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Abstract 
 

The development of some ability for forecasting low rainfalls would be helpful in 

Tuvalu as rainwater is the only source of fresh water in the country. The 

subsurface water is brackish and saline so the entire country depends totally on 

rainwater for daily domestic supplies, agricultural and farming activities. More 

importantly, these atolls are often influenced by droughts which consequently 

make inadequate drinking water an issue. 

 

A simple graph-based forecasting scheme is developed and presented in this thesis 

for forecasting below average mean rainfall in Funafuti over the next n-month 

period. The approach uses precursor ocean surface temperature data to make 

predictions of below average rainfall for n = 1, 2 … 12. The simplicity of the 

approach makes it a suitable method for the country and thus for the Tuvalu 

Meteorological Service to use as an operational forecasting tool in the climate 

forecasting desk. 

 

The graphical method was derived from standardised monthly rainfalls from the 

Funafuti manual raingauge for the period January 1945 to July 2007. The method 

uses lag-1 and-lag 2 NINO4 sea surface temperatures to define whether prediction 

conditions hold. The persistence of predictability tends to be maintained when the 

observed NINO4 ocean surface temperatures fall below 26.0
o
C. Although the 

developed method has a high success probability of up to 80 percent, this can only 

be achieved when conditions are within the predictable field. A considerable 

number of below average rainfall periods are not within the predictable field and 

therefore cannot be forecast by this method. However, the graphical approach has 

particular value in warning when an existing drought is likely to continue.   
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Chapter 1 
 

Introduction 
 

1.1   Motivation 
 

The scarcity of fresh water resources in the Tuvalu atolls is often a limiting factor 

for social and economic development. The dependency on rainfall significantly 

increases vulnerability of the islands to future changes in the distribution of 

rainfall. 

 

Droughts often change the life of the people on the Tuvalu islands in the Pacific 

Ocean. The recent dry spell of 1999 was unrecognised as a developing drought 

until several weeks had elapsed. As a result of the acute and prolonged shortage of 

water, a state disaster was declared. The drought was so intense that desalination 

plants were used for the first time on the islands. An assessment report of the 

disaster was undertaken by Falkland (1999).  Dry spells prior to this drought were 

noted in an earlier study (Thompson, 1987).  

 

Extended periods of dryness are identifiable in the rainfall records held by the 

Tuvalu Meteorological Service. However efforts to start a scientific based rainfall 

forecasting scheme only started in 2005. The current capability to respond with an 

early warning of low rainfall leading up to droughts based on scientific evidence 

still requires more work, however. 

 

Funafuti is the capital of Tuvalu and about 40 percent of the country’s population 

reside on this atoll. This makes planning and management of rainwater a primary 

importance. The need for wise decisions by the government and Island leaders on 

what volumes to ration out ensuring that residents endure through the dry periods 

become crucial. The family households are the biggest consumers of rainwater 
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and they need to prepare for these dry spells when they happen again. Under such 

circumstances some knowledge into the likelihood of future rainfall play an 

essential role in the decisions and preparations required to enable deal with the 

consequences.     

 

1.2   Objective of study 
  

With time prolonged dry periods will recur, making some ability to forecast future 

low rainfall periods a useful tool. Rainfall forecasts and their integration into the 

disaster plans, the water management plans, environmental regulations, 

agricultural activities and overall in government policies and action plans can 

have economic and social benefits. The generation of knowledge of the future 

state of rainfall can be of help to the communities so they can consider appropriate 

times for alternative means of careful use of the available water. Developing a 

degree of forecasting low rainfall periods is therefore of value in planning and 

managing rainwater. The motivation for this thesis is to develop a forecasting 

scheme for the prediction of low rainfall periods as departures from the mean over 

coming months. It is desirable that such a scheme can be maintained in a 

Tuvaluan setting.  

 

Defining “low rainfall” as below average rainfall over future multi-month periods, 

the aim of the study is to develop a predictive scheme for forecasting low rainfall 

periods in Funafuti. Such a scheme might be extended to the rest of the islands at 

a later stage. 
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1.3   Geographical location 
 

There are nine coral or reef atolls that comprise the Tuvalu islands (Figure 1.1). 

The atolls are situated in the central southwest Pacific Ocean between 5
o
S and 

11
o
S and from 176

o
E to 180

o
E. The islands are quite low that none rise above 5 

metres. They have a flat topography. Some have lagoons whilst others do not. For 

islands with lagoons, for example Funafuti, the size of the lagoon is much larger 

than the island itself. The group of islands are remote as the ocean not only 

isolates each island from the other but also separates the group from other nations 

so the atolls can be difficult to reach.  

 

All the islands have raingauges which are manually observed either by 

Meteorological staff or Telecom operators. The rainfall measurements from the 

Funafuti raingauge are the only rainfall data used in this study because of it has 

the longest record.  

 

 
 

Figure 1.1: The nine islands of Tuvalu. 
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1.4 Weather and climate 
 

The islands are hot and humid with relatively small temperature differences 

throughout the year. Convective cumuliform clouds are most common. A large 

seasonal variability in precipitation form the two seasons dry and wet. The surface 

winds are seasonal. Easterly trade winds prevail except in the wet season that 

winds would blow from the west or north. According to Thompson (1987) the 

monsoon westerly winds come as far as the dateline and at times they reach 

further east into the Cook Islands.  

 

1.4.1   Influence of the surrounding ocean on Tuvalu 

climate 

 

The ocean waters around Tuvalu are described as an area favourable for the 

development of tropical cyclones but these weather phenomena seldom become 

storms (Thompson, 1987). Conversely observations of the destruction of the atolls  

from recent cyclones suggest that the islands are prone to tropical cyclones. A 

recommendation from the post tropical cyclone assessment report of cyclone Keli 

1997 is that residents on Niulakita, the southern most island in the group (Figure 

1.1) need to consider relocation. This is because in the same year, preceding 

cyclone Keli were cyclones Gavin and Hina which also brought destructions to 

the island. The storms were just too many that relief assistance in terms of food 

and shelter to the island was so costly. In addition the rescue risk during Keli was 

very high as almost all communications on the island failed. And a boat could 

only get to the island when the storm has passed.   
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Given the strong influence of the ocean on the climate on the islands, an increase  

of SSTs will most likely lead to an increase in rainfall intensity and therefore 

higher rainfall amounts. These changes can cause changes to the distribution of 

rainfall.  

 

In the South Pacific mainly eastward from about 160
o
E surface air temperatures 

have increased by 0.3 to 0.8
o
C during the 20

th
 century (Nurse and Sem, 2001). A 

quantifiable change in the rainfall amounts since the middle of 1970s show 

western Kiribati, the northern Cook Islands, Tokelau and northern Tahiti are being 

wetter and New Caledonia, Fiji and Tonga have become drier (Salinger et al., 

1995).  

 

Interestingly an outcome of the online climate outlook forum No. 8 from  

SCOPIC (Seasonal Climate Outlook for Pacific Island Countries) showed that the 

Equatorial Dry Zone in April 2008 was wetter than the major rainfall maximum in 

the tropical Pacific which is the region west of 160
o
East (Dorman 1982). The 

report on this information can be read on this web http://www.bom.gov.au/climate 

/pi-cpp/forecast/ocof_summary.pdf. Studies of the Equatorial Dry Zone are 

further discussed in section 1.7. 

 

1.5 Funafuti rainfall variability 
 

The time series of total monthly rainfall for Funafuti (Figure 1.2), Nanumea  

(Figure 1.3), Nui (Figure 1.4) and Niulakita (Figure 1.5) show large fluctuations 

in the rainfall. This seasonal rainfall pattern is a typical characteristic of tropical 

regions (Pezzoli and Franza, 2003). The rainfall is measured daily at weather 

monitoring stations on the four islands mentioned above.  

 

The Funafuti rainfall data from January 1945 to July 2007 is the period used in 

this study for evaluating forecasting methods. The quality of the rainfall data from  

http://www.bom.gov.au/climate/
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the Funafuti weather monitoring station is noted in Falkland (1999) as very good. 

That assessment was based on data up to the middle of 1999. However, given that 

rainfall measurements from this raingauge has been well maintained until present, 

the quality of the data is likely to remain good.    

 

Several things to note: rainfall records for the four islands start earlier than 1945 

but only for the purposes of this study that the rainfall time series were plotted to 

cover the period corresponding to the period of the forecasting scheme. A 

reasonable number of months with missing rainfall readings are obvious in 

particular Nanumea (Figures 1.3a, 1.3c, 1.3d), Nui (Figures 1.4a, 1.4b, 1.4c, 1.4d) 

and Niulakita (Figures 1.5a, 1.5b, 1.5c, 1.5d). The gaps in the rainfall data are 

visible as breaks in the blue solid line. The one break in the Funafuti rainfall data 

(Figure 1.2b) occurred in October 1972. Tropical cyclone, Bebe that devastated 

Funafuti during the night of October 21
st
, 1972 is the cause of the lost record. 

 

1.6 Present operational rainfall forecasting 
 

The Tuvalu Meteorological Service is presently using a statistical climate 

prediction model in SCOPIC (see Section 1.4.2 for definition of abbreviation) for 

forecasting rainfall. The computer package uses monthly anomalies of sea surface 

temperatures (SSTs) and monthly Southern Oscillation Index (SOI) Troup index 

values as predictors in the model. Definitions of these terms are covered in 

Chapter 2. The model issues a rainfall forecast of the expected total coming 3 

months rainfall. The forecast gives a probability of above normal rainfall, normal 

rainfall and below normal rainfall based on a lead time of three months. The latest 

forecast issue can be read from the website http://www.bom.gov.au/climate/pi-

cpp/forecast/tuv_bulletin.pdf  

 

 

 

http://www.bom.gov.au/climate/pi-cpp/forecast/tuv_bulletin.pdf
http://www.bom.gov.au/climate/pi-cpp/forecast/tuv_bulletin.pdf
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Figure 1.2 (a) – (d): Time series of monthly rainfalls for Funafuti (Jan 1945 to Jul 

2007.  
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Figure 1.3 (a) – (d): Time series of monthly rainfalls for Nanumea (Jan 1945 to 

Jul 2007).  
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Figure 1.4 (a) – (d): Time series of monthly rainfalls for Nui (Jan 1945 to Jul 

2007).  
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Figure 1.5 (a) – (d): Time series of monthly rainfalls for Niulakita (Jan 1945 to Jul 

2007).  
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1.7   Previous studies of Tuvalu rainfall 
 

Doberitz, Flohn and Schütte (1967) studied the monthly rainfall observations of 

Funafuti from 1932-1963 amongst other rainfall data from other tropical Pacific 

Islands to search for linkages between rainfall observed on the tropical coast of 

South America and rainfall on the remote islands of the tropical Pacific Ocean. 

Within the Pacific Equatorial Ocean is a region known as the Equatorial Dry Zone 

(refer to Doberitz (1968) for description of the zone and to Flohn (1967) for 

wherefores of the zone). Islands within this zone are frequently hit by droughts. 

Funafuti is located just south of the western end of the Equatorial Dry Zone, see 

map in Doberitz (1968) and gets its turn with the dry spells. Results from the 

study showed rainfall over the equatorial Pacific Islands is influenced from the 

Equatorial Dry Zone and not from South America. In addition, a zonal distribution 

between 3
o
South and 10

o
South and from the coast of South America to about 

165
o
East is strongly linked to the Equatorial Dry Zone (Schütte 1967), indicative 

of the influence of the Equatorial Dry Zone exerts on precipitation experienced by 

the neighbourhood islands.  

 

Schütte (1967) demonstrated southward rainfall propagation displaying time lags 

that gradually increase from 6 to 11 months. The strong persistence of the lag 

correlations with time make seasonal climate forecasting possible in the Tuvalu 

Islands. Contrarily to the rainfall pattern of the equatorial Pacific Islands and the 

tropical west coast of South America are the rainfall patterns at Aitutaki in the 

Cook Islands (data: 1932-1965), Rarotonga in the Cook islands (data: 1899-1963), 

Niue (data: 1921-1965), Samoa (data: 1890-1957) and Suva in Fiji (data: 1921-

1961) which behaved differently (Schütte 1967). 

 

Statistical analysis in Doberitz (1967) of the Funafuti rainfall data showed the 

annual cycle was weak in the 32 years. Thus it does not contribute much to the 

variability in the rainfall of the island but there is a notable influence of the low 
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frequency bands (i.e. periods over one year). Conversely in the period 1971-1990 

Morrissey and Greene (1993) found the annual cycle strong and is dominating over 

the interannual signal. The length of data records used in the studies may possibly 

be the cause of the disagreement between the findings from the studies. Doberitz 

(1967) illustrated a strong indication in the Funafuti rainfall record of the 

dominance of low frequency signals; 18 to 28 months and above 7 years in the 

variability of the rainfall spectrum. Thus a quasibiennial pulse is significant at 

Funafuti. The 7 years frequency signal, probably is in the range of the Interdecadal 

Pacific Oscillation (IPO) and Pacific Decadal Oscillation (PDO). 

 

Thompson (1987) showed that ENSO (El-Niño Southern Oscillation) is highly 

correlated with the rainfall in the Tuvalu islands. Thus low rainfall periods are 

associated mostly with the La Niña events than the El Niño events. Two rainfall 

indexes were calculated. One was a combined rainfall index for rainfalls from these 

three islands: Nanumea, Niutao and Nui. The other rainfall index used the monthly 

rainfalls for Vaitupu, Funafuti and Niulakita. The method in Wright (1984) was 

used in the formation of these rainfall indexes. Based on the two rainfall indexes, 

the rainfall was shown to lag behind the SOI. The highest correlations for the 

northern islands occurred at 2 to 3 months when the rainfall lags the SOI. In the 

southern islands the highest correlation occurred at 5 to 6 months when the rainfall 

is behind the SOI. 

 

The report by Falkland (1999) in response to the drought at the time,  mentioned 

similar severe droughts which occurred in 1950 and 1970. There are other rainfall 

studies of Funafuti mentioned in this report however the periods mentioned as 

covered in the studies may likely be insignificant as they are quite short.  
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1.8   Thesis structure 
 

Chapter 2 describes the data used in the study and the sources of the data are 

identified. Initial examination of the data is shown of linkages between rainfall 

and some of the predictor variables. Some of these correlations were cited by 

previous authors in Section 1.7.   

 

Chapter 3 covers the methods explored to investigate the predictability of the 

Funafuti rainfall data. The methods are tested using independent data sets for 

calibration and validation. Results show the methods are incapable of producing 

answers to the purpose of the study. 

 

Chapter 4 describes the prediction method derived from study. It shows how a 

simple graphical method was derived to forecast below average rainfall, averaged 

over periods of up to one year. This chapter is presented in a form of a paper for 

publication. 

 

Chapter 5 summarises the study and comments on future study topics relevant to  

build on the findings from this study.  
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Chapter 2 
 

Data and predictor variables 
 

2.1   Introduction 
 

The potential predictor variables selected in this thesis to investigate predictability 

of low rainfall periods in Funafuti are limited only to those that are available on 

the internet or free of cost. Previous research on forecasting rainfall in Tuvalu 

specifically were not found anywhere in the literature when the search was made 

for this study. Despite this factor, a national study of the climate of the atolls and 

some regional studies that included the Tuvalu islands, these studies are discussed 

in Section 1.7, have given some support of the selected predictor variables for 

predicting low rainfall periods in Funafuti. This chapter discusses the rainfall data 

and how the independent variables are selected and where they are sourced from. 

Graphical illustrations of discriminating between the predictor variables are 

shown. Visual illustration of individual independent variable showing potential 

lag relationships to low rainfalls is shown. 

 

2.2 Standardisation of the Funafuti rainfall data 
 

The total monthly rainfall is used as the dependent variable as residuals from 

monthly averages. The climatological monthly mean rainfall is defined as the 

mean monthly rainfall based on the period used in the forecasting scheme, 

January 1945 to July 2007. A “dry” month is defined for the purposes of this 

study as the month when the monthly total rainfall is below the climatological 

monthly mean rainfall. Henceforth, unless otherwise specified, “rainfall” will 

refer to residuals from the monthly means. 
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Figure 2.1: Mean monthly rainfall with seasonal effects showing the 4 month 

divisions are identified by dashed lines.  

 

 

Investigation of the seasonal trend in the monthly rainfalls as depicted by the 

rainfall graph (Figure 2.1) seems to suggest that the changes in the amounts of 

rainfall are more representative if a 4 months period is chosen as the time interval 

to subdivide the annual rainfall and that this 4 month period should start from 

December. Therefore December of the preceding year is pooled together with 

January, February and March of the current year. Then April, May, June and July 

of the same year form the second division and August, September, October and 

November of the same year the third division. This 4 month period are marked by 

the dashed lines (Figure 2.1).  
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2.3   Identification of potential predictors 
 

Previous studies on the rainfall of Tuvalu discussed in Section 1.7 have linked 

rainfall to the SOI (Thompson, 1987). Thus the NINO regions (see definition in 

Section 2.4.1) sea surface temperatures have been a focus when identifying the 

predictors because the specified region of the tropical Pacific Ocean have been 

highlighted as being important for monitoring and identifying El Niño and La 

Niña episodes. The SOI is one index that measures the strength of these climate 

episodes. The low frequency decadal and interdecadal climate indexes, 

Interdecadal Pacific Oscillation (IPO) and Pacific Decadal Oscillation (PDO) may 

have an effect on the rainfall of Tuvalu (Doberitz, 1967).  

 

2.4   Ocean-climatic indices as independent variables 
 

The complete monthly rainfall residual and predictor variables initially investigated 

and their available data record are shown in Table 2.1. The Madden Julian 

Oscillation (MJO) which is marked with an asterisk did not seem to show 

usefulness to the predictability of low rainfalls. Preliminary analysis of the data 

showed the index is less correlated to low rainfalls. Therefore this index will not be 

discussed further from this point.   
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Table 2.1: Initial ocean-climatic variables and available data record 

Ocean-Climate Variables Length of record 

NINO4 Jan 1945 – Jul 2007 

NINO3 Jan 1945 – Jul 2007 

NINO3.4 Jan 1945 – Jul 2007 

NINO1+2 Jan 1945 – Jul 2007 

Pacific Decadal Oscillation (PDO) Jan 1945 – Jul 2007 

Interdecadal Pacific Oscillation (IPO) Jan 1945 – Jul 2007 

Madden Julian Oscillation (MJO)* Apr 1979 – Nov 2005 

Sunspot number Jan 1945 – Apr 2006 

SOI Jan 1945 – Jul 2007 

Previous 1-month rainfall Jan 1945 – Jul 2007 

Previous 2-month rainfall Jan 1945 – Jul 2007 

Previous 3-month rainfall Jan 1945 – Jul 2007 

Total Monthly Rainfall Jan 1945 – Jul 2007 

 

2.4.1   NINO region SST Indices 
 

The NINO region refers to the equatorial Pacific regions; NINO1+2, NINO3, 

NINO3.4 and NINO4 (Figure 2.2). NINO1+2 are the areas between 0-10
o
S and 

80
o
W-90

o
W. NINO3 is from 5

o
N-5

o
S and from 150

o
W-90

o
W, NINO3.4 is from 

5
o
N-5

o
S and from 170

o
W-120

o
W and NINO4 is from 5

o
N-5

o
S to 160

o
E-150

o
W 

(Brassington 1997). 

 

The NINO indices used in the study are the average values of the SST anomalies 

in the specified region of the Pacific Ocean. The index SST values for each NINO 

region are available from the NOAA (National Oceanic Atmospheric 

Administration) website http://www.cdc.noaa.gov/Pressure/Timeseries/. The SSTs 

of the NINO region provide a measure of the ENSO index. More importantly the 

NINO regions SSTs exert control not only on the local climate but also on the  

http://www.cdc.noaa.gov/Pressure/Timeseries/
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climate over certain areas many thousands of kilometres away. This connection 

between ENSO and climate has been known as „teleconnection‟ (Bjerknes, 1969). 

In regions where these teleconnections may persist for a number of months or 

seasons, they may serve as a basis for forecasting rainfall. 

 

 

 

Figure 2.2: The NINO regions (modified from Zubair et al., 2008) 

 

2.4.2   Interdecadal Pacific Oscillation (IPO) and Pacific 

Decadal Oscillation (PDO) 

 

The IPO and PDO are modes of variability with decadal time-scale. They both 

describe variations in SSTs of the Pacific Ocean (Folland et al., 2002). However 

IPO is defined in Power et al., (1999) as fluctuation in SST and circulation across 

the whole Pacific basin whereas PDO is confined to the North Pacific (Mantua et 

al., 1997). Since IPO change the SST in the equatorial Pacific then it may affect  

ENSO and thus the two together influence the SPCZ (South Pacific Convergence 

Zone) (Folland 2002). The IPO data for the present study was sourced from Chris 

Folland (Hadley Centre for Climate Prediction and Research, UK). The monthly 

IPO data is characterised by 10 Empirical Orthogonal Functions (i.e. EOF1 to 

EOF10). Only EOF2 is chosen and is used in the analysis. The decision is based 
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on preliminary analysis of the data which showed that EOF2 is more highly 

correlated to the rainfall than the rest. The PDO indexes were downloaded from 

the same website in which the SSTs of the NINO regions were sourced from see 

Section 2.4.1. 

 

2.4.3   Sunspot number 
 

The sunspot number is a measure for the variation in the solar energy (Lakshmi et 

al., 2003). The sunspot activity is in cycles of 11, 22 and 80 years. A possible 

connection between solar activity and the climate has been suggested in several 

studies (e.g. Doberitz, 1967; Labitzke and Van Loon, 1992). So was included here 

as a potential variable for the sake of completeness as the data is readily available. 

  

2.4.4   Southern oscillation index   
 

The SOI is commonly used as the index that measures the strength of the ENSO 

conditions. There are different methods used to calculate the SOI. The index used 

in the study is the TROUP SOI (Troup, 1965), defined as the “standardised 

anomaly of the mean sea level pressure difference between Tahiti and Darwin” 

http://www.bom.gov.au/climate/glossary/soi.shtml  The monthly SOI values used 

for the study were downloaded from the Australian Bureau of Meteorology 

website  http://www.bom.gov.au/climate/current/soihtm1.shtml 

                                                                   

Taking the 1999 drought (Figure 2.3) as an example; monthly SOI values from -5 

and greater than -5 which are indicated as the lighter black bars and the dry 

months are represented by negative residual rainfall or the dark black bars.  

 

 

http://www.bom.gov.au/climate/glossary/soi.shtml
http://www.bom.gov.au/climate/current/soihtm1.shtml
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The SOI value of -5 is an arbitrary cut-off point chosen for identifying the shift of 

the SOI phase to positive and the ensuing change in the rainfall to dry months. 

Basically the cut-off point is based on subjective judgment at the exploration stage 

of the data.  

 

In May 1998 the SOI shifted to positive and remained positive at significant 

amplitude almost every month after and into the start of 2001. The swing of the 

SOI to the positive phase is marked in Figure 2.3 with the thick black curved line 

labelled May 1998. The dry months subsequently started 6 months after the 

change of the SOI phase. This is illustrated in Figure 2.3 by the thick black line 

with November 1998 as the start of the dry months. 

 

Although the SOI index may be a useful indicator for the onset of some major dry 

periods, a preliminary evaluation showed that it is not helpful for forecasting low 

rainfalls in Funafuti. Being an index, SOI only gives an indication of the pressure 

differences across the Pacific Ocean. It does not consider the direction or the rate 

of change in pressure values over time which means that correlation with 

stationary values of SOI may only explain part of the relationship between SOI 

and rainfall (Stone and Auliciems 1992). 
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Figure 2.3: Time series of SOI and standardised monthly rainfall for period 

Jan1995-Dec2005, for below-average rainfalls. Refer to text for details.  

 

2.5   Rainfall serial correlation as a potential predictor   
 

If persistence of monthly rainfall deviations is useful to forecast future rainfalls then 

the consecutive rainfall residuals must be correlated to each other. Serial correlation 

therefore is tested by examining if the autocorrelation between lag-1 rainfall 

residuals and lag-0 rainfall residuals is significant. To do this, time averaging 

periods of 1-month (Figure 2.4a), 2-months (Figure 2.4c), and 3-months (Figure 

2.4e) for lag-1 and lag-0 of monthly rainfalls January 1945 to July 2007 are plotted 

on scatter diagrams. Then the coefficient of determination, R
2
 is calculated to 

quantify the degree of correlation.  

 

The results in Figures 2.4a, c, e, all show values of R
2
 are close to 0.0. To confirm 

that these results are coherent, R
2
 values of lag-2 rainfall residuals and lag 0 rainfall  
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residuals are calculated for the same averaging periods as used with lag 1 rainfall 

residuals and lag 0 rainfall residuals. It is obvious from Figures 2.4b, d, f, that the 

R
2 

 are close to 0.0 and are consistently insignificant.  

 

Therefore since all the R
2
 values are low we conclude that previous standardised 

rainfalls are of no value in forecasting future rainfall residuals. However, the scatter 

diagram in Figure 2.5a suggests that current residual rainfalls are correlated to the 

previous 1-month raw rainfalls. However this was not investigated further here.  
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Figure 2.4 (a) – (f): Scatter diagram showing the lack of serial correlation between 

current and lag-1 standardised rainfall (left) and current and lag-2 standardised 

rainfall (right), 1945 – 2007 for different time averaging periods. 
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2.6   Cross correlations between rainfall and ocean-

climatic indices  

 

The findings in Section 2.2 are adopted in this section to investigate the 

relationships between rainfall and the ocean-climatic indices. Therefore we assign 

the predictand as the 4-month residual mean rainfall. An arbitrary choice of the 6-

month mean is assigned on the predictors. The following predictor variables are 

investigated; SOI, PDO, NINO1+2, NINO3, NINO3.4, NINO4, sunspot number, 

previous 1-month raw rainfall (R1), previous 2-month raw rainfall (R2), previous 3-

month raw rainfall (R3) and IPO-EOF2. Therefore the 6-month mean of the 

previous values of the predictor variables are calculated for the data record 1945 to 

2007. Similarly the current 4-month residual mean rainfalls are calculated for the 

same time period. Then lag-0 of the 4-month residual mean rainfall is plotted as a 

linear regression function of lag-1 of the 6-month mean of previous predictor 

values for each of the 11 independent variables. These results are shown in the 

scatter diagrams (Figures 2.5a-f and Figures 2.6a-e) together with the R
2 

values 

indicating the degree of the association of rainfall to each of the independent 

predictor variables. A summary of the R
2
 values is tabled in Table 2.2. 

 

The results shown in the scatter diagrams Figures 2.5a-f and Figures 2.6a-e suggest 

that there is some possibility of forecasting fields for low rainfall and NINO4 

looked to be the most promising for further investigations.  

 

Some of the scatter diagrams, however suggest a degree of predictability of low 

rainfalls. This is identified by the „two rectangles‟ containing relatively high or low 

number of data points (Figures 2.5a-f). The predictability of low rainfalls stands out 

more clearly in Figure 2.5d. At temperatures less than 26.0
o
C most of the rainfalls 

are below the average rainfall with rainfall residuals therefore being negative. This 

is clearly illustrated in the lower red box by many points and the upper red box  
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Figure 2.5 (a) – (f): Scatter diagrams showing some degree of predictability of 

low rainfalls, despite overall low R
2
. The plots show the current 4-month residual 

rainfall versus lag-1 of the mean previous 6-month values of the predictor 

variables (1945-2007). 
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Figure 2.6 (a) – (e): Scatter diagrams showing lack of predictability of low 

rainfalls by these particular predictor variables. The plots show the current 4-

month residual rainfall versus lag-1 of the mean previous 6-month values of the 

predictor variables (1945-2007). 
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with almost no points. This indicates that NINO4 reveals the pattern of an „almost-

empty rectangle‟ better than the other predictor variables. For the purpose of the 

study, NINO4 SSTs seems the best predictor of low rainfalls.  This is developed 

further in Chapter 4.  

 

Table 2.2 shows that the following predictors: previous 3-month raw rainfalls (R3), 

NINO1+2 and sunspot number are not significant. The low correlation shown in 

this study between the SSTs in the NINO1+2 regions and the rainfall in Funafuti is 

consistent with findings by Shütte (1967). The only difference lie in the data, where 

this study uses SSTs of the coastal waters of Ecuador and Peru, the 1967 study was 

using rainfalls recorded at land climate stations along the coasts of Ecuador and 

Peru which showed that rainfall in Funafuti is not influenced from the tropical 

coast of South America. 

 

Table 2.2: Showing R
2
 values from Figures 2.5a-f and Figures 2.6a-e. 

Predictor variable R
2
 p 

R1 0.190 < 0.000 

IPO 0.125 < 0.000 

SOI 0.114 < 0.000 

NINO4 0.109 < 0.000 

PDO 0.108 < 0.000 

R2 0.087 < 0.000 

NINO3.4 0.083 < 0.000 

NINO3 0.040 0.006 

R3 0.020 0.051 

NINO1+2 0.016 0.089 

Sunspot number 0.002 0.533 
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2.7   Summary  
 

This chapter has shown the extent to which low rainfall can be estimated by the 

oceanic-climate variables chosen in this study. Some variables have shown some 

predictability of rainfall. These independent variables are the previous 1-month raw 

rainfalls, IPO, SOI, NINO4, PDO, previous 2-months raw rainfalls and NINO3.4 

which were assigned an averaging time period of 6-months in the analysis. NINO4 

sea surface temperatures showed some ability to forecast low rainfalls and this will 

be further looked at in Chapter 4. 

 

However the answer to forecasting low rainfalls depends on whether the predictive 

method can show a realistic enough forecast. The next chapter will evaluate the 

following predictive methods: artificial neural networks, all-possible-subset 

regression and logistic regression to the extent they can forecast low rainfalls. 
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Chapter 3 
 

Initial Prediction Evaluations 
 

3.1    Introduction 
 

This chapter discusses the methods used to make a preliminary investigation of 

rainfall forecasts in Funafuti. The specific techniques considered are artificial 

neural network (ANN), all-possible-subset regression (ASR) and logistic regression 

(LR).  

 

All analyses use standardised monthly rainfall as the dependent variable, being 

residuals from long-term monthly means. The same set of independent variables 

are used in the ANN, ASR and LR methods. These independent variables include 

SOI, PDO, IPO, NINO4, NINO3.4, NINO3, NINO1+2, R1, R2 and R3 and sunspot 

number. Calibration and validation of each method using two independent data sets 

are examined. The validation results will be illustrated and presented in graphical 

form.  

 

The fit measure utilised is the Nash-Sutcliffe efficiency, E (Legates and McCabe, 

1999). This will be referred to in the analysis simply as „goodness of fit‟ or „fit‟. 

The highest fit value is +1.0 which indicates a perfect match between the 

predictions and the observations. A fit value of 0.0 means the climatological mean 

is just as good as the model in forecasting rainfall. A zero or negative value of E 

indicates the model has failed because the climatological mean is at least as good a 

predictor as the model. 
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3.2   Artificial neural network (ANN) 
 

Artificial neural networks use artificial intelligence to model complex physical 

relationships with arbitrary non-linearity, such as between hydroclimate variables 

and the underlying physical processes that involve these variables (Hornik et al., 

1990). Since rainfall sometimes shows non-stationary and nonlinear physical 

properties, neural networks have been used by researchers to forecast droughts (e.g 

Mishra and Desai, 2006; Morid et al., 2007).  

 

In the neural network structure, the “neurons” are arranged in interconnected 

groups called layers. Every ANN include: an input layer(s), a hidden layer(s) and 

an output layer(s). The input layer is where the data are entered. The hidden layer is 

where the entered data is processed. The output layer produces the results of the 

problem investigated. Further information on the method is given by Morid et al., 

(2007). One of the advantages of the ANN technique is there is no need to 

explicitly define the physical relationships between the independent variables and 

the dependent variables.   

 

3.2.1   Method 
 

The ANN method is used to capture linkages between input (independent) and 

output (dependent) variables. It does this by learning from past experience the 

possibly complex relationships between the predictands and the predictors and then 

estimate these functional relationships. This process is known as training the data 

by adjusting the weights or constraints such that a predetermined objective function 

is minimised and the best fit of the model predictions to the observed data is 

obtained. See Kingston et al., (2004) for a full discussion.  
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The trained model is then presented to an independent validation data for testing. 

As with any model, the model performance can only be validated on an 

independent data set which has not been used in the training process. 

 

3.2.2   Calibration and Validation 
 

In terms of the ANN terminology, one example of a specific model investigated in 

this study is the MLP 2:2-7-4:1 network with two input variables, one output 

variable, and three hidden layers of 2, 7 and 4 units (Morid et al., 2007). 

 

Independent calibration and validation datasets were used being the periods 1945-

1976 and 1977-2007, respectively. The results from the calibration and validations 

are plotted in Figures 3.1a-d, together with the E goodness of fit index. 

 

3.2.3   ANN results 
 

The calibration prediction time series (Figures 3.1a, b) does not fit the data well 

and fails, not unexpectedly, in the validation process (Figures 3.1c, d).  
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Figure 3.1 (a) – (d): Lack of forecasting ability for forecasting rainfall using 

neural network; calibration time series (a) and scatter diagram (b) (1945-1976), 

validation time series (c) and scatter diagram (d) (1977-2007).  

 

3.3   All-possible-subset regression (ASR) 
 

All-possible-subset regression is a linear regression statistical method of searching 

for the best subsets of independent variables to give maximum explanation of the 

dependent variable. The ASR is a possible alternative method that can be used to 

learn the empirical linkages directly from the measured data given a linear relation 

between observed and independent variables. The main advantage of ASR is that 

unhelpful variables can be eliminated easily.  The next sections will use the method 

to examine the rainfall data. 
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3.3.1   Method 
 

From a given number of independent variables the ASR method finds the best 

subsets of predictor variables for a specified number of subset variables less than 

the original number of independent variables. The ASR algorithm does this by 

explicitly or implicitly evaluating all the possible combinations of the predictors 

which explain the variability of the dependent variable for any given number of 

subset of independent variables (Hofmann et al., 2007). The method tables these 

combinations in descending values of R
2
.  

 

ASR is particularly useful when there are a large number of independent variables 

as long as this does not exceed the ASR algorithm capacity.  

 

A number of different numbers of variables in the optimal subset were investigated. 

These will be discussed in the subsequent sections. 

  

3.3.2   Hindcast from previous 6 months averages 
 

An arbitrary choice of 6-month time average is explored for independent variables. 

Forecasting residual rainfall for the next 6 months, by hindcasting over a 

calibration time period. The subsequent sections discuss these time periods.  

 

3.3.2.1   Calibration – with ASR 
 

The data used in the analysis is from 1945 to 1976, and the remaining independent 

data 1977-2007 set aside for validation. The 6-month mean of the previous values 

for the following predictor variables; SOI, PDO, NINO1+2, NINO3, NINO3.4, 

NINO4, sunspot number, previous 3-month raw rainfalls (R3), previous 2-month  
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raw rainfalls (R2) and previous 1-month raw rainfalls (R1) are assigned as the 

predictors and the mean residual 4-month rainfall as the predictand. It is noted here 

that the IPO data is not yet available at this time so this analysis was carried 

without IPO. However the subsequent analyses were undertaken with IPO included 

as shown in calibration and validation results Figures 3.4a - 3.8f. 

 

Table 3.1: The Best subsets retained from the ASR execution run 

 

 

The best subsets from the regression combinations of the predictors are executed in 

MLR to get the coefficients of the linear regression equation for each subset. 

Predictions for each best subset are calculated using the respective regression 

equations. Each subset is tested for goodness of fit.  

 

3.3.2.2   Validation  
 

The validation results are plotted in Figures 3.2a-d of the best subsets for 2 

independent variables to 5 independent variables respectively and Figures 3.3a-d of 

the best subsets for 6 independent variables to 9 independent variables respectively. 

All the validation plots show negative fit values. So all ASR failed in this case as a 

method for predicting rainfall. Similar lacks of results hold for the other time 

periods, as can be seen in the validation plots Figures 3.4a, b, 3.7b, d, f, 3.8b, d, f. 

However these same scatter diagrams although they show failures in the overall 

prediction of rainfall but for the predictions of low rainfalls there is some degree of 

predictability evident.  
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This can happen because, the E value measures a fit that considers the whole data 

set and thus can be misleading when only a subset e.g. the dry periods is considered.   

 

  

  

Figure 3.2 (a) – (d): Failed validation for forecasting rainfall using best subset of 

combinations of predictor variables 2-5 optimal predictor variables. See Table 3.2 

for details.  
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Figure 3.3 (a) – (d): Failed validation results for forecasting rainfall using best 

subset of combinations of predictor variables 6-9 optimal predictor variables. Refer 

to Table 3.2 for details. 

 

Table 3.2: The optimal number of predictors described in Figures 3.2a-d, 3.3a-d 

Optimal no. of 

predictors 
variables 

Predictor variables 

2 SOI, R1 

3 SOI, R1, PDO, 

4 SOI, R1, PDO, NINO3.4 

5 SOI, R1, PDO, NINO3.4, NINO4 

6 SOI, R1 PDO,NINO3.4, NINO4, R2 

7 SOI, R1 PDO, NINO3.4, NINO4, R2, NINO1+2 

8 SOI, R1 PDO, NINO3.4, NINO4, R2, NINO1+2,Sunspot 

9 SOI, R1 PDO, NINO3.4, NINO4, R2, NINO1+2, Sunspot, NINO3 
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Figure 3.4 (a), (b): Failed validation results of forecasting current 3-month 

residual rainfall for the next 6 months by hindcasting over the calibration time 

period 1945-1976. 
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Figures 3.5 (a) – (f): Time series and scatter diagrams of calibration results of 

NINO4 previous 1-3 month values (1945-1976). 
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Figures 3.6 (a) – (f): Time series and scatter diagrams of calibration results of 

NINO4 previous 4- 6 month values (1945-1976). 
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Figures 3.7 (a) – (f): Time series and scatter diagrams of failed validation results of 

NINO4 previous 1- 3 month values (1977-2007). 
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Figures 3.8 (a) – (f): Time series and scatter diagrams of failed validation results of 

NINO4 previous 4- 6 month values (1977-2007). 
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3.4   Logistic Regression  
 

This nonlinear modelling method also confines the dependent variable to only two 

values (0 or 1)and gives the outcome as a probability of a „0‟ or „1‟, defined for the 

present purposes as below or above average rainfall, respectively. Therefore the 

predictands can only be assigned one of these two values. A previous study using 

logistic regression probability models have been shown useful to the management 

of water resources in the southern and central United States (Kurtzman and Scanlon 

2007) where the method was used to predict above average and below average 

winter precipitation to calculate probabilities. The logistic regression method is 

chosen for the more robust situation of forecasting simply above or below average 

rainfall.      

 

3.4.1   Method  
 

The predictand being the 3-months residual rainfalls are now recoded as a 1.0 

(above average) or 0.0 (below average). These become the new dependent 

variables. The previous NINO4 monthly values are averaged over time periods 1-

month to 6-months. The data is divided into two subsets, a calibration data set 

Jan1945-Dec1976 and a validation data set Jan1977-July2007. Then a single 

logistic run to calibrate on the individual time periods, one at a time is undertaken.  

 

This procedure was carried out on those predictor variables that had been shown in 

Section 2.6 to have significant p values (refer to Table 2.2 in Chapter 2). However, 

only NINO4 is shown here, as it seems to show a greater ability to forecast periods 

of low rainfalls than the other significant independent variables.  
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3.4.2   Calibration and validation results 
 

The logistic regression makes predictions of the probability of above mean rainfall 

or below mean rainfall, it does not make predictions of rainfall magnitudes. The 

calibration values are plotted in Figures 3.9a–f, as probability of above average 

rainfall, however, for simplicity of viewing Figures 3.10a –f, only results from the 

averaging periods 1 to 3 months are shown.  

 

3.4.3   Logistic- forecast analysis 
 

Since the main test of the prediction method is the validation stage we will focus 

only on the validation results. The time series plots of the 3-months residual sum as 

the predictand and previous NINO4 values averaged at 1 to 3 months (Figures 

3.10a, c, e) show the logistic regression method to some extend tries to follow the 

trend of the rainfall however the method is tasked only to predict above mean 

rainfall or below mean rainfall. An obvious example from the validation time series 

is the 1999 drought, where the model made a correct prediction of some parts of the 

event.  

 

One obvious observation of the time series predictions plots is that all the plots are 

almost identical. Thus it is hard to distinguish between the different averaging 

periods, even up to the 6-months averaging period, not shown. 

 

There are some obvious periods where logistic regression forecasting is definitely 

issuing the wrong forecast for the sign of the rainfall. For example the periods 1978 

to about 1981 and 2002 to 2005 in Figures 3.10a,c,e. During these time periods, 

Funafuti is actually in a wet period as the rainfall residuals are above the mean but 

the method is forecasting dry.  So overall the method is of little use for forecasting 

above average rainfall and encouraging for below average rainfall. 
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The scatter diagrams of the validation results (Figures 3.10b,d,f) show that 

predictability of below mean rainfall may seem possible. This is because from less 

than 0.4 of the probability of above mean rainfall, a dry forecast is for most of the 

time will be correct since very few of the actual observed rainfalls are above the 

mean rainfall. The few observations of above the mean rainfall have been marked 

with the two rectangles. 
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Figures 3.9 (a) – (f): Time series and scatter diagrams of calibration results of 

logistic regression 1-3 month averaging periods of NINO4 (1945-1976). 
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Figures 3.10 (a) – (f): Time series and scatter diagrams of validation results of 

logistic regression 1-3 month averaging period of NINO4 (1977-2007). 
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3.5   Summary       
 

The purpose of the chapter is to attempt find a formal predictive scheme to forecast 

months of low rainfall in Funafuti. The methods investigated in this chapter are 

artificial neural network, all-possible-subset regression and logistic regression. All 

these three methods were shown from the analysis results that they cannot forecast 

the magnitude of the rainfall in Funafuti.  

 

Artificial neural network failed to capture the relationships between the variables 

during the training period and hence the failure of the model to forecast rainfall is 

clearly shown from the validation results having negative fit values and prediction 

outputs were almost constant throughout the whole time. Hence the prediction 

outputs are very different from the observations and therefore the long term mean 

would be a better forecaster of rainfall than ANN.   

 

The all subset regression method failed all the validation predictions as given from 

the negative fit values. This means that the long term mean does better to forecast 

rainfall than the ASR. However for the subset of dry periods there is some degree 

of predictability as shown in the scatter diagrams Figures 3.4a, b, 3.5b, d, f, 3.6b, d, 

f, 3.7b, d, f, 3.8b, d, f.     

 

Similarly the logistic regression often gives frequent incorrect predictions of the 

sign of the rainfall when the probability of above average rainfall is greater than 0.4. 

However, for lower probability values there is some degree of predictability of 

below mean rainfalls, which indicates the overall weak association (Figures 10b, d, 

f) may be a little misleading. Of the various independent variables identified, 

NINO4 values appear most useful for detecting future below average rainfalls. This 

is expanded in the next chapter, in the format of a scientific paper with focus on a 

simple graphical means of using just lag-1 and lag-2 NINO4 values to identify 

conditional predictable fields of rainfall.  
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Chapter 4 
 

NINO4 indices in a simple 

graphical technique for conditional 

long range forecasting of low 

rainfall periods in Tuvalu  

 

4.1   Introduction 
 

The scattered atolls of the small island nation of Tuvalu are located in the region 

5
o
S to 11

o
S and 176

o
E to 180

o
E in the central southwest Pacific Ocean. 

Climatically, the islands lie between the Intertropical Convergence Zone and the 

South Pacific Convergence Zone, and are at the edge of the Equatorial Doldrums 

Belt (Thompson, 1987). These large-scale features induce different characteristics 

on the local wind field throughout the year (Wyrtki and Meyers, 1975). 

 

The islands are hot and humid and convective cumuliform clouds are common. 

Temperature are near-constant throughout the year but there is a significant 

seasonal variability in precipitation, with a May to October dry season and a 

November to April wet season (Figure 4.1). There is also an associated seasonality 

of surface winds. Easterly trade winds prevail except in the wet season when 

winds blow from the west or north.  Tuvalu often experiences droughts because of 

its location near the Pacific equatorial dry zone. The development of some ability 

to forecast future low rainfall periods would therefore be advantageous because 

rain is the only source of fresh water to the local population.  
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The Southern Oscillation Index (SOI) provides some basis for rainfall forecasting 

in Tuvalu (Thompson, 1987), but we report here a better alternative for future 

below-average rainfall forecasting based on precursor NINO4 temperatures. On 

the basis of the long rainfall record from the Funafuti Atoll gauge, the method 

uses a simple empirical approach to assign high probabilities for below-average 

rainfalls in coming months. The probability assignment is conditional upon 

precursor NINO4 sea surface temperatures being within a predictable field 

defined by a subjective linear partition. Keeping in mind the need for 

understanding of any forecasting procedure, this simple approach seems well 

suited for local conditions because forecasting requires only reference to diagrams 

and no external information is required other than NINO4 temperature values.  

 

While the forecasting approach adopted is empirical, it is recognised that the 

causes of Tuvalu dry periods are related to such factors as the association of 

precipitation with migration of atmospheric convergence zones, the strength of the 

Southern Oscillation, and ocean heat content (Flohn, 1967; Wyrtki and Meyers, 

1975; Alory and Delcroix, 1999; Thompson, 1987; Ueyama and Deser, 2008; 

Wyrtki and Meyers, 1975; Amador et al., 2006; Folland et al., 2002; Basher and 

Zheng 1998; Ruiz et al., 2006). 

 

Similarly, we recognise that formal forecasting techniques have produced useful 

results in the past. For example, a neural network model was used to forecast 

droughts in the Kansabati River Basin in West Bengal in India (Mishra and Desai, 

2006) and logistic regression models were used to forecast above or below 

average winter precipitation in the southern and central United States (Kurtzman 

and Scanlon, 2007). However, we found that a preliminary application of both 

multiple linear regression and neural networks to be not very helpful for 

anticipating Tuvalu dry periods, although the neural networks fared slightly better. 

The empirical approach adopted here therefore seems justified, but this does not 

preclude more sophisticated methods being utilised at some later date. 
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4.2   Forecasting Approach 
 

The method was developed with respect to the 1945-2007 record of the rain gauge 

on Funafuti Atoll, which is the main population centre (Figure 4.2). The rainfall 

data was first converted to monthly values with seasonal effects removed by 

subtracting the respective monthly means. A corresponding NINO4 time series 

was constructed as monthly averages of daily values. The lag-1 and lag-2 NINO4 

monthly values were used to construct simple data plots to serve as the basis of 

forecasts when conditions permitted. A similar approach was applied for time 

scales comprised of 2, 3, 4 ...12 months time scales. The time intervals here are 

non-overlapping. For example, 12 month rainfall values are always with reference 

to a January start time. 

 

The graphical method is illustrated with reference to Figure 4.3(a). The lag-2 and 

lag-1 NINO4 monthly values are plotted on the x- and y axes respectively and 

whether the current month’s (lag-0) rainfall is above or below it’s long term 

average is indicated by colour coding. The high r
2
 value of 0.85 in this case 

simply reflects the high degree of serial correlation of NINO4 values at this time 

scale. The interesting feature of this plot is that it is possible to bifurcate the 

scatter of points using a subjective linear boundary such that the left field contains 

a high 68% of points representing below-average monthly rainfall. However, the 

proportion of all the data points falling in the left field is only 0.38. 

 

Summarising, s gives the percentage of points in the left field less than mean 

rainfall, and q gives the proportion of all the data points in the left field, and the 

linear function is the equation of the subjective partitioning line The value of p 

indicates the significance level as obtained by randomisation testing through a 

large number of random swapping of the data points and finding the proportion of 

s values equal to or exceeding the original percentage. In fact this test is 

somewhat compromised by the serial correlation of the NINO4 values, but it is  



 
Chapter 4 Funafuti forecasting scheme 

 

 

51 

 

 

encouraging that low p values are still maintained for low serial correlation at 

larger time units (Figure 4.4), with only the 10-month time units indicating non-

significance at the 0.05 level. 

 

The partitioning to create a predictable field for low rainfalls appears to require 

both lag-2 and lag-1 NINO4 values up to time intervals of four months. Only the 

lag-1 values have value for prediction for greater time intervals (Figure 4.4). 

 

With reference to a given time interval, the prediction method is simply obtaining 

the lag-1 NINO4 value (and also lag-2 for shorter time intervals), and then 

checking whether that defines a location within the predictability field. If so, then 

a forecast is made for below-average rainfall with the s value being interpreted as 

probability of below-average rainfall actually occurring. 

 

Conditional on falling within the predictability field, some of the s values 

involved are surprisingly high. The best is for 6-month time intervals with a 

success probability of 0.89 based on the past record. The negative aspect is that 

many periods of below-average rainfall occur in the unpredictable field and 

therefore cannot be forecast by this approach. For example, for 12-month time 

intervals (Figure 4.4f) it is only likely to be possible 30% of the time to actually 

make forecast at all of a coming below-average rainfall year. The method cannot 

therefore be described as a general forecasting method for below-average rainfalls. 

However, forecasts can be given with some confidence when the predictability 

field applies.  

 

A below-average rainfall forecast for an given n-month future period need not 

imply that all the component months are also below their respective averages. 

However, there appears to be a bias toward individual months in multi-month 
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forecasts having less than average rainfall. This is illustrated in Figure 4.5 where 

the frequency histogram of monthly rainfalls is skewed toward below average 

rainfalls for 2-month and 3-month hindcasts. 

 

The conditional prediction approach should be applicable in future years in 

Tuvalu because the approach appears to have a degree of robustness against 

climatic variation. For example, there appears to be a change in the rainfall regime 

from 1976 as seen in a decline in the standard deviations on the monthly rainfalls, 

even though the monthly means remain unchanged (Figure 4.6 a, b). Applying the 

hindcast approach independently to these two time series shows very little 

difference in predictability between the earlier and later periods (Figure 4.7). 

 

The success of the conditional forecasting method derives from persistence of 

cooler NINO4 temperatures which tend to be associated with lower rainfalls at 

Funafuti. The persistence is evident in Figure 4.8, where 70% of the NINO4 runs 

below 26ºC are of 3 months or longer duration. For this reason there tends to be a 

strong clustering of successful hindcasts of below-average rainfalls over shorter 

time intervals, illustrated in Figure 4.9 for the particular case of forecasting two-

month time periods. A likely practical application of the method is therefore likely 

to be within drought periods, as an indication of whether the drought is likely to 

persist. 

 

We applied the graphical approach to other combinations of variables also, but did 

not find predictability fields as well defined as for NINO4. This is presumably due 

to the dominating effect of the proximity of the NINO4 region to Tuvalu. One of 

the combinations investigated is shown in Figure 4.10 which plots current rainfall 

(above or below average) as a function of current SOI and NINO4 value for 

selected time intervals. There is some suggestion of lower rainfalls for lower 

NINO4 temperatures and higher SOI values but the effect is not so well developed 

as for lagged NINO4 axes. 
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The lack of success of standard statistical approaches mentioned earlier appears to 

be a consequence of the inconsistent degree of causality in the independent 

variables. That is, there is a breakdown in the correlation of rainfall and the 

various independent variables over the range of the variables. Even within the 

prediction subset we were unable to establish a quantitative linkage between the 

magitude of the NINO4 lower temperatures and rainfall as deviations below the 

respective long-term means. More sophisticated statistical methods might be 

applied in future to make allowances for the inconsistent nature of the causal 

linkages with rainfall, but the simple graphical approach utilised here gives a 

working method in the meantime.  

 

4.3   Conclusion 
 

NINO4 lower temperatures appear to be associated with lower than average 

rainfalls in Tuvalu, and persistence of lower NINO4 temperatures allow 

forecasting of lower rainfall periods to a high degree of accuracy as multi-month 

averages, after prior correction for seasonal variation of monthly means. However, 

the forecasting is conditional on low precursor NINO4 temperatures which means 

a significant number of dry periods cannot be predicted. Further work should 

focus on these dry periods so the conditionality of the forecasts is not so 

restrictive. 
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4.4   Figures 

 

 

 

Figure 4.1 – Monthly rainfall at Funafuti 1945-2007. Solid points denote mean, 

boxes indicate ±2 standard errors (box), and line range is ±1 standard deviation. 
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Figure 4.2 – Raingauge site on Funafuti Atoll, Tuvalu 
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Figure 4.3 – Scatter plots showing above- or below-average rainfall for current 

monthly time intervals (various n-month periods shown), illustrating predictability 

fields (to left or below line) based on lag-1 and lag-2 NINO4 values, 1945-2007. 

See text for further description. 
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Figure 4.4 – Scatter plots as for Fig. 3, illustrating the lack of predictability 

contribution for lag-2 NINO4 values for longer multi-month intervals. 

 

 

 

 

 



 
Chapter 4 Funafuti forecasting scheme 

 

 

58 

 

 

 

 

Figure 4.5 – Histogram illustrating percent frequency distribution of hindcast 

results for each month’s actual rainfall within the (a) 2-month hindcast and (b) 3-

month hindcast periods. 
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Figure 4.6 – Cumulative rainfall by month for years 1945-1976 and 1977-2007 by 

mean (a) and standard deviation (b). 
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Figure 4.7 – Scatter plots showing current month status of above- or below-

average rainfall with predictability fields (left of indicated line) as a function of 

lag-1 and lag-2 NINO4 values for various n-month periods, for 1945-1976 (left) 

and 1977-2007 right 
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Figure 4.8 – Histogram showing observed frequency distribution of run number of 

monthly NINO4 sea surface temperatures below 26
o
C, 1945-2007. 
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Figure 4.9 – Time series showing time locations of the correct 2-month hindcasts 

(green dots). NINO4 and plotted rainfalls are monthly values of below-average 

rainfall, 1945-2007. 
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Figure 4.10 – Scatter diagrams of SOI, NINO4 and above- or below-average 

rainfall 1945-2007 with respect to (a) 1-month, (b) 2-month and (c) 3-month time 

units. All variables are with respect to the current (lag-0) time interval. The 

current SOI and NINO4 values have a strong negative correlation for all three 

time periods. 
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4.6   Serial correlation of NINO4 sea surface temperature 

as a predictor of low rainfalls 

 

The previous sections in this chapter were in the form of a paper format for 

publication. The remainder of this chapter presents some further material on the 

same theme. 

 

Persistence is described in this thesis as serial correlation. That is, the sea surface 

temperature (SST) e.g. NINO4 SST are likely to be maintained over several 

seasons into the future. This is because the ocean surface temperature varies slowly 

relative to the air. This means that the current observed NINO4 SSTs are likely to 

persist as above or below average for some time. 

  

Using the data record 1945 to 2007 the predictand, residual rainfalls and the 

predictors, previous values of NINO4 for 1 month to 12 months are used on scatter 

graphs represented as lag-1 NINO4 and lag-0 rainfalls for each time average.  

 

We have learnt from Section 2.6 that the existence of the two squares with the 

upper square having very few points and the lower square with more points 

indicates that low rainfalls to a certain degree can be forecast.  

 

Therefore if there is persistence in the cooler NINO4 SSTs then the two squares 

pattern should remain throughout the entire averaging periods. Evidently the scatter 

diagrams (Figures 4.1a-f and Figures 4.2a-f) confirm that from a short lag of 1 

month to a long lag of 1 year the empty square is preserved. Therefore we conclude 

that lag autocorrelation of NINO4 SSTs is a practical predictor of low rainfalls in 

Funafuti, conditional on the NINO4 precursor conditions allowing a low-rainfall 

forecast to be made. 
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Figure 4.11 (a) – (f): Scatter diagrams showing the relationship between current 3-

month residual rainfall and previous NINO4 for 1-month to 6-month averaging 

periods (1945-2007). 



 
Chapter 4 Funafuti forecasting scheme 

 

 

68 

 

 

  

  

  

 

Figure 4.12 (a) – (f): Scatter diagrams showing the relationship between current 3-

month residual rainfall and previous NINO4 for 7-month to 12-month averaging 

periods (1945-2007).  
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Chapter 5 
 

Conclusions and future work 
 

5.1   Summary of results 
 

A simple forecasting scheme has been developed to predict multi-months of below 

average rainfall in Funafuti with a high probability of a correct dry forecast 

conditional on the precursor NINO4 cooler temperatures. Based on monthly 

rainfall for the period 1945-2007 from the Funafuti raingauge, the graphical 

approach uses lag-1 and lag-2 NINO4 temperatures and standardised monthly 

rainfalls to enable identification of a predictable subset of low rainfalls from time 

periods of 1-month to 1-year.  

 

However, as has been stated, the method will most likely fail if it was applied to 

conditions outside of this predictable field. But when conditions are within the 

predictable subset then a low rainfall forecast has a probability of as high as 80 

percent that the dry forecast being issued is true. This dry forecast is possible over a 

whole range of time periods. 

  

The persistence of the predictable conditions seems to hold when the observed 

values of the NINO4 sea surface temperatures are below 26.0
o
C.  

 

A previous study on the rainfall (refer to section 1.7) of the Tuvalu islands 

(Thompson, 1987) have shown that there is a stronger correlation of the SOI with 

the northern islands rainfall than the southern islands rainfall. Since the forecasting 

scheme has shown promising results for the rainfall of Funafuti, this could mean 

that the scheme will work even better when applied to the northern group. 
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The other predictive methods investigated in this study were artificial neural 

networks, all-subset regression and logistic regression. Only logistic regression 

showed for some subsets some ability of forecasting a dry period.  

 

Overall the adopted graphical method seems to at least have done no worse than 

these three methods. The simplicity of the adopted scheme and the ready 

availability of the NINO4 sea surface temperatures at no cost make the forecasting 

scheme a suitable and intuitive method for the Tuvalu islands.  

 

One thing is common in these methods and including the adopted scheme is none 

have the ability to forecast the magnitude of rainfall.  

 

However, as stated in the first paragraph the sign of the rainfall can be reliably 

forecast using the adopted forecasting approach. More importantly is that the 

approach has capability of issuing an advance warning that an existing drought 

would likely to continue.  

 

5.2   Suggestions for further work 
 

The conditional aspect of the forecasting scheme is a barrier to forecasting low 

rainfalls in Funafuti, therefore more research is needed to minimise this 

predictability barrier and try to widen the predictability conditions.  

 

This could include investigation of other potential predictors not included in this 

study e.g. 

1. Data on the heat content of the ocean area bounded by the NINO4 region. 

since Ocean heat has been shown to be successful in some studies dealing 

with the prediction of rainfall (e.g Ruiz et al., 2006) then it may worth 

exploring this data.  
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2.  Data on wind measurements and the sea surface temperatures at proximity to 

Tuvalu e.g the sea temperatures of coastal area. These are available from tide 

gauge recordings. 

3. Upper air data from the Funafuti monitoring site. These data include wind, 

temperature, humidity and pressure. The data may assist, in setting up a more 

realistic coupled climate system over the Tuvalu islands.  

4. Satellite data of convective cloud cover if can be sourced may help as 

convection is probably the main process of rain formation in the Tuvalu atolls.  

  

Although these other methods; logistic regression and neural networks may have 

not worked that well, it may be possible that further refinement may make these 

more sophisticated methods more applicable. 
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