

capturing goldfish, whereas fyke nets were successful at capturing catfish and 

shortfin eels. The use of multiple methods does not guarantee sampling of entire 

fish populations as methods often do not balance out the selectivity of other gear 

(Beamesderfer and Rieman, 1988). Fish condition is also important, with gill-net 

selectivity favouring fatter fish among short fish, and thinner fish among longer 
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fish (Cren, 1951). Electrofishing is selective to larger bodied more passive species 

with fishing conditions effecting capture rates, for example water clarity, water 

temperature conductivity, and the presence of littoral and submerged vegetation 

reducing fishing successes (Weaver et al., 1993, Reynolds, 1996, Hicks et al., 

2006). Electrofishing is predicted to underestimate biomass of certain cover 

seeking species with capture rates less than 50% especially for catfish and eels 

due to their benthic cover seeking existents and reaction to the electric field 

(Hicks, personal communication, 2012). A comparison between fyke netting and 

boat electrofishing by Ruetz et al. (2007) found that captured species differ 

between the fyke nets and boat electrofishing with fish captured by electrofishing 

significantly larger then fish captured by fyke nets but the use of both limits the 

bias of using one method. The high capture rates of perch in Graynoth’s 

unspecified trap nets are possible due to the mid lake location of the traps set in 

the northern basin of Lake Rotoroa (Figure 2.1). Fyke nets favour the cover 

seeking eels and catfish, with capture rates high for these species, when compared 

with gill nets (Table 2.5). 

 

1.12.3 Native species 

Shortfin eel is the most common native fish at present, with only one common 

bullies caught in 2008, and the last longfin eel caught by Kane (1995). The 

introduction of exotic species appears to have resulted disruption of the original 

fish population with the loss of common smelt, and possibly longfin eel from the 

ecosystem. The loss of common smelt appears to be due to predation by 

mosquitofish and reduction in water quality. Wakelin (1986) recorded predation 

of smelt by mosquito fish in Lake Waahi. A reduction in smelt survival and 
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habitat due to a decrease in water clarity could also be a significant factor (Rowe 

and Taumoepeau, 2004) with the demise of smelt in Lake Waahi was attributed to 

increase in turbidity (Northcote and Chapman, 1999). The decrease in abundance 

of longfin eel is uncertain but there are several possible factors that may have 

contributed. Longfin eels show avoidance of degraded environments (Aldridge 

and Hicks, 2006, Ryan, 1991). The reduction of water quality may have resulted 

in possible avoidance of Lake Rotoroa during migration. The piping of the Lake 

Rotoroa outlet could have resulted in a migration barrier, but this seems unlikely 

as shortfin eels show recruitment into the lake through size class <350 mm. 

Common bullies are thought to be still present in the lake, with a bully found in 

the stomach contents of perch in an unpublished investigation of fish diet. 

Graynoth (unpublished report) suggested that catch rates of common bullies are 

low due to their secretive nature and that they are not prone to capture in the 

methods used.  

 

Length frequency analysis of shortfin eels shows a change in size distribution with 

the removal or loss of large eels over 1000 mm (Figure 2.6). This can be 

explained by removal of larger species by recreational or commercial eel fishing 

since 1978 or migration to breeding grounds. Method selectivity may also be a 

factor thorough Graynoth’s trap nets favouring larger individuals, with fyke nets 

and boat electrofishing favouring smaller size classes. The absence of small eels 

can be explained by sampling methods with fyke nets not adequately sampling the 

smallest size groups (Jellyman and Chisnall, 1999). Analysis of length weight 

relationship confirmed that there has been no change in eel population between 
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1994 and 2012. The low sample size for boat electrofishing would have limited 

the statistical comparison.  

1.12.4 Exotic fish  

1.12.4.1 Perch 

CPUE analysis (Table 2.5 and Table 2.6) and electrofishing mean density’s (Table 

2.7) show perch to be consistently the most abundant fish in Lake Rotoroa. Expect 

during a period where there is an explosion of a single fish species, for example 

catfish in 2001 (Table 2.6). Perch length frequency (Figure 2.2) is typical of a 

population in New Zealand waters, with a dense population of small fish (<250 

mm) due to the lack of predators (McDowall, 1990, Jellyman, 1980). The stability 

of the population is expressed in length-weight analysis, with no significant 

difference between studies. Roberts (2002) found that the low R
2
 value expressed 

in the length-weight relationship (Table 2.9), is due to isolated populations in the 

lake with limited migration between them. Because of the small size of perch, 

there is little interest this species as game fish and the virtual absence of predator 

fish species means there is likely to be little change in population structure (Rowe, 

1986).  

 

1.12.4.2 Catfish 

Since their introduction between 1976 and 1977 catfish population has increased 

dramatically with the highest CPUE of 21.45 fish net
-1

 set
-1

 in 2001(Table 2.6). 

Comparatively this dominance continued with high mean fish density through till 

2008 (Table 2.7). Length frequency distribution of catfish show that there was a 

lack of juveniles (< 130 mm) (Sinnott and Ringler, 1987) captured. This could be 

a result of method selectively or due to a stable population of large individuals. A 
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stable population can be explained by Johnson (1994) theory, that in unexploited, 

large populations, biomass is maintained indefinitely through time by the gradual 

and ordered replacement of individuals. Significant difference in length-weight 

relationship between species (Table 2.9) can be concluded that the population 

either still in progressing towards a stable population of large individuals with 

little recruitment occurring or that competition for food may resulting in reduced 

condition.  

 

1.12.4.3 Rudd 

Rudd showed high relative abundances through to 2003, since then mean fish 

density has been below 0.05 fish 100 m
-2

 with no fish caught in 2005 and 2008 

(Table 2.7). Rudd were thought to be a factor in the collapse of submerged 

macrophyte beds in between 1988 and 1990, which Wise (1990) had identified as 

a major food source. After the collapse of macrophytes the diet of rudd had altered 

with the majority of small rudd (110 mm – 127 mm) feeding exclusively on 

chironomids with large rudd (166 mm – 247 mm) feeding on emergent plant 

material (Nymphaea cultivars, Iris Pseudacorus and Baumea articulata). The 

cause of declining abundance of rudd is unknown, as macrophytes where still 

present over large areas of the lake until 2006, with decline in rudd occurring 

before October 2005 (de Winton et al., 2011). Competition between species is one 

possibility of rudd’s decline in abundance. Diet analysis by Wise (1990) and Kane 

(1995) demonstrating that chironomids make up a large proportion of the diet of 

exotic fish species in Lake Rotoroa. Increases in abundance of other species over 

this time period may represent a competitive advantage over rudd.  

 



57 

 

1.12.4.4 Tench 

Tench introduced in 1990 now dominate the lake biomass when compared with 

mean fish density (Table 2.8), with 31% of the total corrected biomass in 2012, an 

increase of 30% since 2003. This equates to a corrected total lake biomass of 

11,772 kg in 2012. This is attributed to the large size individual fish can reach. 

ANCOVA results suggest that there has been little change in the length-weight 

relationship of tench. This could be due to the low sample size from boat 

electrofishing. The length-weight relationship in fish may change with age, season, 

nutrition, sexual maturity and species (Ricker, 1975). Tench length frequency 

distribution (Figure 2.4) shows evidence of reproduction since 1994 with small 

fish (<150 mm) caught in 2001 and 2003. Kane (1995) suggested that due to cool 

water temperatures or wind exposure at the spawning sites prevented breeding in 

Lake Rotoroa. Tench require warm water temperatures above 18 °C for an 

extended period to allow for eggs and milt ripen generally spawning late spring 

(Kennedy and Fitzmaurice, 1970, Rowe, 2004). It is likely that the temperature in 

Lake Rotoroa is above 18 °C long enough to allow spawning. The collapse of 

macrophyte beds could prevent reproduction of tench, as they require submerged 

vegetation to spawn (O'Maoileidigh and Bracken, 1989). The lack to juveniles in 

1994 and 2012 (Figure2.4) coincides with periods were submerged vegetation had 

collapsed (de Winton, 1994b, de Winton et al., 2011). Rowe (2004) indicated that 

the loss of macrophytes could be a factor that limits tench populations in lakes. 

Sampling by boat electrofishing may result in under estimation of population if 

survey sites are limited. Perrow et al. (1996) found that tench form aggregations 

in favoured locations, if these sites where missed it may result in limited sample 

of the population. 
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1.12.4.5 Goldfish 

No goldfish have been caught since 2006 (Table 2.7) with generally low 

abundance except for 1993-1994. Competition from other species is anticipated to 

be the possible cause of this decline and low abundance in goldfish. When 

comparing goldfish abundance to other lakes in the Hamilton basin and urban 

areas in New Zealand. Fish density and biomass is lower in Lake Rotoroa then 

other shallow lakes with comparable species assemblage. Goldfish in Lake 

Rotokaeo, Lake Ngaroto and Hokowhitu Lagoon mean density varied from 2.32, 

0.55, 0.77 fish 100 m
-2

, respectively, while mean biomass was 0.86, 0.22, and 

2.93 g m
-2

, respectively (Hicks et al., 2009, Hicks and Brijs, 2009, Brijs et al., 

2009).
 
A survey of Lake Rotoroa in 2008, 3 months before the Lake Rotokaeo 

survey had failed to capture any goldfish, while the highest biomass was in 2005 

at 1.40 g m
-2

 (Table 2.7). Comparing fish assemblage from the above lakes to 

Lake Rotoroa, apart from the presence of koi carp (Cyprinus carpio) in Lake 

Ngaroto it has a similar assemblage to Lake Rotoroa with lowest goldfish density 

and biomass out of the three lakes. When compared Lake Rotokaeo which has a 

limited species diversity of, goldfish, shortfin eel, and common bully but the 

highest mean goldfish density and biomass. Limited inter species competition 

within the lake suggest that low competition and predation allows for high 

abundance.  

 

 Summary 1.13

Perch and catfish were the dominant fish species in Lake Rotoroa, as shown by 

consistently high CPUE in gill and fyke nets surveys, and more recently by high 

fish density in boat electrofishing surveys. Both species show relatively stable 
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population structures, with perch dominated by small fish due to the lack of a 

large predator. Catfish have a stable population structure dominated by large 

individuals with steady replacement over time. Shortfin eels were the only 

abundant native species caught between 1994 and 2012, with unpublished diet 

evidence suggesting common bullies are also present. No Longfin eels were 

captured in Lake Rotoroa between 1994 and 2012 suggesting the degradation in 

water quality and the piping of the lake outlet may have resulted in the loss of this 

species from the ecosystem. Further research on the difference in capture 

selectivity between different netting techniques and boat electrofishing is needed 

to allow quantitative comparison between methods, and to enable accurate 

assessment of changes in fish assemblage.   
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 Chapter 3: Fluctuations in macrophyte abundance and 

water quality in Lake Rotoroa 

 Introduction 1.14

Lake Rotoroa water quality has changed significantly over the last 40 years 

transforming from a oligotrophic to slight mesotrophic lake condition in 1978 

(Graynoth unpublished) to a supertrophic lake in 1992 (Burns et al., 1995). The 

local media labelled the lake as “on a downward spiral to biological death” 

(Clayton and de Winton, 1994a). The cause of water quality decline have been 

contributed to the collapse of macrophytes populations between 1988 and 1990, 

resulting in a release of nutrients and resuspension of sediment as the lake 

switched from a mesotrophic-eutrophic, clear water state, to a turbid, supertrophic 

state (de Winton, 1994b). This chapter will also explore relationships between 

macrophytes, key nutrients, and critical indicators of water quality in Lake 

Rotoroa between 1992 and 2012.  

 

1.14.1 Trophic level index 

Trophic level index (TLI) is a classification system based on key measurable 

variables used to define the biological condition of a waterbody (Carlson, 1977, 

Burns et al., 1999). Early trophic level indices developed by Carlson (1977), and 

Chapra and Dopson (1981), proved to be inadequate for New Zealand’s lakes. 

Carlson’s (1977) TLI, based on Secchi depth measurement, was too coarse at the 

higher trophic levels. While Capra and Dopson’s (1981), TLI was too fine, with 

five levels within the mesotrophic range. Total nitrogen important for nitrogen 

limited lakes in New Zealand, was also not incorporated into either of these 
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indices (Burns et al., 1999). Burns et al. (1999) developed a TLI based on 

chlorophyll a and incorporating total nitrogen, total phosphorus, and Secchi depth. 

Chlorophyll a concentrations were assigned to trophic level values, originally 

proposed by Vant, in Davies-Colley et al. (1993). The chlorophyll a 

concentrations 2, 5, and 30 mg m
-3

 where assigned the trophic values 3, 4 and 6, 

respectively, these were plotted and a regression given, this is then used to 

normalised chlorophyll a concentrations to within the index range 0-7 (Table 3.1). 

Total nitrogen, total phosphorus, and Secchi depth regressions were then 

calculated from lake data at a known chlorophyll a trophic level, so that the data is 

normalised. The four variables are then combined equally to give a trophic level 

between 0 and 7 relating to biological condition of a water body (Table 3.1) 

(Burns et al., 2000). 

 

Table 3.1: Values of TLI variables that define the boundaries of different trophic levels (Source: 

Burns et al., 2000) 

Lake type 

Trophic 

level 

index 

Chl a 

 (mg m
-3

) 

Secchi 

depth (m) 

TP  

(mg m
-3

) 

TN  

(mg m
-3

) 

Ultramicrotrophic 0.0 - 1.0 0.13 - 0.33 33 - 25 0.84 - 1.8 16 - 34 

Microtrophic 1.0 - 2.0 0.33 - 0.82 25 - 15 1.8 - 4.1 34 - 73 

Oligotrophic 2.0 - 3.0 0.82 - 2.0 15 - 7.0 4.1 - 9.0 73 - 157 

Mesotrophic 3.0 - 4.0 2.0 - 5.0 7.0 - 2.8 9.0 - 20 157 - 337 

Eutrophic 4.0 - 5.0 5.0 - 12 2.8 - 1.1 20 - 43 337 - 725 

Supertrophic 5.0 - 6.0 12 - 31 1.1 - 0.4 43 - 96 725 - 1558 

Hypertrophic 6.0 - 7.0 > 31 < 0.4 > 96 > 1558 

 

1.14.2 Deseasonalisation of data  

Seasonal effects on the environment, results in a predictable weather associated 

changes in environmental variables, for example, temperature or rainfall. These 

changes result in a general periodic fluctuation of environmental variables that 

affect the ability to statistically detect trends in environmental data. 
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Deseasonalisation allows for the removal of seasonal trends leaving a statistically 

stationary residual suitable for modelling and statistical analysis. 

Deseasonalisation does not remove multi-year variation but adjust the time series 

data for the seasonality experienced within the year. 

 

1.14.3 Chapter objectives 

The objectives of the chapter are to: 

1. Illustrate fluctuations in macrophyte coverage in Lake Rotoroa since the 

recovery of macrophytes in 1998  

2. Describe changes in Lake Rotoroa trophic level and key nutrients variables 

between 1992 and 2012.  

3. Relate changes in water quality and macrophyte cover of Lake Rotoroa to 

other similar lakes in the Waikato region. 

  

 Methods 1.15

1.15.1 Lake monitoring programme  

Data presented in this chapter was collected by NIWA as part of the national 

water quality network and continued on under contract from Hamilton City 

Council. Water samples have been taken from the southern basins, which has been 

sampled a minimum of four times a year since 1992. Samples have been collected 

and analysed in accordance of methods by Burns et al. (2000). 
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1.15.2 Analysis 

1.15.2.1 Deseasonalising data  

Seasonal variation in monitoring data was removed through a deseasonalised 

processes and trends tested for equivalence using the programme Time Trends 

(Jowett, 2011). The seasonal pattern was determined by fitting a generalised 

additive model with seven degrees of freedom, as a smother, to the annual pattern. 

Residuals are then plotted with the seasonality removed and tested for a trend 

using a equivalence test (Jowett, 2011). The generalised additive model developed 

by Hastie and Tibshirani (1990), assumes that the mean of the dependent variable 

depends on an additive predictor through a non-linear link function.  

1.15.2.2 Equivalence testing 

Interannual trend in monitoring data was tested using an equivalence test. The 

advantage of an equivalence test is that it can provide strong evidence for or 

against an environmentally significant difference or trend. A traditional statistical 

test of trend or difference is not a test of whether the trend or difference is 

environmentally important (Jowett, 2011). The null hypothesis is that there is no 

trend.  

1.15.2.3 Trophic level index 

Trophic level index (TLI) widely used to calculate changes in the nutrient status 

of lake. TLI was calculated using methods described by Burns et al. (2000) using 

total nitrogen, total phosphorus, chlorophyll a and Secchi depth. The data was 

averaged for the year and normalised using a regression equations for each 

variable so that they are same range as the TLI (Table 3.1)(Burns et al., 2000). 
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 Results  1.16

1.16.1 Submerged macrophyte cover 

Submerged macrophyte cover has undergone significant change between the 

collapse the in 1990 and its present condition (de Winton, 1994a). In 1997 the first 

significant charophytes growth was recorded in a seasonal vegetation survey 

(Burns et al., 1998), charophytes continued to expand up to 2005 with 30% total 

lake bed covered within the 0.5 m to 1.6 m depth range (Figure 3.1) (de Winton et 

al., 2005). In 2001, Egeria densa was first recorded in the lake, since the first 

macrophyte collapse in 1990. Since this time Egeria densa has continued to 

spread, hand weeding and selective Diquat applications in December 2004 and 

December 2009, have been applied to manage the population (de Winton et al., 

2005, Burns et al., 1998, de Winton et al., 2010). Since 2005 macrophyte 

coverage has under gone a steady decline (Figure 3.1). In 2011, there were only a 

few clumps of charophytes and Egeria densa present. Strands of filamentous 

algae Spirogyra sp. were also sparse (de Winton et al., 2011).  
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Figure 3.1: Mapped distribution of macrophyte cover in Lake Rotoroa from 2004 to 2011 as 

detected by differential GPS/sonar. Figures summarised from de Winton et al. (2004, 2005, 2006, 

2008, 2010, 2011). 

 

1.16.2 Secchi Depth  

Secchi depth is used as an indication of water clarity in lakes and marine waters 

(Tyler, 1968). Historically, Secchi depth has ranged from >5 m in 1977 (Graynoth 

unpublished) decreasing to 2.2 m in 1981 (Town, 1981), and 1.9 m in 1983 

(Etheredge, 1987), with consistently low recordings of 0.5 m between 1988 and 

1992 (de Winton, 1994b). The Secchi depth of Lake Rotoroa (Figure 3.2) shows 
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an improvement in water clarity, from less than 1 m in 1992 to over 2 m in 2009. 

Since 2009 Secchi depth has deteriorated with a decrease to between 1.5 m and 1 

m. The increased Secchi depth is a partial response to decrease chlorophyll a 

(Figure 3.2) and inorganic suspended solids between 1992 and 2012. It is 

unknown if the poor water clarity in 2011 is a trend or due to specific conditions 

during dates of sampling.  

 

 

Figure 3.2: Deseasonalised Secchi depth in Lake Rotoroa between 1992 and 2012 (n=131), 

equivalence test of deseasonalised slope was significant (P < 0.01). 

 

1.16.3 Chlorophyll a 

Historically, Town (1981) recorded chlorophyll a between 5.5 mg m
-3

 and 15 mg 

m
-3

 these levels had increased to between 5 mg m
-3 

 and 77 mg m
-3 

in 1987 (de 

Winton, 1994b). There has been an overall significant decrease in chlorophyll a 

between 1992 and 2012 (Figure 3.3). Chlorophyll a has fallen from a yearly mean 

of 28.1 mg m
-3 

in 2003 to 6.1 mg m
-3 

in 2011. Over this time period there has been 
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continual adaption of the dominant phytoplankton species (outlined in section 

1.8.1) as a result of changing nutrient conditions.  

 

 

Figure 3.3: Deseasonalised chlorophyll a in Lake Rotoroa between 1992 and 2012 (n=141), 

equivalence test of deseasonalised slope is significant (P < 0.01)  

 

1.16.4 Nitrogen 

Nitrogen has fluctuated historically, with Henriques (1979) documenting total 

nitrogen levels ranging from 415 mg N m
-3 

to 2325 mg N m
-3

. Nitrogen 

concentrations in have not decreased significantly in the 20 years of monitoring 

(Figure 3.4). Figure 3.3 shows cyclical periods of extreme high nitrogen levels, 

peaking at 1355 mg N m
-3

 in June 2002, and 1500 mg N m
-3

 January 2007. There 

has been no significant decline in nitrogen between 1992 and 2012.  
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Figure 3.4: Deseasonalised total nitrogen concentration in Lake Rotoroa between 1992 and 2012 

(n=139) Equivalence test of deseasonalised slope was not significant (P = 0.17) 

 

1.16.5 Phosphorus 

Historically total phosphorus has ranged from 17-112 mg P m
-3

 and 12-39 mg P 

m
-3

 in 1979 (Henriques, 1979) and in 1981 (Town, 1981), respectively. Figure 3.5 

shows there has been a significant decrease in total phosphorus. Annual mean 

total phosphorus concentrations have decreased from 33.5 mg P m
-3

 in 1992 to 

19.75 mg P m
-3

 in 2011 mg P m
-3

. Periods of anoxia in the deep northern and 

southern basins during summer cause releases of phosphorus from the sediments 

(de Winton et al., 2011). Dissolved reactive phosphorus levels are low with 

average summer concentrations below 2 mg m
-3

.  
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Figure 3.5: Deseasonalised total phosphorus concentration in Lake Rotoroa between 1992 and 

2011 (n=139), Equivalence test of deseasonalised slope was significant (P < 0.01). 

 

1.16.5.1 Nitrogen: phosphorus ratio  

Nitrogen: phosphorus (N:P) ratio shows an insignificant (P = 0.11) increase 

associated with decreasing levels of phosphorus as the trophic state of the lake has 

improved (Figure 3.6). In 1992 the annual ratio of N:P was 37.5 this is similar to 

2011 ratio of 39.6, the highest annual average ratio was recorded in 2007 at 51.4.  
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Figure 3.6: Deseasonalised ratio of total nitrogen concentration: total phosphorus concentration in 

Lake Rotoroa between 1992 and 2011 (n=136). Equivalence test of deseasonalised slope was not 

significant (P = 0.11). 

 

1.16.6 Trophic level index 

Annual trophic levels have decreased from supertrophic scores of 5.4 and 5.1 in 

1992 and 1993 respectively, to annual trophic levels scores of 4.4 and 4.5 in 2010 

and 2011, respectively (Figure 3.7). This represents a shift from a supertrophic 

lake to a eutrophic lake, mainly due to the decrease in total phosphorus, 

chlorophyll a, and increase of Secchi depth.  
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Figure 3.7: Annual trophic level index in Lake Rotoroa between 1992 and 2011 (n=123), 

Equivalence test of slope was significant (P < 0.01). Dashed lines indicate boundaries between 

trophic levels (Burns et al., 2000).  

 

1.16.7 Water clarity relationships 

Inorganic suspended solids (Figure 3.8) and organic suspended solids (Figure 3.9) 

have decreased significantly over the 20 year monitoring period, while the ratio of 

inorganic suspended solids to total suspended solids has remained unchanged 

(Figure 3.10). The proportion of inorganic suspended solid of total suspended 

solids is closely correlated (Figure 3.11); approximately 75% of total suspended 

solids are organic. This decrease in total suspended solids is derived from a 

combination of a reduction in chlorophyll a and inorganic suspended solids.  
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Figure 3.8: Deseasonalised inorganic suspended solids in Lake Rotoroa between 1992 and 2012 

(n=131), equivalence test of deseasonalised slope was significant (P < 0.01). 

 

 

Figure 3. 9: Deseasonalised organic suspended solids in Lake Rotoroa between 1992 and 2012 

(n=131), equivalence test of deseasonalised slope was significant (P < 0.01). 
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Figure 3.10: Deseasonalised ratio of inorganic suspended solids (ISS): total suspended solids 

(TSS) in Lake Rotoroa between 1993 and 2012 (n=132), Equivalence test of deseasonalised slope 

was not significant (P = 0.24). 

 

Figure 3.11: Regression of inorganic suspended solids vs. total suspended solids, with linear trend 

line and 0.95 prediction bands  
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1.16.8 Ammonia: nitrate ratio 

Nitrogen in Lake Rotoroa is dominated by ammonium, with a high ratio of 

ammonium to nitrate, with a yearly average of 17.7 in 2003, decreasing to 3.36 in 

2011. Figure 3.12 shows the statistically significant decrease in the ratio of 

ammonium to nitrate, illustrating an increase nitrate levels as there has been no 

significant change in levels of ammonium. Levels of nitrate and ammonium are 

poorly correlated (Figure 3.13) with increasing nitrate levels associated with high 

levels of ammonium. Ammonia and nitrate levels follow an annual cycle of 

depletion between February and April caused by uptake by phytoplankton 

followed by accumulation in the water column between June and October.  

 

 

Figure 3.12: Deseasonalised ratio of ammonium concentration: nitrate concentration in Lake 

Rotoroa between 1992 and 2011 (n=139). Equivalence test of deseasonalised slope was significant 

(P < 0.01) 
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Figure 3.13: Regression ammonium vs nitrate in Lake Rotoroa between 1992 and 2011, linear 

trend line and 0.95 prediction bands.  

 

 Discussion 1.17

1.17.1 Macrophyte collapse 

Several hypotheses have been given to explain the decline of macrophytes in Lake 

Rotoroa. Biotic factors include grazing and foraging by lake fauna, plant 

population cycles, and microcystins from cyanobacteria, while abiotic factors 

include resource depletion, competitive interactions, reduction in water clarity, 

and metrological events (de Winton, 1994a).  

 

1.17.1.1 Fish 

Generally fish can have a range of effects on macrophyte population through 

direct and indirect processes. Directly certain species will feed on submerged 

macrophytes leading to reduction in macrophyte cover (Williams et al., 2002). 
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Indirectly, forging by benthic feeding fish results in sediment and nutrient 

resuspension (Meijer et al., 1990).  

 

In Lake Rotoroa, rudd has been proposed as a species that may have led to the 

original macrophyte decline in 1990, although no direct evidence was found 

(Wise, 1990, Hicks, 1994, Roberts, 2002). Egeria densa and the native cryophyte 

species that have been shown to be highly palatable to rudd (Lake et al., 2002), 

although they are not selective species, eating the most suitable sized submerged 

macrophytes that are available (Nurminen et al., 2003). Lake et al. (2002) found 

that the native Nitella spp. was the most preferred by rudd, while the consumption 

rate of Egeria densa was 16.5 mg dry weight plant per g of flesh weight per day. 

The lack of a large aquatic predator in New Zealand allows rudd to reach high 

populations densities. Thus rudd have a significant ability to modify and limit 

macrophyte communities in New Zealand (Lake et al., 2002). Rudd may have 

played a significant role in the original decline in macrophytes, but the low 

densities recorded between 2005 and 2012 (Chapter 2) support a reduced effect 

since 2003 that does not explain the current decline.  

 

Indirect effects of fish on macrophytes are associated with benthic feeding fish 

resuspension sediment, increasing nutrients and turbidity (Meijer et al., 1990, 

Brönmark and Weisner, 1992). Meijer et al. (1990) found that reducing benthic 

fish population resulted in a significant reduction in inorganic suspended sediment 

when compared with control lakes. Rowe (2007) concluded that the resuspension 

of sediment and increased nutrients in the water column, promoted phytoplankton 

growth reducing water clarity and light availability to macrophytes. This switches 
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a lake from a clear-water state to a turbid, phytoplankton dominated state. 

Evidence of disturbance by benthic fish has been observed by divers in Lake 

Rotoroa (de Winton et al., 2002). de Winton et al. (2007) noted that fish 

disturbance was concentrated in shallow areas and that clumps of plants in these 

areas are associated with debris such as sticks, blocks, and tyres, suggesting that 

underwater obstacles limit access and disturbance from benthivorous fish. 

Dugdale et al. (2006) made comparisons between charophyte establishment in 

small fish excluding enclosures and in the open lake in Lake Rotoroa. They found 

that charophytes in the open water had a significantly reduced the ability to 

recolonise the lake bed. The biomass in the enclosures was approximately 9 g of 

dry weight per pot heavier than the charophytes in open water (Dugdale et al., 

2006). Grazing by water fowl is known to cause significant disturbance to 

submerged macrophytes (Lauridsen et al., 1994). De Winton et al. (2002) 

concluded that the effect of water fowl of macrophytes was low as densities of 

coot (Fulica atra) and black swan (Cygnus atratus) were one to two orders of 

magnitude less than that required to influence macrophytes. 

 

Although there is no record of high periphyton in Lake Rotoroa, the shading effect 

of periphyton can lead to reduction in macrophytes. Tench have been speculated 

to stimulate periphyton growth through trophic cascade effects by predation of 

gastropods (Brönmark, 1994, Jones and Sayer, 2003). Williams et al (2002) found 

that tench biomass as high as 20 g m
-2

 may be needed to cause a macrophyte 

reduction, but the highest recorded tench biomass in Lake Rotoroa was 2.5 g m
-2

, 

well below this biomass.  
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1.17.1.2 Macrophyte cover and exotic fish abundance  

The relative abundance of fish in Lake Rotoroa has been changed through the 

introduction of exotic species and modifications to the fish assemblage. (Chapter 

2). These changes are expected to have caused fluctuations in macrophyte 

coverage (Table 2.9) (Figure 3.14). The peak of rudd relative abundance in 1990 

has been predicted to be linked to the collapse of macrophytes in 1990 (Figure 

3.14) (Hicks, 1994), since this period relative abundance of rudd has collapsed 

with low capture rates since 2005. Catfish are capable of macrophyte disturbance 

when foraging for food; relative abundance catfish peaked in 2001 and appear to 

be unrelated to macrophyte abundance. Macrophyte surveys linked pitting in lake 

bed from foraging benthic feeding fish this might have contributed to macrophyte 

collapse (de Winton et al., 2007). High catfish densities could be a contributing 

factor in the collapse of macrophytes in 2011. Perch population seems to increase 

after macrophyte collapse, with increasing relative abundance during the periods 

of low macrophyte coverage (Figure 3.14). This may be due to favourable 

conditions when searching for food, for example, reduced cover for zooplankton 

increasing exposure to predation (Jeppesen et al., 1997a), or due to reduced 

competition from those species that rely on macrophytes directly or indirectly. 

Tench had low population biomass that did not seem to respond to macrophyte 

abundance. Their dependence on submerged macrophytes to spawn may limit 

breeding in Lake Rotoroa while macrophyte coverage is low. The irregularity of 

fish population surveys on Lake Rotoroa and the change in methods over the last 

20 years did not permit definite conclusions to be made on the exact species that 

are causing or influencing macrophyte coverage, but perch abundance seems to be 

inversely related to macrophyte abundance.   
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Figure 3.14: Macrophyte coverage and exotic fish species relative abundance in Lake Rotoroa 

1990-2012 (chapter 2). Macrophyte lake Coverage, 1990 – 1999 estimated from Lake Rotoroa 

monitoring reports ((Burns et al., 1995, Burns et al., 1997, Burns et al., 1998, de Winton et al., 

1999), 2000-2012 lake sonar surveys (de Winton et al., 2008, de Winton et al., 2010, de Winton et 

al., 2011)  

  

1.17.1.3 Nutrient limitation 

Nutrient limitation could be causing macrophyte decline. The effect of nutrient 

limitation is not predictable as the there is a complex set of processes that affect 

nutrient availability to submerged macrophytes (Barko et al., 1991). There has 

been no analysis of sediment nutrient availability to make conclusions on its role 

in macrophyte decline. de Winton (1994a) proposed that high concentrations of 

arsenic in the sediments might cause competition between arsenic and phosphorus 

by macrophyte roots.  
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1.17.1.4 Effects of microcystins 

Microcystins are produced by several genera of phytoplankton including two that 

have recently blooming in Lake Rotoroa (Microcystis and Dolichospermum 

(Anabaena)). Adverse effects of microcystins on submerged macrophytes include 

inhibition of germination or growth, inhibition of photosynthesis, and induction of 

oxidative stress (Babica et al., 2006). Although Babica et al. (2006) concluded 

that little evidence of the effects of microcystin exists in relevant environment 

conditions, exposure could make macrophytes prone to other stresses.  

 

1.17.1.5 Water clarity 

Reduction in water clarity has been suggested to be the cause of the original 

macrophyte collapse in 1990 (de Winton, 1994a), with a large decrease in Secchi 

depth occurring before the decline. Decreases in water clarity are assumed to be 

one of the triggers that causes lakes to switch to a turbid state (Scheffer et al., 

1993). Improvements in water clarity over the last 20 years associated with and 

decrease in phytoplankton abundance (Figure 3.3) and suspended sediment 

(Figures 3.8 and 3.9) conflicts with the current depletion of macrophytes. Thus 

water clarity cannot be causing the current decline in macrophytes. 

 

1.17.1.6 Meteorological events  

Extreme meteorological events have known to cause catastrophic reductions in 

macrophyte cover through wind turbulence or high rainfall influencing catchment 

runoff. For example, in 1968, after a massive storm Lake Ellesmere, South Island, 

New Zealand switched from a clear to a turbid state, when it destroyed large areas 

of submerged macrophytes (McKinnon and Mitchell, 1994, Williams, 1979). The 
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gradual decline of macrophytes recently experienced 2006 to 2012, would not 

support of extreme wind turbulence as a cause of the macrophyte collapse. 

Although smaller isolated metrological events may place increased stress on 

macrophytes and have a contributing factor to their decline. 

 

Combinations of two or more of the listed disturbances are likely to be the cause 

of macrophyte decline in Lake Rotoroa, but we cannot conclude which processes 

are directly or indirectly contributing to the decline. It is likely that benthic-

feeding catfish and the herbivorous rudd caused sufficient disturbance to 

macrophytes to cause the decline demonstrated by Dugdale et al. (2006) and de 

Winton et al. (2002) . The effect of tench on promoting periphyton growth cannot 

be excluded, and recent blooms of cyanobacteria, Microcystis and 

Dolichospermum (Anabaena), since 2009 may also be contributing though the 

production of microcystins.  

 

1.17.2 Decrease in trophic level index 

The decrease in trophic level index (TLI) (Figure 3.7) is mostly attributed to the 

decrease internal phosphorus concentrations in Lake Rotoroa. This contributed to 

reduced chlorophyll a concentrations and improvement in water clarity up to 2010, 

which was consistent with the reductions in organic and inorganic suspended 

sediment and reducing internal recycling of phosphorus from the sediments 

(Scheffer, 2004, Pettersson, 1998). The lake receives little external nutrients due 

to its urban catchment (Jenkins and Vant, 2007), with the major external 

phosphorus inputs from storm drains and faecal deposition from birds (Burns and 

Singleton, 1994). Burns and Singleton (1994) calculated that water fowl 
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contributed 34% - 42% of the total external phosphorus load approximately 35.0 

kg P per year (Dickie, 1994), while loading from stormwater drains contributes 

the rest (Burns and Singleton, 1994).  

  

In comparison to other shallow peat lakes in the Waikato area with catchments in 

diary pasture (Figure 3.15), Lake Rotoroa is in comparatively good condition. Due 

to the fertile nature of the soil in the Hamilton basin, much of the natural 

vegetation has been cleared for pasture. Intensification in agricultural practices 

have seen an increase of fertiliser use, stocking rates and irrigation (Hamilton et 

al., 2010). Contributing to increased levels of nutrient runoff and leaching into the 

lakes with an associated increase in trophic level as water clarity has reduced. The 

trophic levels of the Waikato peat lakes (2003-2007) range from eutrophic 

Rotomanuka (TLI 4.7), to the hypertrophic, Kaituna (TLI 7.4) and Kimihia (7.5) 

(Figure 3.14), with the current trend of increasing trophic levels (Barnes, 2002, 

Hamilton et al., 2010). Verburg et al. (2010) noted that New Zealand wide 

pastoral farming was associated with eutrophication and ecological deterioration. 

Lake Rotoroa has been sheltered from large increases in lake nutrients due to its 

urban catchment limiting external nutrient inputs as a result of agricultural 

intenfacation (Jenkins and Vant, 2007). 
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Figure 3.15: Peat lakes of the Hamilton basin. Modified from Collier et al. (2010a). Trophic level 

index data from 2006 – 2008, Lake Ngaroto 2002 (Hamilton et al., 2010).  

 

1.17.3 Phosphorus limitation  

Phosphorus has said to be the limiting nutrient for phytoplankton growth (de 

Winton, 1994b). Low concentrations of dissolved reactive phosphorus (summer 

average below 2 mg m
-3

) suggest phosphorus is limiting. When comparing 

chlorophyll a used as a surrogate parameter for biomass, with total phosphorus, 

and predicted chlorophyll a, using Vollendeider and Kerkes (1982) OECD 

empirical model (Equation 3.1) (Figure 3.16). Where chl a is the yearly average  

chlorophyll a in the euphotic zone and Ptot is average yearly total phosphorus in 
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the lake (Lampert and Sommer, 1997). Annual averaged chlorophyll a values are 

higher than the predicted chlorophyll a, suggesting that productivity is higher in 

Lake Rotoroa then other eutrophic lakes (Figure 3.16) used in the model. This 

higher productivity could be due to, limited top-down control of phytoplankton 

because of low zooplankton abundance or a delay in the phytoplankton response 

to reduced loading of phosphorus. This lag can result in phytoplankton becoming 

nitrogen limited and my explain blooms of nitrogen fixing cyanobacteria 

(Lampert and Sommer, 1997).   

 

Equation 3.1: Vollendeider and Kerkes (1982) empirical model of primary production based on 

total phosphorus concentrations.  
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Figure 3.16: Yearly average measured and predicted chlorophyll a at a given total phosphorus 

level in Lake Rotoroa 1992 - 2012. Chlorophyll a predicted using Vollendeider and Kerkes (1982) 

model in Lampert and Sommer (1997) (Equation 3.1). 

 

1.17.4 Nitrogen: phosphorus ratio 

The N:P ratio has not changed significantly despite the decrease in phosphorus 

loading in the lake. It has been suggested that a N:P ratio below 29:1 by mass 

increases the likelihood of cyanobacterial blooms (Smith, 1983, Smith and 

Bennett, 1999). This is within the N:P range of Lake Rotoroa and it is plausible 

that recent summer blooms of cyanobacteria are due to nutrient concentrations, 

although several studies have shown that N:P ratios are is not a key factor for the 

dominance of cyanobacteria in northern temperate shallow eutrophic lakes 

(González Sagrario et al., 2005, Jensen et al., 1994). High N:P ratio for a 

phosphorus limited lake, and greater phytoplankton productivity at the a given 

total phosphorus level (Figure 3.16), could result in phytoplankton taking 

advantage of greater levels of nitrogen than normal, in phosphorus limiting 
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conditions. This explains high productivity of the lake at the given phosphorus 

concentrations and explains the blooms of nitrogen fixing cyanobacteria in late 

summer. Nitrogen levels between 1200 mg m
-3

 and 2000 mg m
-3

 with phosphorus 

levels higher than 100 mg m
-3

 have been shown to contribute to loss of submerge 

macrophytes (González Sagrario et al., 2005). Nitrogen levels have been higher 

than 1200 mg m
-3 

in 1993 and in 2007. The latest nitrogen peak occurred at the 

same time as a decrease in macrophytes (de Winton et al., 2008), although it is 

unknown if high nitrogen levels experienced are a cause or a response to 

macrophyte decrease as phosphorus levels are below the 100 mg m
-3

.  

 

1.17.5 Macrophyte and water quality decline  

Well documented declines in macrophytes are accompanied shift towards a high 

nutrients and suspended sediment in lakes (Scheffer, 2004, Sondergaard and Moss, 

1997, Scheffer and Van Nes, 2007, Jensen et al., 1994). Unlike the vegetation 

declines in 1988-1990, the current decline appears not to have affected water 

quality as there has been a continued in decline in phosphorus and chlorophyll a, 

although a recent decreases in Secchi depth in 2011 may be an indication of a 

switch of lake conditions to a turbid state.  

 

1.17.6 Ammonia and nitrate levels 

Although Lake Rotoroa is well mixed for most of the year ammonia levels are 

high. Wetzel (2001) showed in a generalised model when that oxygen is available 

nitrification should be high, and should result in low levels of ammonia. Rates of 

nitrification are known to be influenced by many factors including substrate, 

oxygen, light, suspended sediment, pH (Berounsky and Nixon, 1990), and certain 
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dissolved organic compounds such as tannins and the decompositiontal 

derivatives (Wetzel, 2001). In Lake Rotoroa, it is possible that dissolved organic 

compounds sourced from the peat lake bed results in reduced levels of 

nitrification.  

 Summary 1.18

Since the collapse of charophytes in 1990 there was a recovery from 1998 to 2005, 

probably due to improvement in water clarity allowing sufficient light to the 

bottom sediments. Recovery of macrophytes is expected to have contributed to 

reduction of suspended sediment resulting in an improvement in total phosphorus 

concentrations. This proceeded to reduce chlorophyll a levels improving water 

clarity allowing macrophytes to grow at greater depth. These improvements in 

phosphorus, chlorophyll a and Secchi depth lead to shift of the trophic level since 

1992 from a supertrophic to a eutrophic state. A subsequent collapses of 2009 to 

2011 is suspected to be due to grazing and disturbance by exotic fish, with 

disturbance observed by divers during vegetation surveys. Additional stresses 

such as blooming cyanobacteria producing microcystin also may have had an 

effect by contributing additional stresses on the charophyte beds. Unlike the past 

vegetation declines the current decline, appear not to have been affected by the 

nutrients levels with continued decline and phosphorus and chlorophyll a. 

However we may have just seen a shift to turbid state with the reduction in water 

clarity in 2011 which may be followed by a decrease in the TLI. Improvements in 

water quality are significant and further reductions should be strived for. Further 

research on the possible stresses causing the macrophyte needs to be completed 

before conclusions can be made on the exact cause.  
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Chapter 4: Conclusions  

The aim of this thesis develop a general understanding of the fluctuations in water 

quality and macrophyte community of Lake Rotoroa associated with introduction 

of exotic species into the ecosystem. This was completed by summarising the 

changes in fish assemblage, water quality and macrophyte coverage.  

 Fish assemblage 1.19

Lake Rotoroa has a diverse assemblage of fish species with four original natives 

and six exotic species. The native fish assemblage is dominated by shortfin eel 

which are present in high numbers, common bullies are present but their secretive 

nature limits their capture. Longfin eel were last caught in 1994, it is unknown if 

there are still individuals present in the lake. Smelt are no longer present in the 

lake due predation from perch as water quality was still high in Graynoth’s 

survey’s 1976-1978. Perch and catfish are the most relative abundant exotic 

species in Lake Rotoroa with large populations recorded since their introduction 

in 1907 and 1977, respectively. Perch populations are now dominated by large 

numbers of small individuals due to the lack of a large predator fish species. 

Catfish show a stable population, dominated by large individuals with a lack of 

young fish. Length-weight analysis shows that there has been a decrease in catfish 

condition, with individuals becoming longer thinner over time. Rudd, the most 

abundant species in 1990, population has decreases, with low numbers caught 

since 2003. Released illegally between 1978 and 1989, they have been contributed 

to the collapse of macrophytes and because of a lack of predators reach a large 

size. Tench released legally in 1990 to provide coarse fishing opportunities in 

Hamilton, show a small, stable population of large fish that dominate the biomass. 
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Once thought to have limited breeding potential due to water temperature and 

wind exposure at breeding sites, tench have shown strong recruitment with young 

individuals caught in 2001 between 2005. Evidence suggests that their breeding 

may have been limited by a collapse of macrophytes between 1990 - 1998 and 

2010 – 2012. Goldfish show a small population with limited fish captures since 

2005, population size may be limited due to interspecific competition. 

Comparison between fish surveys is limited by different methods used resulting in 

a bias towards certain species based on size and selectivity.  

 

 Macrophytes  1.20

In 1973 Lake Rotoroa had a diverse range of native macrophytes including three 

species of charophytes, two native Potamogeton species and Glossostigma 

submersum (table 1.1). The introduction of Lagarosiphon major in the late 1950 

and Egeria densa in 1977 resulted in a change in species dominance with the 

exotic species outcompeting the natives, which grew to a lower height. To control 

the exotic species that were limiting recreational use of the lake, sodium arsenite 

was applied to in 1959, and Diquat applied at regular intervals since this period. In 

1990 the macrophyte community collapsed causing the lake to switch to a turbid 

state. Since 1998, the charophyte community has recovered, with maximum 

coverage of 30% of lake bed in 2005. Egeria densa was first observed again in 

2004 with hand weeding and two applications of Diquat limiting its spread. A 

second collapse of the macrophyte community occurred in 2009 with only small 

clumps of macrophytes present in 2011. Fish disturbance directly by herbivorous 

rudd and indirectly by benthic feeding fish disturbing sediment and reducing 

water clarity have been proposed as the leading cause of macrophyte collapse. 
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Enclosure experiments have showed that when fish are excluded macrophytes can 

reach high densities (de Winton et al., 2002, Dugdale et al., 2006). Other 

disturbances cannot be excluded as it is expected that fish disturbance alone 

would not result in the complete macrophyte collapse experienced. This could 

include effects such as microcystin producing cyanobacteria, increased turbulence 

or reduced water clarity.  

 

 Water quality  1.21

Water quality in Lake Rotoroa has shown an improving trend since 1992 with a 

decrease in trophic level from a supertrophic 5.3 in 1992 to the eutrophic 4.3 in 

2010. This improvement has been driven by decrease in total phosphorus 

concentrations limiting phytoplankton biomass and increasing Secchi depth. This 

improved water clarity allowed macrophytes to re-establish promoting further 

increase in water quality as resuspension of sediments and release of nutrients 

decreased. There has been no decreasing trend in total nitrogen as seen with other 

key TLI variables. Total nitrogen has undergone periods of extreme 

concentrations, the cause of this is unknown but it does not seem to have had long 

lasting effects on water quality. Since 2009 the macrophyte community has 

collapsed with an associated by a decrease in water clarity. This has not been 

associated with an increase in phosphorus or chlorophyll a which continued to 

decline. Lake Rotoroa has been sheltered from a trend of decreasing water quality 

in Waikato peak lakes due to its urban catchment with small external nutrient 

inputs into the lake.  
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 Recommendations for future research  1.22

The effect of tench introductions on Lake Rotoroa needs to be quantified. This 

species has recently been released with little information available on the true 

effects of the large bodied species on the ecosystem. Overseas, tench have been 

implicated in environmental changes including reduced invertebrate density, 

reduced macrophytes, and reduced water clarity in shallow lakes (Rowe, 2004).  

 

Comparisons between boat electrofishing and the passive gill and fyke netting 

used up to 2001, would allow better estimate of change in fish assemblage over 

time as currently only comparative and relative estimates were able to be made. 

The effort and time required to undertake netting surveys makes repeating theses 

intensive surveys restricted on funding, whereas the relatively small amount of 

time and personnel needed to undertake a boat electrofishing survey allows for 

continual repetitive sampling over greater lengths of time, allowing changes in 

fish assemblage associated with changes in environmental variables to be 

quantified more easily. Despite the extra resources needed, it is clear that another 

netting survey using the same methods as Wise (1990), Kane (1995), and Roberts 

(2002) should be undertaken as soon as possible. 
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