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A detailed study of the group of symmetries of the time-dependent free particle Schrodinger equation
in one space dimension is presented. An orbit analysis of all first order symmetries is seen to
correspond in a well-defined manner to the separation of variables of this equation. The study gives
a unified treatment of the harmonic oscillator (both attractive and repulsive), Stark effect, and free
particle Hamiltonians in the time dependent formalism. The case of a potential ¢/x? is also
discussed in the time dependent formalism. Use of representation theory for the symmetry groups
permits simple derivation of expansions relating various solutions of the Schrodinger equation, several

of which are new.

INTRODUCTION

The present paper is one of a series investigating the
connection between separation of variables and Lie
symmetry groups. In this work we make a detailed study
of the free particle Schrédinger equation in the time-
dependent formalism, i.e., the equation

(*) u,, +iu,=0,

and of the radial equation for a free particle,
c .
(xx) wu, - ;z—u+w¢:0.

Anderson el al.! (with some errors) and Boyer? have
classified all equations of the form

()xx) u, — V(x)u+iu,=0

which admit a nontrivial symmetry algebra of first order
differential operators. It is known, e.g., Neiderer,?
that among these equations, those corresponding to

the harmonic oscillator and the linear potential are
actually equivalent to (*). Here we show in a very ex-
plicit manner that every equation (x**) admitting sym-
metries is equivalent to either () or (xx). The equations
(*xx) are exactly those obtained from (x) and (xx) by
taking all possible separations of variables.

In Sec. 1 we rederive the known six-parameter sym-
metry group G of equation (x).''2'*:> Here G is a semi-
direct product of the three-parameter Weyl group W
and SL(2, R). We determine the global action of G and
compute the orbit structure of its Lie algebra under the
adjoint representation.

In Sec. 2 we classify all coordinate systems such that
variables separate in equation (*) and relate them one-
to-one with the G orbits. It is found necessary to include
R separation as well as ordinary separation in this
analysis. The orbits are essentially labelled by the
attractive and repulsive harmonic oscillator, linear
potential, and free particle Hamiltonians. Although all
our coordinates systems are already known, * the proof
that they are exhaustive and their explicit relation to
orbits appears to be new.

In Secs. 3 and 4 we give the basis in a one-parameter
model for a representative of each G orbit. The calcu-
lation of the basis functions in the Hilbert space of func-
tions depending on x and £, and the overlap functions
between the various bases are also given. We show that
our knowledge of the G structure of (*) greatly simplifies
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the derivation of the spectral representations of various
associated Hamiltonians as well as expansion theorems
relating different solutions of (*). Several of the overlap
functions are new and our proofs of the L,-expansion
theorems for parabolic cylinder and Airy functions are
much simpler than the standard derivations. This work
can be considered as the Hilbert space analogy of
Weisner’s work® on analytic expansions in Hermite func-
tions. The papers of Whittaker’ and Erdélyi® are also
related to our procedure.

Finally, in Sec. 5 we give a corresponding analysis
of the equation (**). The methods of Barut® for com~
puting the spectra of Hamiltonians through the use of
representation theory are closely related to our ap-
proach.

The analysis presented in this paper is preliminary
to the treatment of the time-dependent Schrédinger
equations in two and three space variables, which admit
symmetries. There the theory is much richer. In
particular, degenerate eigenvalues appear and it is
necessary to associate separable coordinates with both
first and second order symmetry operators. Never-
theless, as we shall show in forthcoming papers, the
same general approach can be utilized.

All special functions appearing in this work are nor-
malized as in the Bateman project. 1°

1. SYMMETRIES OF THE EQUATION ju, + uy, =0
Let X be the differential operator

X=id,+d, (1.1)

acting on the space 7 of locally C” functions of the real
variables x, {. We wish to find the maximal symmetry
algebra of the equation

i, =—u,, (1.2)

i.e., we wish to compute all linear differential opera-
tors

L=a(x,t)0,+b(x,1)3,+c(x,1), ab,ce? (1.3)

such that Lu(x, t) satisfies (1. 2) whenever u does. As
is well known'+%:!! 3 necessary and sufficient condition
for L to be a symmetry is

[L,X])=n(x, )X (1. 4)

for some v € 7. By equating coefficients of 9,,,9,,9,,

and 1 on both sides of (1.4), one obtains a system of
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differential equations for a, b, ¢, and . We omit the
details which can be found in several references. !+?'4
The final result is that the allowable L form a six-
dimensional complex Lie algebra (;° with basis

Ky=—123,— (x3_— /2 +ix2/4, K,=-13 +ix/2,

(1.5)
K,=i, K, =0, K,=23, K'=xd +2td,+%
and commutation relations
K% K,)=jK, j=%2, £1,0, [K_,K,]=1}K,,
K ,,K,]=K,, [K, K/]l=-K,, [K, K]=-K (1.6)

In this paper we will be concerned only with the real
Lie algebra (; whose basis is (1. 5). A second convenient
basis for (; is S;, L,, E, where

S,=K,, S5,=K,, L;=K,-K,,
L,=K® L,=K_,+K,, E=K,.

(1.7

The commutation relations become

[LpLz]:_ZLay [LayLl]ZZLzy [LZ,L3]=2L1,

[Sp Sz] = _I'E’ [L3, Sl] :Szr [Ls’ Sz] == Sp

[Lzasll':[Sz:Ll]:_Sz: [Lp S1]:[L2752]:"S_1
where E generates the center of (;. Clearly, the
operators L,,L,, L, form a basis for a subalgebra of ¢
isomorphic to sI(2, R) and the operators S,,S,, E form a

basis for the Weyl algebra (/. Furthermore, (; is the
semidirect product of si(2,R) and /.

Using standard results from Lie theory, ' one can
exponentiate the differential operators of (; to obtain a
local Lie group G of operators acting on 7. The action
of the Weyl group W is given by operators

T(u, v, p) = exp|p + (uv/4)] E exp(uS,) exp(vS,) (1. 8)
with multiplication

T(u,v,p)T (W, v, 0 )=Tu+w,v+v,p+p +{(vu —uv')/4)

(1.9)
where
[T(u, v,0)7](x, 1) = exp{ilp + (uv + 2ux - u?t)/4]}
Xf(x+v—utt), fc7.
The action of SL(2, R) is given by operators
2
[T(A)f 1, t)=exp[i(%)] (6 +1p)/®
(1.10)

% X vy +ita
f5+t6 * 5+1B

where
a
A =< : ‘;) €SL(2,R),

i.e., A is a real matrix with determinant + 1. Further-
more,

T((l) L;) = exp(BK,), T(}l’ (1)) =exp(BK _,), a1

cosf — sme) — exp(6L,)

T(ea O _exp(ar®) T
0 eo) P ), sind cos#@
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cosh¢ sinh¢p \
T(sinh¢> coshq>> = exp(¢Ls).

Finally, the action of SL(2,R) on W via the adjoint rep-
resentation is

THA)T(u, v, p)T(A)= T(ud + vB,uy + va, p). (1.12)

This defines G as a semidirect product of SL(2,R) and
w:

g:(A;w)EG; AESL(zyR)) W:(u,UyP)EWy
T(g)=T(A)T (w), (1.13)
T(2)T(g') = T(AA") [T(A")'T(w)T(A")| T(w’) =T(gg").

It follows from general Lie theory that T(g) maps
solutions of (1. 2) into solutions. !

The group G acts on the Lie algebrag of differential
operators K via the adjoint representation:

K—~Kf=T(gKT(g).

This action splits g into G orbits. For our purposes the
operator K,=1 is trivial so we will merely study the
orbit structure of the factor algebra ¢’ =G/ {K,} where
{K,} is the center of (. ’

This computation was carried out by Weisner® for the
complexification of g and needs only minor modification
to adopt it to g . Let

K=AK,+A K, +A K +A_K,+AK>

be a nonzero element of (;* and set a=A,A , +AZ. It is
straightforward to show that « is invariant under the
adjoint representation. In the table below we give a
complete set of orbit representatives. That is, K lies
on the same G orbit as a real multiple of exactly one of
the five operators in the list.

Case (@ <0): K,-K,=L,,

Case 2(a>0): K, (1.14)

Case 3(a=0): K,+K_,, K,, K.
Note that there are essentially five orbits.

It is well-known that knowledge of the symmetry
algebra of a differential equation permits one to obtain
solutions of the equation via separation of variables, 13:14
Indeed, in our case for given K ¢ g and x € R the system
of equations

Ku=i\u, Xu=0 (1.15)

leads to a separation of variables in the Schridinger
equation. It is clear that two operators K, K’ on the same
G orbit lead to equivalent separation of variables via

(1. 15). Furthermore, since K_,u=iK* u whenever Xu
=0, the orbits containing K_, and K_, lead to essentially
equivalent separations. Thus Eqs. (1.15) lead to separa-
tion of variables in four distinct coordinate systems
associated with the orbit representatives K,, L,, K,
+K_,, and K_;. In Sec. 2 we shall classify all coordinate
systems in which variables separate for Xu =0 and show
that there exist only the four obtainable from (1. 15).
Thus separation of variables for Xu =0 is explainable in
terms of the symmetry algebra alone. (Note that for
equations such as u, +u, +ku=0and —iu,=u, +u,,

it is necessary to use quadratic elements in the en-
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veloping algebra of the symmetry algebra to describe
separation of variables. !5:1¢

The real six-dimensional symmetry algebra (" of
the heat equation

U=, (1.16)

can be obtained by a computation analogous to that for
the free-particle Schridinger equation. * One finds that
the operators
K,=123,+ 1x0_+t/2+x%/4, K,=10x+x/2,
(1.17)
K =1,

0 Kl =0, K,=09, K'3=x8x+2tat+§

form a basis for g" where K; spans the center of (" and
[K?3, K’,~] =jK, x, Kk 1=[K,,K’,]=0
[KCI’K;]:KS, [K'.p Ki]:%Ko, K7, K'l]*:K'.p

(K, Ki]=K"3.

j=+2, £1, 0,

There are five orbits in G”/{K;} under the adjoint rep-
resentation with corresponding orbit representatives
K, K, +K, K, +K!,K',,K',. Since K',=(K",)* for solu-
tions of the heat equation, only four coordinate systems
in which variables separate are associated with the five
orbits.

2. SEPARATION OF VARIABLES FOR THE EQUATION
XU =0 AND THE HEAT EQUATION u, = uy

In this section we examine the problem of the separa-
tion of variables for Eq. (1.2). As opposed to the cor-
responding problem for the Helmholtz equation there is
no established method of approach here (i.e., no as-
sociated differential form and corresponding obvious,
group of motions as in the case of, say, the Euclidean
plane. !”) We therefore proceed directly and examine
the possibilities.

Choosing a new set of real variables v, and v, where

x=G(v,,v,), t=H(v,,v,) (2.1)

and G, H are real invertable functions, Eq. (1.2) can be
written in the form

(@3303, + 150,55 + Agp05, + @0, + a9, Ju =0, (2.2)

where

an:(I_Iz)z’ alzz'm_;'Ha’ a22=<£1-)2,
D D D

and D =G,H, - H,G, (subscripts denote differentiation
with respect to v,), a, and a, are complicated functions
whose explicit form we do not need for general G and H.
From the form of (2. 2) we .see that a necessary condition
for a separable solution (see definition below) of the
form u =A(v,)B(v,) is that at least one of the coefficients
a,,, 4,,, 0y, b€ zero, i.e., either H, or H, is zero.
Without loss of generality we can take H, =0 and write
t=uv, (as H cannot then be a constant function). With
these assumptions (1.2) assumes the form (2. 2) where

1 iG. G .
an-:'G—z;’ a1=—($;2' —-aj':-‘,:L: a,=t (2.3)

and all other coefficients zero. In order that this equa-
tion separate we have the additional constraints
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1 [
E& —f(vz)g(zﬁ), G, =f (vz)h(ul)- (2. 4)
From these equations we have
1 1 h
G, = Z, az(f') zfax(E) (2.95)
and hence
1 1
7 52(7> =3b (2.6)

with b a constant real number. There are two cases to
consider:

(i) b#0. Then 1/f=vbv,+ c. Without loss of gen-
erality we can take ¢ =0 as our defining equation is
translation invariant. The function G then has the form
G =g(v,)v,}/? where Z is a nonconstant real function.
Accordingly we can define g(v,)=v,. The system of
coordinates is then

e X=0,0,172, (2.7

(ii) 5=0. From the equation G,=f(k/g) we see that
G=cv, + g(v,) and hence the coordinate system in this
case is

t=v,

l=v,, X=cv,+v,. (2. 8)

One point that should be mentioned here is that the full
equation does admit a separable solution when the func-
tions A and B are exponentials and the new variables
are given by

(2.9)

with ad — bc #0. In our definition of separation, how-
ever, we require that in the associated coordinate
system the Eq. (1.2) can be replaced by two ordinary
(nontrivial) differential equations in each of the sep-
arable variables. Then only the subclass of coordinates
given by (2. 8) is admissible as strictly separable. We
accordingly make no further comment on the choice of
variables (2.9).

t=av, +bv,, x=cv,+dv,

In addition to considering separable coordinates for
(1.2) it is also of interest to consider R-separable solu-
tions of this equation. These are coordinates which
admit solutions of the form exp[Q(v,, v,)JA(v,)B(v,)
where @ is not expressible in the form g(v,) + k(v,) and
is not a constant. With the inclusion of such a multiplier
term ¢9, Eq. (1.2) for the product A(v,)B(v,) assumes
the form (2. 2) with an extra term a,u added to the left-
hand side. The conditions for R-separability are the
same as for strict separability so that a,, =a,,=0.

The nonzero coefficients are given by
1 20, ;G _ Gy
G

a,, =~ @;= a,=i
11 Gi 1 Gf G1 2 ’

G (2.10)

2
a,= &L;—QQ —Ql(i Gy 24 )+ iQ,.
Gl Gl Gl.

The conditions for separability then become upon
writing @ =R +iS (R and S real)

1/G1 =f(v2)/g1(v1),

2Rl/G2 :fz(vz)w(v1)’

(281/G§) - (Gz/G1) :fz(vg)K(v1)-

(2.11a)
(2.11p)
(2.11c)
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Equation (2. 11b) allows us to take R =0, since its solu-
tion is of the form 7,(v,) + 7,(v,). The remaining con-
ditions simplify to

52

Gﬁ -5, gl +S, =f2(2)2)q(1)1) + p(vz), (2. 12a)

Sy _g Gu_s

G2 - sl G2 ‘_f (1)2) 7(1)1) + S(’Uz). (2. 12b)
1 1

[Note: g,(v,)=0,8(v,) for some g.] From (2. 11a) the
form of G is G=g/f+ h(v,) and g+ const. We are then
free to take g=v,. From (2. 11c) we see that

2SI=—%1)1+;—:Z+K. (2.13)
We can therefore write the form of S as
S= —}-cz-—v";-i-—hz—v (2.14)

T 4f3 2f v
[Remember that terms of the form z(v,) + k(v,) in the
expression for S can be dropped as they do not contribute
to strict R-separation. | We now evaluate the

possibilities.

(i) f=const. Then we can put f=1. Equation (2.12a)
implies h,, =2a+0. Without loss of generality we can
then take 2=avi, The corresponding coordinate system
is

t=v,, x=v,+av, a>0, (2.15)

and S = av,v,.

(ii) f,/f®= - 3 a+0. In this case we can take f=v;1/2,
the constant a being absorbed in the definition of the
variable v,. Substitution into (2. 12a) then requires
by, == $bv3%/2 for some constant b, so that

h=bv, %+ cv,. (2.16)

We may take b =0 by redefining v,. The resulting co-
ordinate system is then

— — 1/2
l=v,, x=v,v,""%*+cv,

with

(2.17)

S=3%cv,v,'2,
This is seen to be a generalization of the coordinate
system (2. 7).

(iii) £,/f3+ const. In this case, substituting into (2.12a)
we obtain the equations given below as requirements for
the functions f and &:

ffa=2f3=0of°, (2. 18a)
by =B f3 (2. 18b)
with «, B8 real constants. We consider two possibilities.

(1) a=0. In this case f=av;' and h=b/v,+ cv,. In
particular, we can take a=1 and ¢ =0 effectively ab-
sorbing ¢ into the definition of v,. The resulting co-
ordinate system is

t=v,,

X=v,0,+ vi b>0, (2.19)

2
with

S= 30,02 = bv, /20,.
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(2) @ #0. In this case (2.18a) has the solution
F=(av?+b)™/? (2. 20)

and h has a solution of the form k= c(av2+ b)!/2 + dv,.
We can put ¢ =0, effectively absorbing this term in the
definition of v,. This results in two distinct types of co-
ordinates depending on the relative sign of a and b.

(@) t=v,, x=v,VI+Z +dv, (2.21)
where

S=31v,+ 3dv, I+ 02
and
(b) t=v,, x=v,VI-1Z +dv, (2.22a)
with

S=-%v%, +dv, V1 =13,

t=v,, x=v,VUi-1+dv, (2.22b)
with

S= v, + sdv, Vi - 1.

The coordinate system (b) is the only system which re-
quires two distinct parametrizations to cover the entire
range of variation of v,. This then exhausts the classi-
fication of all coordinate systems which are R-separable
and separable for (1.2). In particular, it is to be noticed
that in each case the operator X=0_,+ i3, can be written
X =f(v,, v,)(L + K) where L and K are operators in v,

and v,, respectively. In particular, K is a first order
operator such that XKu =0 and so can always be ex-
pressed as a linear combination of the generators K.

In Table I we give all the coordinate systems we have
found together with the associated operators K. It is
clear that in this classification we have not made

use of the full invariance group of (1.2) apart from
translational invariance. If we do include this group in
our definition of equivalence all the coordinate systems
we have found are equivalent to ones whose representa-
tive basis defining operators are one of the forms (1. 14).
In particular, we see that under this equivalence more
than one coordinate system may be on the same orbit.
This is a consequence of the fact that the group action
has not been accounted for in the classification of sep-

TABLE 1. Separable coordinate systems for the Schrdinger
equation Xz =0 and their associated basis defining operators.
(Note only the x coordinate is given as we always have t=1v,.)

Multiplier e?S

Coordinate system Basis operator K

1. x=cvytvy, ¢=0 S=0 K=K _,+cK_,

2. x=vy+av}, a>0 S=avyw, K=K _,—2aK,

3. x=vpd/ P+ cu,, S=3copwl/? K=K%-cK,

cecR

4. x=v, S=iow}-bv/20, K=K,+2bK_,
+b/vy, b=0

5. x=vV1+v} S=3v, K=K,-K_,~dK_,
+dvy, d=0 +3dvV1+0]

8. x=vV1-vi+dv, S=-%vl, K=K,+K_ ,+dK_;

+%d’l}1\[l—1)2

x=v{/vl —1+duv,

y S=é;vziv2+%dvl\/v§—1

d=0
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TABLE II. Separable coordinate systems for the heat equation
U,=U,, (for all multipliers S=0).

Coordinate system Multiplier Operator
1. X=vy 0 Kig

2. x=v1v21/2 0 K‘

3. x=1)1V1‘+1)2 R=—%02‘U% §+K_,_2
4. x=v1+%v§ R=—%1)11)2 K:2+K'1

arable systems. In the next section we deal with those

bases corresponding to inequivalent orbits. In that sec-
tion we give the solutions of (1.2) in the corresponding
coordinates.

Finally, in this section we list in Table II the sep-
arable coordinate systems for the heat equation (1. 16)
corresponding to representatives of the inequivalent
orbits of basis defining symmetry operators.

3. ONE AND TWO-VARIABLE MODELS

We now show that the operators (1. 5) can be inter-
preted as a Lie algebra of skew-Hermitian operators on
the Hilbert space L,(R) of complex-valued Lebesgue
square-integrable functions on the real line. To do this
we consider ¢ as a fixed parameter and, in view of (1. 2),
replace 0, by i0_, in expressions (1.5). It is easy to
show that the resulting operators restricted to the do-
main of C*-functions with compact support and multi-
plied by ¢ are symmetric and essentially self-adjoint.
Indeed the operators (1. 5) are real linear combinations
of the operators

. =ix%/4,

/(3=:x3x4‘%

Ki=ix/2, Ko=1, K.,=28, K-2=10,,
(3.1)

and iK,, iK® are essentially self-adjoint. Moreover,
when the parameter ¢ is set equal to zero, K ; becomes
K ; and K° becomes K*. It follows that the operators
Kj» Ks satisfy the commutation relations (1. 6).

From Stone’s theorem?®® we know that to each skew-
Hermitian // € (; there corresponds a one-parameter
group U(a)=exp(a4) of unitary operators on L,(R). This
group in turn acts on (; via K — U(a)XU(- a). In parti-
cular, one can easily verify that

[exp(tK ,)]K lexp(- tK ) ]=K,,
[exp(tK ) K3lexp(~ 1K )] =K3.

(3.2)

Thus if f € L,(R) then u=exp(tK ,)f satisfies u,= K ,u
or iu,=—u, (for almost every f) whenever f is in the
domain of K_,, and #(0)=f. Also it is easy to show that
the unitary operators exp(aK)

=exp(tK.,) exp(a ) exp(~ tK ;) map such a u into v
=exp(ak )Ju which also satisfies v,= A_,v. Thus the
unitary operators exp(aK) are symmetries of (1. 2).

Later we will show that the operators K, X° generate
a global unitary representation of the group G on Ly(R).
Assuming this for the moment, let U(g), g<G, be the
corresponding unitary operators and set 7'(g)
=exp(tK_,)U(g)exp(-tK ;). Again it is easy to demon-
strate that the T(g) are unitary symmetries of (1. 2) and
that the associated infinitesimal operators are

K=exp(tK 5)K exp(=tK ).
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Now consider the operator / ;= K, = K, =13,, — ix?/4
€@ . If f € Ly(R) then u(t)=exp(t/ ,)f satisfies u,= / ,u
or iu,=—-u, +x*u/4 and u(0)=f. Similarly, the unitary
operators V(g) =exp(l/ ,)U(g) exp(- I/ ;) are symmetries
of this equation, the Schrédinger equation for the har-
monic oscillator, and one can verify that the associated
infinitesimal operators exp(t/ ,) K exp(—t/,) can be ex-
pressed as first order differential operators in ¢ and x.
Continuing in this manner we consider the operator
L2=Kot Ka=10,,—ix%/4€ (. If f € L,(R) then u(t)
=exp(t/,)f satisfies u,=/ ,u or iu,=-u_ - x®u/4 and
u(0)=f. The operators W(g)=exp(t/,)U(g)exp(-t/,)
form the unitary symmetry group of this equation, re-
pulsive harmonic oscillator potential, and the associated
infinitesimal operators exp(f/ ,) K exp(—t/ ,) are first
order in x and £. Finally, we consider the operator //
=Ka—K1=10,,~ix/2€(. If fe L,(R) then u(t) = exp(t4)
satisfies u,=//, or iu,+ —u, _+xu/2 and u(0)=f. The
unitary operators X(g)=exp(t//)K exp(-t/4) are sym-
metries of this Schrodinger equation for the linear po-
tential and the infinitesimal operators exp(t4/)K exp(-t//)
are first order in x and ¢.

Note further from (1. 14) the operators Ao, /4 /25
and K, - K, corresponding to the free particle, attrac-
tive and repulsive harmonic oscillator, and linear po-
tential Hamiltonians, lie on the same G orbits as the
four representatives K ,, /4, K3 and K,+ K_,, respec-
tively. Thus these four Hamiltonians correspond exactly
to the four systems of coordinates in which Eq. (1.2)
separates. We see that these Hamiltonians form a com-
plete set of orbit representatives in (; in the sense ex-
plained following Eq. (1.15).

Note that if two operators lie on the same G orbit then
the first operator is unitary equivalent to a real con-
stant times the second operator. Thus two suitably nor-
malized operators on the same orbit necessarily have
the same spectrum. In particular, if K, K’ € ¢ with
K =U(g)K U(g™") and the self-adjoint operator ik has a
complete set of (possibly generalized) eigenvectors
(%) with

iKA=2S (A fL)=08,, (3.3)
where

(hy, h)= [ h(x) B(®)dx, h e Ly(R), (3.4)
then for f} = U(g)f, we have

LK =2 (L F)=8,, (3.5)

and the f| form a complete set of eigenvectors for iK’.°
These remarks imply that, if we wish to compute the
spectrum corresponding to each operator K € (, it is
enough to determine the spectra of the four Hamiltonians
listed above. Moreover, we may be able to choose
another operator K on the same G orbit as a given
Hamiltonian such that the spectral decomposition of

is especially easy. The spectral decomposition of the
Hamiltonian and the corresponding eigenfunction ex-
pansions then follow from those of K by application of

a group operator U(g).

As a special case of these remarks consider the
operator K _,=129,. If {f,} is the basis of generalized
eigenvectors for some operator K € (;, then {f;(t)
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=exp(tK.;)f,} is the basis of generalized eigenvectors
for K = exp(t K ) K exp(- tK ,) and the f}(¢) satisfy the
equation iu,=—u,,. Similar remarks hold for the other
Hamiltonians.

We begin our explicit computations by determining the
spectral resolution of the operator / ;=K _, = K. The
results are well-known. '* The eigenfunction equation is

if f =N, (=0, +x2/A)f=2],

and the normalized eigenfunctions are
FiVx)=[n ! V2r 2] /2 exp(- °/4) H (x277),
A, =n+%, n=0,1,2,..., (f,f:), f,f’:’):ém

(3.6)

where H (x) is a Hermite polynomial.

It is now easy to show that the £ operators expo-
nentiate to a global unitary irreducible representation
of G. Indeed, from the known recurrence formulas for
the Hermite polynomials one can check that the opera-
tors / ,,/ 5,/ 5 acting on the f¥-basis define a reducible
representation of si(2, R) belonging to the discrete
series. The value of the Casimir operator is
H/%+7%2-/%=-3/16. As first shown by Bargmann, 20
this Lie algebra representation extends to a global
unitary reducible representation of SL(2,R). Similarly,
the operators S, §,, /4, acting on the f*’-basis define
the irreducible representation (,!)=(- %, 1) of the Lie
algebra of the harmonic oscillator group S. 2! Again this
Lie algebra representation is known to generate a global
unitary irreducible representation of S.?# Finally,
since every unitary operator from SL(2,R) can be
written in the form exp(a/ ;) exp(8/ ,) exply/ ), %° where
exp(a/ ;) also belongs to S, and since / , is a first order
operator whose exponential is easily determined, we
can check that the identity (1. 12) holds in general. Thus
our representation of G extends to a global unitary rep-
resentation U of G which is irreducible since U|S is
already irreducible. The matrix elements of the opera-
tors U(g) in the f'¥-basis can be found in numerous
references, e.g., Refs. 20, 22, 23.

The unitary operators U(g) on L,(R) are easily com-
puted. The operators

Ulu, v, p) = explp + (uv/4)] & explu 5,) exp(v §,)

defining an irreducible representation of W take the
form
uy | ux

[U(u,v,p)f](x):eXP[i<p+ 2 3 )]f(x+v), fe Ly(R).

(3.7

The operators U(A), A € SL(2,R), are more complicated.
From Ref. 24 (p. 493) we have

exp(ak ) f(x)

=Liom. = [; exp(- (x - y)*/4ial () dy, 5.8)
and it is elementary to show

exp(b K°) f(x) = exp(b/2) f (),

exp(cK,) f(x) = exp(icx®/4) f(x). (3.9)

Relations (1. 11) imply
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exp(¢/ ;)= exp(tanhp K,) exp(sinh¢ cosho K 2)
' X exp(~ In cosh¢ K 5),
so (3. 8) and (3. 9) yield

exp|(ix?/4) tanh ¢ ]
(47 sinh )1 /2

exp(¢/ ,)f(x) =

x1.i.m. f exp[—- (x — y cosho)?/4i sinh¢ cosh ] f(¥) dy.
(3.10)
A similar computation for exp(6/ ,) gives

Far2
exp(8) 7o) = ZELEE/ A ce]

x1.i.m. f exp[ - (v% cos6 — 2xy)/4i sind] f(y) dy.

(3.11)

Using (3. 8) we see that the basis functions FiN(x) map
to the ON basis functions Fi(x, )= exp(tK ) i (%) or

;.2
(1) —[ntony 2y]-1/2 r X t - _—.xz
F)." (x, t) ['n 2 277(1 +t )] exp<4 1+ t§ 4(1 + t2)

-ix, arctant)Hn[x/v 2(1+ )] (3.12)

which are solutions of (1.2).

Next we study the spectral theory for the orbit con-
taining the operators X _, + K, (repulsive oscillator) and
K- Since the spectral analysis for K, is elementary we
study it first. [The corresponding results for X _,+ K
then follow by application of an appropriate group
operators U(g). ] The eigenfunction equation is

iK3f=Nf, KP=x0,+3.
The spectral resolution for this operator is well-
known. 25 It is obtained by considering L,(R) as the direct
sum L,(R +)@® Ly(R - ) of square-integrable functions on
the positive and negative reals, respectively, and taking
the Mellin transform of each component. Then i,
transforms into multiplication by the transform variable.

The spectrum is continuous and covers the real axis with
multiplicity two. The generalized eigenfunctions are

1 ;
fiz)t(x): i xﬁ-n—llz’ Y ER,

7 (3.13)

(F2%, FO =01 =), (A%, FP7)=0,
where
x¢ if x>0 0 if x>0
x$ = , XY= .
0 if x<0, (-x)* if x<0

From (3. 8) we find exp(tK_,)f\2* = F{®*(x, t) where

F®*x, t)= exp(——- +

x? T, im
a Tt _8_)
(Zt)-nlzu/«; . i 1(—xe“’/4>
¥ -, - 5 (=),
VBrEit e A7
>0, (3. 14)

I'(z) is a gamma function, and D, (2) is a parabolic cy-
linder function. 1° [These results follow from (3. 8) by
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moving the integration contour from the positive real
axis to a ray making an angle of /4 with the real axis,
We can also use the fact that we know the differential
equations characterizing the function (3. 14).] Also, we
have

(@) F2*(x, ) =F 3 (%, = 1),

(3.15)
(b) F;Z)- (x, t):Fx(z)*(—x» t)'
It follows immediately from (3. 13) that
(F{”*,Fff)*)=6(u-7\), (F{Z)*, Fiz)$)=0. (3_ 16)

Application of these orthogonality and completeness
relations to expand an arbitrary fe L,(R) yields the
Hilbert space version of Cherry’s theorem, 1°-2¢ which is
an expansion in terms of parabolic cylinder functions.
Note that our expansion is simply related to the spectral
resolution of the operator K° =213, + xd,+ § = 2itd

+x0, + 3.

The next orbit we consider contains the operators
K .o+ K, (linear potential) and K, + K _,. Since the spec-
tral analysis for the second operators is simpler, we
study it. The eigenfunction equation is

UKyt K_l)lef, K2+K-1:ix2/4+ 0,
The spectral resolution is easily obtained from the
Fourier integral theorem. The spectrum is continuous
and covers the real axis, and the generalized eigen-
functions are

1 .
%)= ‘/—2—_77-_exp[— iax +x%/12)], A eR, (3.17)

(f2, f)=06(n = ).
We find that

(3) _ _ 1/6 if 1 2_ U\
F3(x, t)=exp(—in/4) 2 exp[4 ( 82 + 0,02 %) o,

X Ai[22/%(4v, + )] (3.18)

with v, and v, as in Table I, system 4 with b=3.

Ai(z) is a Airy function. These are the basis functions
for the operator K, +K_, =—it?9_ + (1 - tx)3, — t/2
+ix%/4. For the orbit containing K _, the complete set of
eigenfunctions is
LER,

= 71: exp(- irx), (3.19)

27

with the usual orthogonality properties. It is not hard to
show that

FP(x, )= f: expli(\2 - \x)]. (3. 20)

27

The case of the remaining orbit K , differs so little from
this last case that we do not treat it here.

If {f,(x)} is a basis of (generalized) eigenfunctions of
some K € ( and F,(x, t)=exp(tK ;) f,(x) then F,(x, 7)
=exp([T-t]K_,) F,(x,t) and we have the Hilbert space
expansions

kx =y, 8)= [ F\(x, ) [ d,
k(x -y, 7=t)= [ Fy(x, T)F5(3, D dx
where the integration domain is the spectrum of i and

(3.21)
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k(x, t)= exp(~ 22 /4it)

1
vamit
is the kernel of the integral operator exp(fX_,). These
expansions are known as continuous generating
functions, "8

4. OVERLAP FUNCTIONS

In this section we compute the overlap functions
(f{?, ") which allow us to expand eigenfunctions f{¥
in terms of eigenfunctions f{. Since (U(g)fY’, U(g)f{")
=(f{?, £9?), the same expressions allow us to expand
eigenfunctions U(g)f,? in terms of eigenfunctions
U(g)f!”. We give here then those overlap functions cor-
responding to bases f{? that we have taken as standard:

+ 2)n+l}.-1/2 r(i)t/z + %4_ %n)
27v2™n !

3 -
szl(_%n; %_%ny E—'LK/Z—%VL;%)-

g, g =t (4.1)

For the calculation of the overlap functions (f {i’, 2
it is convenient to give a generating function rather than

an explicit expression. The result is
22/3 exp[—i(4 + 1+ V2y)] Ai[22/3(5 - i - iV2y)]

_oss 02y

= 2 R U £,
This expression follows from the form of the generating
function of Hermite polynomials given by Ref. 10.

(4.2)

(LD, £12)=[n! (- 2) 7] /2 exp(= B (VB),  (4.3)
( ;?)’f)(‘Z)y)
_ _é_IT_T_(IZi)(lls-nls) ior{[(" "::)/3]+ i}
X [exp(5im /6’ ](12)"/3, (4.4)
where
(£, £ = (=D (fP, 7). (4.5)

(FD, Fi0)=22/3 Ai(22/3x =27)),
(F{, /%)= 5o exp(x iv'7/2) T(=2" + D 0)¥ ™,
(4.6)

The general overlap function relating an eigenbasis on
one orbit to an eigenbasis on another orbit is of the
form (U(g) ¥, £”). Indeed, a general eigenbasis {i}"}
on orbit i can be expressed as h{¥ =U(g,) f{". Thus,
(D, 6?) = (U(g) /", Ug) F ) = (U(gkgn)f P, £ ).
These expressions are known as “mixed basis matrix
elements. 2" Their knowledge allows us to expand any
eigenfunction of an operator in (; in terms of eigenfunc-
tions of any other operator in (;. Since the inner product
is invariant under the unitary operators U(g), the
knowledge of the matrix elements for fixed ¢,j, and g
can lead to a variety of different expansions. We shall
not tabulate these elements here but merely note that
they are of some interest. Indeed, they yield Hilbert
space analogies of the analytic function expansions
derived by Weisner in Ref. 6. However, the Hilbert
space theory is richer and more complicated since one
can derive expansions in all bases, not just Hermite
function bases as used by Weisner.
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As an example we give the mixed basis elements:

(exp(tK )\, FE)=(f{2, exp(-tKL)f D)

An
(£2)™ie=1/2(1 4 jt)i4 /2 exp(— ix, arctant)
B 22T (1 - it)n/2eiu/2ni/4

w1 n
XI‘(2+4+2)

n 1
X2F1<"§’§'§’4 7 T2 2

These elements allow us to expand Hermite polynomials
as an integral over parabolic cylinder functions and
parabolic cylinder functions in series of Hermite
polynomials.

5. THE EQUATION ju; +uy, -cu/x* =0

Here we apply the methods discussed in the previous
sections to the differential operator

Y=i9,+0,,-c/x% c=0. (5.1)

We first compute the maximal symmetry algebra of the
equation Yu=0. Thus, we find all operators L, Eq.

(1. 3), such that Y(Lu)=0 whenever Yu=0. A straight-
forward calculation shows that the symmetry algebra
H° is three-dimensional with basis

K,=0, K,=-1%3,-1txd, —1t/2+ix%/4,
K3=2t3,+x9,+1/2

(5.2)

and commutation relations
(K%, K,,]=%2K,,, |K, K, ]=K>.
For the basis L, where
L,=K% L,=K,+K,, L,=K_,-K,,
we have the relations
(L,,L,]=-2L,, [L,L,]=2L, [L,L,]=-2L,.
(5.3)

It is eclear that the real Lie algebra generated by these
basis elements is sI(2, R). The corresponding group
action of SL(2, R) on functions f(x, t) is given by the
operators (1.10), and the explicit relation between the
group and Lie algebra operators by (1.11).

The group SL(2, R) acts on sl(2, R) via the adjoint
representation and splits the Lie algebra into orbits.
Let

K=AK,+A_ K ,+AK3csl(2,R)

and set =4,A ,+AZ. It is straightforward to check that
« is invariant under the adjoint representation and that
K lies on the same SL(2,R) orbit as a real multiple of
exactly one of the three operators in the following list:

Case 1(a<0): K,-K,=L,,
Case 2(a>0): K3,
Case 3(a=0): K,.

(5.4)

We see that there are essentially three orbits.

The evaluation of all separable coordinate systems
proceeds as for the free particle case except that now
we have the added restriction that G,/G = h(u,). The re-
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sulting coordinate systems, multipliers, and basis de-
fining operator are then listed in Table III.

In analogy with our argument in Sec. 3 we can inter-
pret the operators (5. 2) as a Lie algebra of skew-
Hermitian operators on the Hilbert space L,(R +) of
complex-valued Lebesgue square-integrable functions
f(x) on the positive real line, 0 <x< . This is ac-
complished by considering { as a fixed parameter and
replacing 3, by id_, - ic/x* in expressions (5. 2). The
resulting operators when multiplied by ¢ and restricted
to the domain of C* functions with compact support in
R+ are via Weyl’s lemma, ?® easily seen to be essential-
ly self-adjoint provided c = 2. In the remainder of this
paper we assume that the constant ¢ satisfies this in-
equality. The operators K,,, K® are real linear com-
binations of the skew-Hermitian operators

Ka=id,, —ic/x® K,=ix®/4, K*=xd,+1/2 (5.5)

to which they reduce when ¢{=0. Similarly, the skew-
Hermitian operators

[1=KP=x3,+3, LZ:K_2+Kz—_—ia“—ic/x2+ix2/4,
(5. 6)
13: K-Z_ /(Z:ian—ic/xz—ixz/‘l

satisfy relations (5. 3) and the L; reduce to / ; when
t=0.

In analogy with Sec. 3, one finds
exp(tK o) K, exp(— LK ) =K,
exp(tK o) [ jexp(—tK ) =L;.

Thus for any fe L,(R +) the vector u(f)=exp({K _,)f
satisfies u,= K _,u or iu,=—u, + cu/x* and u(0)=f. Also
the unitary operators exp(aK)

=exp(tK_,) explak)exp(-tK_,), K €sl(2,R), map solu-
tions of the equation u,= £ _,u into other solutions.

(5.7

We will soon demonstrate that the operators £,,, k*
generate a global unitary irreducible representation of
the universal covering group J of SL(2, R) by operators
U(g), g€J, on Ly(R+). Assuming this we see that the
operators T(g)=exp(tX_,)U(g) exp(— tK _,) define a group
of unitary symmetries of the equation Yu =0, with as-
sociated infinitesimal operators K =exp(f K )X exp(- K _,).
This discussion shows the relationship between our Lie
algebra of K -operators and the Schrodinger equation for
the radial free particle.

Next consider the operator / ,< sl(2,R). If f € Ly(R +)
then u(t)=exp(t/ ,) f satisfies u,= / ju or iu,=—u,,
+ cu/x® + x?u /4, the Schridinger equation for the radial
harmonic oscillator. The unitary operators V(g)
=exp(#/ ,)U(g) exp(-t/ ;) are symmetries of this equation
and the associated infinitesimal operators

TABLE III. Separable coordinate systems for the equation
Yu=0.

Coordinate Multiplier efS Basis operator
1. x=v4 S=0 K,

2. x=vpl/? S=0 K3

3. x=v, S=zvw?} K,

4, x:1)1V1+U2 S:éltvzv% K2"K-2

5. x=vVi(l—v) S=13vw} Ky +K o
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exp(!// ,)K exp(—t/,) are first order linear differential
operators in x and ¢{. Similarly, if f € L,(R +) then u(f)
=exp(t/ ,)f satisfies u,= / ,u or tu,=—u, +cu/x*

- x%u/4, the Schrodinger equation for the repulsive
radial oscillator. The operators W(g)

=exp(t/ ,)U(g) exp(—t/ ,) determine the symmetry group
of this equation and the associated infinitesimal opera-
tors exp(l/,)K exp(— ¢/ ,) are first order in x and £.

From (5. 4) it follows that the operators X _,,/ 5,/
corresponding to the radial free particle, attractive and
repulsive harmonic oscillator Hamiltonians lie on the
same J orbits, as the three orbit representatives f,,

/ 5 and K3, respectively. Our three Hamiltonians cor-
respond to the three J orbits of sI(2, R). The remarks
concerning expressions (3. 3)—(3.5) and the invariance
of spectra for operators on an orbit carry over without
change to this case except that the inner product is now

(hy, 1) = [ (V%) dix, (5. 8)

Note that if {f,} is the basis of generalized eigenvec-
tors for some K € sl(2, R) then {f(f)=(exp tX_,)f,} is
the basis of eigenvectors for K =exp(tA _,) K exp(—tK _,)
and the f/(/) satisfy the Schrodinger equation for the
radial free particle. Similar remarks hold for the other
Hamiltonians.

hy € Ly(R+).

We first present the well-known results for the spec-
trum of / ,. The eigenfunction equation is

if f=Mf, (=0,+c/x*+x2/4)f=)\f
and the normalized eigenfunctions are

O(x) = __nl2wlr
T(n+1+u/2)

(5.9)
\,=—-2n-p/2-1,
nzO, 11 2: )

CZ(IJ'Z"'l)/4a “’23’

where L{*'(z) is a generalized Laguerre polynomial. The
{£i0} form an ON basis for Ly(R +).

Using the recurrence relations for the Laguerre poly-
nomials one can check that the operators / ; acting on
the f'¥ basis define an irreducible representation of
sl(2, R) belonging to the discrete series. The Casimir
operator is {(/3+/%2-/2)=-3/16+c/4. As is well-
known, 2°:23 this Lie algebra representation extends to a
global unitary irreducible representation of J. The
matrix elements of the operators U(g) in a £’ basis can
be found in Refs. 23 or 29.

We now compute the operators U(g) directly. Clearly,
exp(ak®)f (x) = exp(a/2) f (e*x),
exp(a ;) f(x) = exp(iax®/4) f (x).

Furthermore,
exp(BLa)f(x):eXp(:inlﬂs(;ln;rlz)/4 l.i.m. f (xy)H/?
o]
xexp( —(x? +y2){ cotBD
xy
*Jy (2,51n3,)f(y)dy, 0<igl<m, (5.10)
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where we take the upper sign for g >0 and the lower for
B<0. [Here J,(2) is a Bessel function. ] The additional
relation exp(m/ ,) = exp[- in(1 + 1/2)] allows us to deter-
mine exp(B/ ;) for any 8. To prove these results we ap-
ply the integral operator (5. 10) to an f ¥’ basis element,
and use the Hille—Hardy formula?? and the fact that
exp(B/ ) f\Y =exp[-i(2n+ /2 +1)B]f (Y to check its
validity. Since (5. 10) is valid on an ON basis and
exp(pB/ ;) is unitary, the expression must be true for all
fELy(R+).

The group multiplication formula
expyK ., = exp(— siné cosf K ,) exp(Iln cosdK®) exp(6/ ;)
with y =tané and expressions (5.9), (5. 10) easily yield

exp[¥(1/4)1r(u+2) Lim. / (xy)/?

21yl
x exp(i(x;+ yz))Julz(z"‘f, l)f(y)dy,

exp(yK ) f(x) =

(5.11)

where we take the upper sign for ¥ >0 and the lower for
v <0. A similar group theoretic calculation gives

i/4 2 . ©
exp(¢/ ) f(x)= exp[;(;/ls)igfl‘;)?- ) 1.1.m.[ (xy)/?

X exp(% (x2+9?) coth¢>

Xy
Xd, 2 (m) f(y)dy.

From (5.11) we find that the basis functions f{V(x)
map to the ON basis functions F{(x, t)= exp(t/(_z'Sf‘”( )

(5.12)

Fy)(x0)
2 (u+l) /4
= 2(- 1 empls (/4 + D))

X (t - i)-u/4-3/4-n(t+ i)u/4+1/4+n

)
+¢2

<
for >0

1 1
><exp<41+t2 (- 1+zy)) L“/2<§1

(5.13)
which are solutions F of YF=0.

The J orbit containing the operator / , (repulsive
radial oscillator) also contains X* so we merely study
the spectral theory for 3. The results are well-known. 3
The eigenfunction equation is

K3 =0\, KP=x3,+3.

The spectrum is continuous and covers the real axis
with multiplicity one. The generalized eigenfunctions
are

1
(@ () — X172,
15 Var
(12, F@)=8(u =),

Again using (5. 11) we find F,®(x, {) = exp({K ;) f{2 (%)
where

AER, (5.14)
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F®, = L T(N/2+ u/4+ %)

VI T(+p/2) expl[¥ (1/4) (ip +i + 1))

(5. 15)
; " ix® ix®
X piv/2-1/4(x2 [y 1/4 exp<8—t) M2y, ura (t_)

for tZ20. Here M, ,(2) is a solution of Whittaker’s equa-
tion. 1° If follows from our procedure that the basis
functions satisfy
(F®, F2)=8(u=2)

and can be used to expand any fe Ly(R +).

Finally, the orbit containing X' _,, corresponding to
the radial free particle, also contains £,. The spectral
theory for X, is elementary because K, is already dia-

gonalized in our realization. The generalized eigen-
functions are (symbolically)

A2 =08x=n), K[\ =03/ [,

The spectrum is continuous and covers the positive real
axis with multiplicity one. We have

F{®(x, ty=exp(tK _,) f ¥ (%)

A =0,

or

F;:;)(x’ )= eXP(;ig‘i/t‘ll)(“ +2) (x)\)llz

i(x? +22) P2y
xexp( rray R OTHY

with (F{®, F{®)=5(n ~1). Expansions in the basis
{F{®} are equivalent to the inversion theorem for the
Hankel transform. The F{*® are basis functions for the
operator K,.

(5.17)

Each of our bases has continuous generating functions
of the form (3. 19) where now

_ expei(n/4)(p +2)
- 21t

i(x® + 9%) xy
xexp(———4t - Ju/2 El_tl

The overlap functions (f,", 7!/’) have the same
significance as in Sec. 4. Because of the simplicity of
the basis f{* the only overlap of interest is

@ cy_ 1 fTn+1+3p)22 L2 T(in/2+ u/4+ 1)
(fk,,’ fx )ZE poy I"(1+1§u,)
(5. 19)

k(x,y,1) (xy)t/?

(5.18)

(see Ref. 8).

X F (e B B, 1 1.
21(71,2 +4+2,1+2u,,2,

In particular, we notice that the overlap functions are
dependent on the representatives 7!, f/ that have been
chosen on each orbit. From this we see that the most
general way to define an overlap function is as the mixed
basis matrix element (f,”, U(g)f ‘") where g is a gen-
eral group element. This problem has been treated for

J. Math. Phys., Vol. 15, No. 10, October 1974

1737

the group SL(2, R), Ref. 27, where a corresponding
group parametrization has been given for each choice

of i#j in the above expression. In particular, the re-
sulting expressions for the mixed basis matrix elements
proved quite tractable to calculate and amounted to the
calculation of the mixed basis matrix element of a one
parameter subgroup in each case. We refer to the
original article®” for further details.
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