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Abstract

In the first chapter of this thesis I bring two well-known concepts from sociology and
network science into the literature on network games, by microfounding the notions
of the k-core and coreness. I show that these concepts arise naturally out of a simple
threshold game played on a network. I also analyse the stability properties of equilibria,
borrowing ideas from evolutionary game theory. The Pareto dominant equilibrium is
shown to be unstable and prone to unravelling, so vulnerable nodes in the network are
identified. This model can be applied to technology adoption decisions within firms and
user engagement in social networks.

The second chapter focuses on how firms manage public beliefs about the value of
their product. I use a ‘Bayesian persuasion’ approach to investigate how they might
optimally design a publicity campaign to maximise sales. The optimal campaign will
depend on the accuracy of private information, with more broadly focused campaigns
preferred when consumers are less certain of their valuation. I also look at how the
behaviour of external reviewers influences this decision. Reviewers have varying stand-
ards to pass their test and so I analyse the optimal reviewer in this context, highlighting
cases where buyers can prefer softer reviewers than sellers.

The third chapter unites these themes by examining how the internal structure of the
firm influences its ability to adapt itself to the external environment. Following Herbert
Simon, I assume that a major obstacle in this task is insufficient attention to the relevant
information. Since attention is a costly and scarce resource for employees, I examine
how their endogenous allocation of attention impacts the organisation’s performance.
I follow the ‘team theory’ approach to show that more broadly defined tasks exhibit
inertia in decision making, also relating this to recent empirical results regarding how
CEOs allocate their attention.
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Chapter 1

Network Games with Perfect

Complements

1.1 Introduction

A feature which characterises many of the decisions made by individuals, groups and

firms is the importance of coordination of our action with the actions of others. Co-

ordination problems of this sort are pervasive in economics and a recent literature has

developed which examines the role of the structure of an individual’s social network in

determining the likely outcome of such problems. These strategic complementarities in

action can often be imperfect, such as the case of investing effort in a team project, since

extra effort by one person may be an imperfect substitute for another person’s lack of

effort. In many other situations however, efforts are not substitutable and the benefits

derived will hinge on those who contribute least, a situation known in the literature as

perfect complementarity. For example, the benefit gained from socialising with friends

or co-workers is strictly limited by the socialising efforts of other individuals with whom

you interact.

Another example of where this assumption applies is to user engagement in online

social networks. Activity is costly in terms of time and generates content which is

non-rival but non-substitutable, as increasing activity beyond that of others does not

increase utility gained from interacting with others. Examples of this from within
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organisations could include the use of ’knowledge sharing’ tools such as collaborative

online workspaces, company wikis or document management systems, where content is

created at a private cost but is only beneficial for the user if others also contribute. The

model also applies to network goods and technology adoption more broadly, such as

individuals investing effort in learning a specialised technical language or a new piece

of software, with the hope of others using it.

In this model agents located in social network will invest in a capital or effort variable

which is privately costly but can provide benefits if their neighbours also invest. The

benefit accrued across any pairwise relationship between agents will depend on the

minimum investment made by either party. In terms of their best response functions,

individuals will decide to increase or decrease investment depending on the number of

neighbours who have put in weakly higher levels of investment, since benefits will be

determined by the least investment made by either party in a pairwise relationship.

The main contribution of the chapter is a characterisation of two salient equilibria

of the game in terms of well known concepts from the social network analysis literature.

The Pareto dominant equilibrium of the model is shown to depend on the coreness of an

individual in the network, a concept used first in the sociology literature. Coreness can

be regarded as a course measure of centrality, but it is distinct from other notions which

have preceded it in literature. In a well known model, Ballester et al. (2006) show players

in a linear-quadratic network game with linear best responses play equilibrium strategies

which depend on their ‘Bonacich centrality’. They therefore provide a ’microfoundation’

of a well known and widely use notion from the sociology literature. I provide a similar

microfoundation for another well known concept from the sociology and network science

literature by showing that it arises naturally from a threshold game played on networks.

I also look at equilibrium stability and identify nodes which can be targeted for

subsidies in order to prevent the more favourable Pareto dominant equilibrium from

unravelling. Finally, I characterise the most stable equilibrium of the game in terms of

a concept which is closely related to stochastic stability in the evolutionary game theory

literature. I show that the equilibrium of the game which can be expected to arise most

frequently in the long-run is related to a well known problem in computer science, known
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as the ‘densest subgraph’ problem. The contribution of this chapter therefore overlaps

into the multiple different disciplines, including sociology and computer science.

This model falls under the class of ‘threshold games’, since the optimality of a

particular effort level will depend on the number of individuals also playing that effort

level or higher. As we increase the effort level, a larger number of neighbours is required

to sustain this as an optimal decision. The main difference between the set-up of this

model and that of Young (1998) for example, is that costs are only incurred once at

the node level rather than at the edge level, and so thresholds for action depend on

the absolute number of neighbours playing a given strategy, rather than a proportion.

There will be a marked difference in equilibrium patterns of play as agents now wish

to coordinate, not with a small cabal of insiders, but with larger ‘core’ groups of the

network.

I now proceed with a review of the relevant literature on network games before

moving on to a description of the model. The following sections then solve for equilibria

and examine the stability properties of these equilibria.

1.2 Related Literature

The growing literature looking at games played on networks has been surveyed by

Jackson (2008) and more recently by Jackson and Zenou (2012), so I present a brief

summary of papers directly relevant to the present model.

The bulk of the literature examines the relationship between specific structural char-

acteristics of the network and Nash equilibria of complete information games.1 Earlier

models which examine the relationship between the structure of a social network and

the equilibria of coordination problems have often framed the decision as a binary one

e.g. adopt new technology/don’t adopt, revolt/stay at home, withdraw savings/don’t

withdraw etc. This chapter differs by examining how the structure of social interaction

may influence decisions in the case where one-off investments are made in a continuous

‘capital’ variable by individuals at private cost, and benefits are realised through pair-
1A notable exception is Galeotti et al. (2010) who develop a tractable model of equilibrium play

when knowledge of the network is incomplete.
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wise interaction with other individuals’ capital. In that respect, this chapter is most

closely aligned with the model of Ballester et al. (2006), but considers neighbouring

levels of investment to be perfectly complementary with one’s own level.

Several key contributions have identified a link between the network position of

agents and their equilibrium actions, with a particular focus on different measures of

network centrality. A foundational contribution to this literature is Ballester et al.

(2006), which was the first model to clearly identify the link between the equilibria

of games played on networks and some variant of the eigenvector centrality of agents.

In their model, the marginal utility from exerting effort is a linear function of their

neighbours’ efforts and costs are quadratic and privately borne. This gives rise to

best response functions which are linear in the actions of other agents and can be

solved uniquely by agents selecting their Bonacich centralities as efforts. Another model

which links an agent’s centrality in the network to their equilibrium action is Calvó-

Armengol et al. (2014). They consider a different setting in which agents may invest in

active and passive communication and have quadratic loss functions which are minimised

when actions are matched with their local state and the actions of others. Equilibrium

actions and communication efforts in their model are found to depend on a measure

of centrality named the Invariant Method index, which bears some similarity to the

Bonacich centrality measure.

A second strand of the literature on network games of strategic complementarity

which is related to the results presented in this chapter is that associated with so-called

‘threshold games’. A typical setting is one similar to that described by Granovetter

(1978) where a group of individuals face a collective action problem in the form of a

binary choice, e.g. either to strike or not to strike, but prefer only to take the action if

at least some threshold percentage of the group do the same. Differences in thresholds

can lead to cascading behaviours, where one individual switching strategy forces others

to switch, leading to yet more switching until a new equilibrium is reached. Similar

problems were also formally analysed in an earlier paper by Schelling (1973), who also

discusses some consequences of the spatial ‘configuration’ on cascades and equilibrium

outcomes.
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Chwe (2000) examines how the communication structure of a society might enable

individuals with heterogeneous thresholds to more easily coordinate on their preferred

equilibrium in such a setting. His model shows that optimal networks can be formed

from a series of interlocking cliques of agents, which allow all agents to take the risky

action by making all locally important thresholds common knowledge.

The model presented in this chapter is perhaps most closely related to that of Morris

(2000), who investigates the role of network structure in a binary decision threshold

game when the modeller is concerned about the robustness of decision making with

respect to contagion. Morris shows that only sufficiently inward looking groups of

nodes can be resilient to an invading cascades of failures which occur in other areas of

the network. The model of Young (1998) is also concerned with the structural conditions

which enable different regimes of play in different areas of the network and arrive at a

similar conclusion to Morris (2000).

Young (1998) also highlights a negative result with regard to the ability of any

network structure to prevent a risk-dominant equilibrium from prevailing as the unique

stochastically stable state of play. This is related to an earlier paper by Ellison (1993),

which also examines the robustness of equilibria in a stag hunt game to trembles in

decision making for some simple structures. The Ellison (1993) model has also been

extended to the setting where the network is endogenous by Jackson and Watts (2002),

who find that stochastically stable equilibria may arise which are neither risk-dominant

nor Pareto-dominant when agents can select who they are linked to.

1.3 Model

Let N be a finite set of individuals indexed by i = 1, . . . , n who are located on a

network g, where g is a set of links or edges such that (i, j) ∈ g implies that agent i

and j are connected in the network. I use g + ij to denote a graph g′ which is formed

from g plus the addition of an edge between nodes i and j, (i.e. g′ = g ∪ (i, j)). The

neighbourhood of an agent i is denoted by Ni (g) = {j ∈ N | (i, j) ∈ g} and their degree

given by di (g) = |Ni (g)|. The network is undirected so (i, j) ∈ g implies that agent
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j and i are connected. These individuals gain utility from interaction with others to

whom they are connected by selecting a level of activity xi ∈ [0, x̄] but incur a private

cost which is quadratic in xi.2 Unlike Ballester et al. (2006), who focus on linear best

response functions where actions are local complements but global substitutes, this

chapter considers the case where there is no substitutability in action across individuals.

Utility functions therefore take the form

ui (x1, . . . , xn) =
∑
j∈Ni

min {xi, xj} −
1
2x

2
i

The utility function is strictly concave and continuous in xi and so achieves a unique

maximum on [0, x̄] given a profile of the others’ actions x−i. Since the gross benefit

from raising xi increases linearly with the number of neighbours playing strictly higher

levels of effort, let N ′′i (xi, x−i) denote the set {j ∈ Ni | xj > xi} and let N ′i (xi, x−i)

denote {j ∈ Ni | xj ≥ xi} . Accordingly, let d′i (g, x) ≡ |N ′i (xi, x−i)| and d′′i (g, x) ≡

|N ′′i (xi, x−i)|.

This specification of utilities gives rise to a ‘threshold game’ where xi can be a best

response to x−i only if the number of neighbours playing weakly higher effort is at least

xi, or only if

xi ≤ d′i (g, x) (1.1)

If this were not the case, then decreasing xi lowers utility linearly along d′i (g, x)

links, but lowers cost at rate xi. Furthermore, since there is no substitutability in

effort, increasing xi brings benefits only along those links where agent i is pivotal (i.e.

where xi < xj). Therefore, a best response xi must also satisfy a second condition

xi ≥ d′′i (g, x) (1.2)

2I assume throughout that x̄ ≥ maxi∈Ndi (g)
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This second condition ensures that raising xi cannot be beneficial and taken together

with (1) these two sufficient conditions characterise the unique best response. The main

difference between these conditions and those from other threshold games on networks is

that optimal actions depend on the absolute number of neighbours playing a (weakly)

higher action, rather than a proportion of a neighbourhood, since investment cost is

split across all neighbours.

Since all players are best responding in equilibrium, the level of investment which can

be sustained for agent i in equilibrium will depend not only on the number of neighbours

playing a weakly higher action but also on the number of neighbours’ neighbours who

play a weakly higher action. This clearly implies that for a given agent to sustain a

high xi in equilibrium we require not only that they be highly connected, but that

their neighbours and neighbours’ neighbours be highly connected. As later results will

demonstrate, dense and cohesive subgroups of the network will find it easier to sustain

higher levels of investment in equilibrium.

1.3.1 Cohesive Subgroups

Notions of group cohesiveness in social networks have long been studied in the sociology

literature and there are many intuitive concepts such as cliques, clans and clubs which

are defined in standard texts such as Wasserman and Faust (1994). A variant of these

which has been used in the economics literature is the notion of a p-cohesive subset,

defined in Morris (2000). Formally, a subset of nodes is said to be p-cohesive if every

node within that subset has (at least) a proportion p of their neighbours within that

subset. A related idea is also found in Young (1998) where a subset of nodes S is called

r-close-knit if for every S′ ⊆ S the proportion of links originating in S′ and ending in S

is at least r. Intuitively, p-cohesiveness is a condition on the degrees of nodes, whereas

r-close-knittedness is a condition on links within a subgroup and therefore a p-cohesive

subgroup is p/2-close-knit.

This chapter will employ a particularly useful concept originally defined by Seidman

(1983) known as the k-core. Seidman (1983) considers subgraphs of g which can be

induced by repeatedly pruning nodes of low degrees from the network in order uncover

7



1-core 2-core 3-core

Figure 1.1: The k-cores of a Network

groups of densely connected individuals. The graph which is obtained by iteratively

removing all nodes of degree less than k is known as a core of order k, or a k-core.3

For any subgraph gk ⊆ g, I will use Nk to denote the set of agents who have a strictly

positive degree in that subgraph. A precise definition of a k-core of a graph g now

follows:

Definition 1.1. A k-core of a graph g is a subgraph gk ⊆ g such that di (gk) ≥ k for

each i ∈ Nk.

A k-core is therefore a subgraph of g where every agent with positive degree in that

subgraph has at least degree k. When I state that a group of nodes ‘form’ a k-core,

this means that the subgraph consisting of these nodes and links between them is itself

a k-core. If an agent i is contained within a k-core then this implies that they have at

least k neighbours of degree k or greater.

Every connected graph trivially contains a 1-core, whilst the 2-core which can be

formed using the least possible number of edges is the ring network. Also note that the

definition implies that nodes belonging to k-cores of high orders are also members of

lower orders, permitting a nested k-core decomposition of any given network. Figure

1.1 shows such a k-core decomposition of a graph for 1 ≤ k ≤ 3.

There have been a number of applications of the concept of the k-core outside

of economics, for example, in the analysis of protein networks in bioinformatics (e.g.
3Seidman (1983) in fact refers to the k-core as maximal subgraph which can be obtained by iteratively

removing nodes of lower degree. I follow Wasserman and Faust (1994) and the more recent literature
by referring to any core of order k as a k-core.
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Bader and Hogue (2003) and Wuchty and Almaas (2005)) and in the visualisation of

large networks in computer science (e.g. Baur et al. (2004)).

Since cores of successive orders are nested within the previous core we can define a

coreness value for each i ∈ N :

Definition 1.2. A node i ∈ N has coreness ci(g) = k if it is contained in a core of

order k but not in a core of order k′ for k′ > k.

The coreness of a node can be interpreted as a coarse measure of its centrality, as

we can view it as a condition on its degree centrality and the degree centrality of other

nodes in their neighbourhood. Nodes with high coreness are likely to have important

roles in the network since they have neighbours with high degrees (who in turn have

neighbours with high degrees, etc). High coreness can often indicate that a given node

is a member of a dense and cohesive subset of the network, since cliques of size n

immediately form an (n− 1)-core. The vector of coreness for all agents i ∈ N will be

denoted by c(g) = (c1(g), . . . , cn(g)).4 Although the coreness profile of a network can

give an indication of dense subsets of g, more information will be needed to establish

cohesiveness of the network as a whole (e.g. the links between different cores).

As can be seen in the example in Figure 1.2, the coreness of individual nodes can

depend on structural characteristics of the network which are relatively ‘far away’. In

this example, the addition of a single link between the remaining pair of nodes with

degree 2 would raise the coreness of all nodes to 3. Although adding a link can increase

the corenesses of distant nodes, the following lemma shows that increases in the coreness

of any given node can be at best be directly proportional to increases in their degree.

Lemma 1.1. cl (g + ij) ≤ cl (g) + 1, ∀l ∈ N ,∀ij.

Proof. All proofs are contained in the Appendix.

Adding an edge between i and j can increase ci and cj by at most 1. Although

the removal of one link can have a cascading effect which influences all nodes (e.g the

transition from ring to line network), we can also interpret Lemma 1.1 as saying that the
4In what follows I refer to each agent’s coreness in the network g as simply ci. I will indicate by

using ci(g′) when considering subgraphs of g.
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Figure 1.2: Coreness Profile of a Bridge Network

removal of an edge ij cannot lower the coreness of any agent in the network by more

than 1. With these definitions in hand, I now discuss the properties of equilibrium

action profiles.

1.3.2 The Pareto Dominant Equilibrium

Now that the coreness of nodes has been defined, the model can be solved for action

profiles x ∈ X = [0, x̄]n which constitute a Nash equilibrium of the game Γ = 〈N,X, u〉.

The game will have multiple equilibria and so I focus in this section on the Pareto

dominant Nash equilibrium. An observation which can be made immediately is that Γ

is a supermodular game.5 Since the game Γ is supermodular, the results of Milgrom

and Roberts (1990) show us that firstly a greatest and least equilibrium must exist, and

secondly, if x and x′ are equilibria of Γ where x > x′ then x Pareto dominates x′. These

statements follow directly from Theorems 5 and 7 (respectively) of Milgrom and Roberts

(1990).6 Since the set of equilibria of a supermodular game forms a complete lattice

(Zhou, 1994), this immediately implies that the greatest equilibrium Pareto dominates

all others. With the existence of a Pareto dominant equilibrium established, we can

now characterise this equilibrium in terms of the coreness of agents.

Proposition 1.1. The Pareto dominant Nash equilibrium of Γ is x∗ = c(g)
5Firstly, the strategy set X = [0, x̄]n is a complete lattice using the usual partial order x > x′ if

xk ≥ x′k for all k = 1, . . . , n. By the definition of Milgrom and Roberts (1990), the game is supermodular
since ui has increasing differences in (xi, x−i), ui is supermodular in xi for fixed x−i, and ui is upper
semi-continuous in Xi and order continuous in X−i with a finite upper bound.

6The existence of an equilibrium can be trivially established since xi = 0 for all i is always an
equilibrium.
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Intuitively, a coreness of ci for agent i guarantees that they have at least ci neigh-

bours, who have at least ci neighbours, etc, who could feasibly play ci in equilibrium.

Furthermore, having coreness ci implies that xi > ci can never be played in equilibrium

as there is an insufficient number of supporting nodes along paths from i. Supermod-

ularity allows us to infer that the equilibrium where x∗ = c is Pareto dominant, since

it is maximal in terms of investment. The reader can also use the supermodularity

property to verify that beginning with action profile x̄ = (x̄, . . . , x̄) and iterating the

best responses of agents we arrive at xi = ci for all i, implying that x∗ = c(g) is the

maximal equilibrium (see Milgrom and Roberts (1990)).

Proposition 1.1 therefore establishes a link between the centrality of a node in the

network and the effort levels in the Pareto dominant equilibrium of this threshold game.

A question which naturally arises is whether there is some relationship between coreness

and the Bonacich centrality measures which play a key role in the models of Ballester

et al. (2006) and Ballester and Calvó-Armengol (2010).

The Bonacich centrality of a node defined in Bonacich (1987) measures the number

of paths of all lengths which originate at node i, weighted by a decay factor δ which

decreases with the length l of the path. Formally, let G be the adjacency matrix of

network g and define the Bonacich centrality of a node i as bi =
∑∞
l=0 δ

l∑
j∈N g

l
ij where∑

j∈N g
l
ij is the sum of all paths of length l from i, (i.e. the sum across the ith row of

Gl). The Bonacich centrality is finite whenever δ < 1
|λmax(g)| where |λmax (g)| is the

absolute value of the largest eigenvalue of G. This condition ensures that the sum does

not grow too quickly as we iterate on powers of G.

Since coreness says something about the number of paths of different lengths which

originate at i, is it generally the case that ci ≥ cj implies that bi ≥ bj? The answer turns

out to be ‘no’, but we will be able to put a lower bound on the Bonacich centralities of

nodes.

Proposition 1.2. If node i has coreness ci (g) = k then

bi (g, δ) ≥ 1
1− δk (1.3)
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Node Coreness Bonacich Centrality Bonacich Centrality
(δ = 0.1) (δ = 0.25)

3 3 1.620 10.298
5 3 1.486 8.696
6 3 1.621 10.186
9 2 1.700 7.615

Figure 1.3: Coreness and Bonacich Centralities of Nodes in a Bridge Network

This bound is tighter when δ is low and the proof of Proposition 1.2 demonstrates

that when g itself is a regular graph then (1.3) is met with equality. Although nodes

with higher coreness will usually have higher Bonacich centralities this is not always the

case, as demonstrated in Figure 1.3. Since the degree of node 9 in Figure 1.3 is greatest

we find that b9 (g, δ) > bj (g, δ) for any other j ∈ N when δ = 0.1, since the paths of

length 2 are weighted less by a factor of 10 when compared with paths of length 1.

1.3.3 Other Nash Equilibria

The extreme complementarity of actions in this model often results in multiple Nash

equilibria. For example, the reader will notice that the profile (0, 0, . . . , 0) is always an

equilibrium in any network. In fact, the game will have infinitely many Nash equilibria

for any non-empty network.7 This result is a consequence of the perfect complementarity

assumption. The fact that each agent’s effort cannot be used as in imperfect substitute

for another agent’s lack of effort leads to an inertia for a large number of action profiles.

Figure 1.4 illustrates three equilibria for the network presented earlier in Section 3. The
7To show this, pick any equilibrium x > 0 and consider the subset of agents playing highest effort

in that equilibrium. Reducing xi by a sufficiently small ε for each agent in this subset must also be a
Nash equilibrium as conditions (1.1) and (1.2) must still hold. Similarly, if x = 0 then increasing the
effort of all agents by a sufficiently small ε is also an equilibrium.
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Figure 1.4: Some Equilibria of the Game for the Network in Figure 1.1

first panel shows the Pareto best equilibrium which is given by the coreness profile,

whereas the final panel shows a Pareto inferior equilibrium. Observe that there are

some equilibria where those with lower coreness play higher action in equilibrium.

Any action profile where each xi lies in the interval [d′′i (g, x) , d′i (g, x)] for each i

will be a Nash equilibrium, yet some equilibria may seem more stable than others.

In particular, in any graph, the equilibrium profile (0, 0, . . . , 0) requires only one node

to deviate upwards to cause a cascade of increases, whereas this is not necessarily

the case for equilibrium profile (1, 1, . . . , 1). This discussion highlights the fact that

some equilibria may be more stable in the face of random shocks than others. It also

therefore motivates a closer look at the stability of the Pareto dominant equilibrium

and an attempt to refine some the predictions of the model.

1.4 Stable Equilibria

The focus so far on the Pareto dominant equilibrium x∗ can be justified when consid-

ering environments which allow some degree of pre-play communication or third party

mediation. Since actions are complements, it is in all agent’s interests to coordinate

on the Pareto dominant equilibrium. However, without communication or mediation

it may seem unlikely that individuals could tacitly coordinate on the Pareto domin-

ant equilibrium, especially if n is large. Furthermore, if tacit coordination is somehow

achieved, then the question of stability of x∗ with respect to random shocks to actions

is also raised. The removal of a single link from the network can lead to a cascade of

falling coreness values for all nodes in the network. In a similar manner, a temporary

13
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Figure 1.5: An Unstable Equilibrium

shock to the action of certain critical nodes in the network may result in a sequence of

best responses which do not return to the original equilibrium x∗.

Take the example in Figure 1.5, the coreness of all nodes in the network is ci = 2

but the sequence of best responses following a temporary drop in the action of any

node would converge to a new equilibrium where xi = 1 for all i. A Pareto dominant

equilibrium such as the one displayed in Figure 1.5 could not reasonably be considered

stable in an environment where decisions are subject to infrequent random shocks.

To study the stability properties of equilibria in this game I now examine two envir-

onments. In the first, I examine the properties of networks where the Pareto dominant

equilibrium is stable when encountering rare and isolated shocks to individual actions.

Following this I will also apply a common refinement technique for similar ‘minimum

effort’ games which uses the potential function to select equilibria which are most likely

to be observed in the long run in the presence of persistent random shocks.

1.4.1 Stability of the Pareto Dominant Equilibrium

The notion of stability used in this subsection will be based on the convergence of

sequences of best responses following a unilateral shock to some agent i ∈ N . A shock

to equilibrium profile x is a profile x̂ ∈ X such that x̂i = xi + ε for exactly one

i ∈ N and x̂i = xi for all other j ∈ N , where ε ∈ [−xi,∞). Following a shock,

assume that play evolves over discrete time periods t = {0, 1, 2, . . . } and define the

best response dynamic as a sequence
{
xt
}
in X such that for each i ∈ N we have

that xt+1
i = argmaxxi∈Xi ui

(
xi,xt−i

)
. An equilibrium profile x will be considered stable

against unilateral shocks if this sequence of myopic best responses returns to x following

any shock x̂.

14



Definition 1.3. A profile x is stable against unilateral shocks if for any shock x̂, the

sequence of myopic best responses with initial condition x̂ converges to x

Focusing on the Pareto dominant equilibrium x∗, we need not consider positive

shocks to this profile as the supermodularity of Γ will guarantee that all resulting

sequences of best responses converge back to the largest equilibrium x∗. As I am

interested in the stability of x∗, I therefore restrict attention to cases where ε ∈ [−x∗i , 0].

Recall that gk denotes a subgraph of g such that di(gk) ≥ k for all i ∈ Nk. For a

given i ∈ N with coreness ci(g) = k, let Gi be the intersection of all subgraphs gk ⊆ g

such that ci(gk) = ci(g).

Definition 1.4. A node i is critical for a node j, written i→ j, if (i, j) ∈ Gj

If i → j then the removal of edge (i, j) from the network will lower the coreness

of node j. Moreover, if i 6→ j then (i, j)’s removal cannot lower j’s coreness as there

exists a subgraph g′ such that cj(g′) = cj(g) but (i, j) /∈ g′. Note that there is always

at least one critical node in any network, since dj(g) = cj(g) for some j ∈ N , all i ∈ Nj

are critical for j, since the removal of any link (i, j) ∈ g will lower j’s degree and hence

their coreness.

Using the relation → it is possible to construct a directed graph ĝ where (i, j) ∈ ĝ

if and only if (i, j) ∈ g and i → j. The directed graph ĝ is non-empty and identifies

transmission paths of shocks which may propagate through the network as a result of

the temporary lowering of the action of a given node. Since this graph is directed, it

becomes necessary to define in-degrees and out-degrees for nodes in this network. I

therefore use d+
i (ĝ) to denote the in-degree of a node in ĝ, and d−i (ĝ) to denote their

out-degree, with corresponding neighbourhoods N+
i (ĝ) and N−i (ĝ).

We can also define a directed graph using the non-critical links, denoted by ḡ where

(i, j) ∈ ḡ if and only if (i, j) ∈ g but i 6→ j. A high out-degree for a node i in ḡ will

imply that there are a large number of neighbours who will not lower their action, even

if i does. As will be shown, this will play a crucial role for the stability of an equilibrium

action profile x. Before stating the proposition in full, let c−i (ḡ) denote the out degree

coreness of a node i in graph ḡ in an analogous manner to the undirected degree coreness

15



g ĝ ḡ

Figure 1.6: Stable Coreness Profile

measure from Section 1.3.8

Proposition 1.3. The equilibrium x∗ = c(g) is stable against unilateral shocks if and

only if ci(g) = c−i (ḡ) for all i ∈ N

Proposition 1.4 states that if there is a core whose members mutually support each

other following a shock then this core is stable. Intuitively, it is a high out degree in ĝ

which prevents the action profile from converging back to x∗ following a shock, as i’s

lower effort simultaneously causes the efforts of many neighbours to fall, preventing i

from reverting back to xi in later periods.

An alternative interpretation of Proposition 1.4 is that if we wish to protect certain

nodes in the network from shocks or perhaps subsidise their efforts, then we should

target those where ci(g) > c−i (ḡ). If these nodes receive a shock to their action then

this will lead to failures of other nodes which cannot be recovered from. If we wish

to avoid even temporary disruptions to the action profile x∗ then we should protect

or subsidise all critical nodes in the network, since it is only these nodes which can

propagate the initial shocks.

1.4.2 The Potential Maximising Equilibrium

The setting for the previous subsection has assumed that shocks are infrequent and

idiosyncratic, and so the issue of correlated shocks or persistent randomness actions has

yet to be addressed. It should be noted that since there is a continuum of equilibria
8That is, c−i (ḡ) = k for i ∈ N if and only if there exists a directed subgraph ḡk ⊆ ḡ such that

d−i (ḡk) ≥ k and d−j (ḡk) ≥ k for all j where d−j (ḡk) > 0, but no such subgraph exists for k + 1.
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in the model, standard refinement techniques such as Nash tattonement (Bramoullé

and Kranton, 2007) or asymptotic stability cannot be of use, since for any equilibrium

x there always exists another within any arbitrarily small neighbourhood. With this

in mind, I now discuss a refinement which has been successful for similar games in

the experimental economics literature, and which takes into account some notion of

persistent shocks to actions.

Experimental studies in Van Huyck et al. (1990), Goeree and Holt (2005), Chen and

Chen (2011) and others9 have identified the remarkable effectiveness of the potential

function as a tool for equilibrium selection in ‘minimum effort’ coordination games. Des-

pite the infinite number of equilibria, these studies demonstrate that the Nash equilibria

which maximise the potential function of the game tend to be observed experimentally

for a variety of parameters. Crawford (1991) puts forward an evolutionary explanation

of these results, which is further strengthened by Anderson et al. (2001), who show

that the distribution of strategies in the logit equilibrium maximises their stochastic

potential function.

For games with discrete action sets, Blume (1993) has also shown that set of

stochastically stable equilibria under the logit best response dynamic is equal to the

set of potential maximizers as noise levels tend to zero. As noted by Goeree and Holt

(2005), one can view the potential maximizing equilibria as being a close analogue of

the stochastically stable equilibria for the case of continuous action sets, since the po-

tential maximizing equilibria have the largest basin of attraction for an important class

of evolutionary dynamics (see Sandholm (2010)).10

As defined by Monderer and Shapley (1996), an exact potential function of a game

is a function ρ : X → R such that ∀xi, x′i ∈ Xi and ∀x−i ∈ X−i

ρ (xi, x−i)− ρ
(
x′i, x−i

)
= ui (xi, x−i)− ui

(
x′i, x−i

)
, (∀i ∈ N)

It is readily checked that an exact potential function for the game Γ is given by:
9See Appendix F of Chen and Chen (2011) for details.

10For a suitably discretised version of the game, the equilibria which maximise the potential function
coincide with the stochastically stable equilibria under the logit learning dynamic. See Blume (1993)
and Young (1998).
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ρ (x) =
∑

(i,j)∈g
min {xi, xj} −

1
2
∑
i∈N

x2
i (1.4)

Any action profile which maximises ρ in each coordinate direction is also a Nash

equilibrium and so the set of profiles which globally maximise ρ are a subset of these

equilibria. I now use the potential function as a tool for equilibrium refinement, as

first suggested by Monderer and Shapley (1996). The results of Blume (1993) and

Young (1998) have shown that in games with discrete actions, the action profiles which

maximise the potential function are the only stochastically stable outcomes of the game.

Therefore, I study the set of profiles x which globally maximise ρ (x), viewing this as

an approximation to the stochastically stable outcome of the game, if it were suitably

discretised.11

Notice that the potential function in (1.4) necessarily inherits the properties of the

utility functions ui (e.g. it has increasing differences in xi). The following lemma shows

that it is also supermodular and strictly concave on X.

Lemma 1.2. The potential function ρ is:

(a) Supermodular on X

(b) Strictly concave on X

Since the ρ is a supermodular function defined on a lattice we can establish that a

maximum exists (Topkis (1998)) and so the potential function ρ has a unique maximum

given strict concavity.

In order to find the potential maximising equilibrium I take advantage of the hier-

archical nature of the equilibrium profiles. The optimal actions of those playing the

largest xi in equilibrium cannot be influenced by the actions of those playing strictly

lower xi, since only those playing the lowest xi along any edge (i, j) are pivotal. This

fact can be exploited to find the Nash equilibrium which maximises the potential func-

tion ρ by first partitioning the set of agents N according to their equilibrium actions in

the potential maximising profile x̃. Therefore, given a profile x̃, let {S̃1, . . . , S̃K} be a
11The use of stochastic stability as a refinement tool is common in the literature, however the concept

of stochastic stability has yet to be extended to the case of continuous actions.
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partition of N such that i ∈ S̃k and j ∈ S̃k if and only if x̃i = x̃j , indexing these subsets

in descending order of their equilibrium action. Let g̃k ⊆ g denote the subgraph such

that (i, j) ∈ g̃k if and only if i ∈ S̃k and j ∈ S̃k′ for k′ ≤ k.

Focusing on the subset of agents who are in S̃1, their optimal decision does not

depend on the actions of agents in other subsets of N . The equilibrium actions of S̃1

are only pivotal along links to other members of S̃1, so we may optimise for members of

S̃1 whilst ignoring the actions of other subsets. Setting x̃i = x̃j ≡ x̃1 for i and j ∈ S̃1,

the maximisation problem becomes

max
x1

∑
(i,j)∈g̃k

|g̃1|x1 −
∣∣∣S̃1
∣∣∣ 1

2x
2
1

The solution to this maximisation problem is x̃1 = |g̃1|
|S̃1| . At the optimum, an agent

in S̃2 is pivotal in along all links with others S̃2 and links to those in S̃1,and so applying

a similar logic for S̃2 we get x̃2 = |g̃2|
|S̃2| . In general for S̃k we have

x̃k = |g̃k|∣∣∣S̃k∣∣∣ (1.5)

The profile x̃ therefore gives a candidate maximiser of ρ. However, in order to charac-

terise the partition {S̃1, . . . , S̃K} I must first introduce another piece of terminology.

In a similar manner to a k-core, let D (k) ⊆ g denote the largest subgraph of g

such that |D(k)|
|ND(k)| ≥ k for k ∈ R+.12 Intuitively, this means that D (k) is the largest

subgraph such that the average degree of nodes in that subgraph is at least k. Whereas

the definition of a k-core placed a restriction on the minimum degree of nodes in a

subgraph, we now place a restriction on the average degree of nodes in the subgraph.

Furthermore, like the k-core decomposition from Section 1.3.1, we can use the set of all

such D (k) to construct a density decomposition of G, since all such D (k) are nested

within subgraphs of lower densities.13 For each i ∈ N , let δi be the largest k such that
12Largest in this case means there does not exist an alternative D′ (k) ⊆ g such that D (k) ⊂ D′ (k).

Note that D (k) is unique, otherwise we could take the union of the two or more subgraphs which satisfy
this property.

13To see why k′ > k implies that D (k′) ⊆ D (k), observe that if we had subgraphs D(k) and D(k′)
where D (k′) 6⊆ D (k) for k′ > k, then taking the union of these two graphs gives us a graph with average
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i ∈ ND(k) for some D (k) ⊆ g and then define the density decomposition of g as follows:

Definition 1.5. A density decomposition of a graph g is a partition D = {D1, . . . , DK}

of N such that i ∈ Dk and j ∈ Dk if and only if δi = δj

Using Definition 1.5, I index the subsets of this density decomposition in descending

order of their induced subgraph densities. Finding the density decomposition of the

network is closely related to a similar problem in the computer science literature as the

densest k subgraph problem. This was studied first by Goldberg (1984), who examines

the problem of finding the densest subgraph which can be induced using only k nodes.

He shows that this can be solved by using a version of the celebrated max-flow min-cut

theorem from studies of network flows. My problem is similar, in that I am looking for

a hierarchical decomposition of the network in terms of subgraph density.

Using this definition, I now characterise the Nash equilibrium profile x̃ which max-

imises the potential function ρ:

Proposition 1.4. The potential maximising action profile induces a partition {S̃1, . . . , S̃K}

of N such that x̃i = |g̃k|
|S̃k| for each i ∈ S̃k, where {S̃1, . . . , S̃K} is the density decomposi-

tion of g.

Whilst the Pareto dominant equilibrium partitioned nodes into nested subgraphs

based on minimum degree, the potential maximising equilibrium partitions nodes into

nested subgraphs based on average degree. In the potential maximising equilibrium,

agents in the densest subgraph of g will play the highest action, followed by those in

the second most dense subgraph, followed by those in the third, and so on. Since costs

are incurred at nodes but benefits are received along edges, agents in subgraphs which

have a large number of edges spanned by a small number of nodes (i.e. high density)

should be expected to play higher equilibrium actions.

An example of a potential maximising equilibrium is shown in Figure 1.6. The

densest subgraph of the network displayed in Figure 1.6 is the subgraph formed by

nodes in A. This subgraph has a mean internal degree of 3.25, and so their equilibrium

effort is x̃A = 13
8 = 1.625. The subgraph formed by nodes in A ∪ B is the second most

degree that exceeds k, and therefore contradicts the definition of D (k).
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Figure 1.7: Density Decomposition and Potential Maximising Partition

dense in g and so agents in B play x̃B = 9
6 = 1.5. Finally, the network as a whole is the

third most dense and so agents in C play x̃C = 1. It is worth noting that agents with

the higher corenesses do not necessarily play higher actions in the potential maximising

equilibrium. In Figure 1.6 there is a subset of agents in B with coreness 3 who play a

lower action than the subset of agents in A with coreness 2.

1.5 Socially Efficient Networks and the Price of Stability

I now consider the features of networks which maximise equilibrium effort and over-

all welfare. Considering first the case where a network designer can costlessly add

edges between nodes, it is worth noting that each utility function ui (xi,x−i) displays

increasing differences in its own degree di.14 Similarly, the potential function ρ also

exhibits increasing differences in the vector of degrees d. A straightforward applica-

tion of Theorem 2.8.1 from Topkis (1998) shows that if di (g) ≥ di (g′) for each i then

x∗ (g) > x∗ (g′) and x̃ (g) > x̃ (g′). Although it is obvious that the coreness of nodes

cannot decrease by adding more links to a network, the impact on the density decom-

position is perhaps less clear. The application of Topkis’s theorem therefore means that

the complete network will always permit the highest action profile in either the Pareto

dominant or potential maximising equilibrium.

Defining a utilitarian social welfare function U (x) =
∑
i∈N ui (x) we can examine the

14In other words, fixing the profile of others’ actions at x−i ∈ X−i, ui (xi,x−i, di)− ui (x′i,x−i, di) ≥
ui (xi,x−i, d′i)− ui (x′i,x−i, d′i) for xi > x′i and di > d′i
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difference in welfare between the social optimum and Pareto dominant Nash equilibrium

x∗. As shown in Proposition 1.6 below, in the special case of perfect complements, the

Pareto dominant Nash equilibrium also maximises social welfare for a subset of networks.

Proposition 1.5. The Pareto dominant Nash equilibrium maximises social welfare if

and only if the network is a regular graph

When the network is regular (i.e. di (g) = dj (g) for all i and j) then a network

designer can implement the socially optimal level of effort in equilibrium without re-

sorting to transfers of any kind. In order to find the socially optimal profile of action for

any network it is possible to directly apply this ideas from Section 1.4.2 since U (x) has

an almost identical structure to ρ (x). It is straightforward to verify that the optimal

solution will again depend on the density decomposition of G and will result in efforts

such that xk = 2 |D(k)|
|ND(k)| for each k ∈ {1, . . . ,K}.

A social planner may be interested in how the divergence between Nash and socially

optimal outcomes varies across different types of networks. This issue is examined

using a concept known as the price of stability, which is defined as the ratio of the total

utility surplus in the best Nash equilibrium to the total surplus at the social planner’s

optimum.15

As demonstrated in Proposition 1.5, the price of stability PoS ≡ U (x∗) /maxx∈XU (x)

is equal to 1 in the case of complete networks and so the decentralisation of decisions

to agents leads to no loss of welfare. However, this is only true for regular networks. As

is shown in the next proposition, the price of stability is bounded below by 3
4 .

Proposition 1.6. The price of stability lies in the interval (3
4 , 1].

As shown in the proof of Proposition 1.6, the lower bound of 3
4 is achieved in the

limit for a star network with a very large number of spokes. The price of stability in this

game can be viewed as a measure of the redundancy of links in the network. Whilst the

total surplus achievable by a social planner depends on the density decomposition of the

network (i.e. the average degrees of subgraphs of the network), the surplus achievable
15A related concept known as the price of anarchy is defined as the ratio of the surplus in the worst

equilibrium to that of the social optimum. This is 0 for all networks as xi = 0 for all agents is always
stable.
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in the best Nash equilibrium depends on the core decomposition (i.e. the minimum

degrees of these subgraphs). Thus, when there is a large disparity in the degrees of

agents within each of the subgraphs induced by D then the price of stability is close to
3
4 since the average degree may be high relative to the minimum degree. On the other

hand, when the price of stability is close to 1 this implies that the average degree and

the minimum degree of nodes within each of the subgraphs induced by D is very close.

With reference to the results on equilibrium stability in Section 1.4, although re-

dundant links increase the stability of the best equilibrium in the face of random shocks,

they also increase the PoS and so reduce the benefit from decentralising decisions to

individual agents. Therefore, a trade off exists from the perspective of a network de-

signer as redundant links may be costly to maintain (both in terms of a link cost and

the PoS), yet they bring stability with them.

1.5.1 Socially Efficient Networks with Linear Link Costs

I now consider the case where the maintenance of edges incurs a link cost γ which

is linear in the degree of each agent. Assuming that equilibrium x∗ is played, does

the addition of link costs imply that networks other than the complete network might

be optimal from the perspective of the network designer? Substituting in the Pareto

dominant equilibrium actions x∗i = ci the problem for the network designer is

max
g∈G

∑
i∈N

∑
j∈Ni

min (ci, cj)−
1
2c

2
i − γdi

Although networks in which agents have high coreness will produce larger surpluses,

higher cores will require a larger number of links to construct. The structure of the

optimal network will depend on the rate at which the number of links needed increases as

we increase the coreness of agents in the graph. However, as Proposition 1.7 shows, this

effect does not dominate the benefit received from increasing coreness and so complete

networks will be optimal provided the link cost is low enough:

Proposition 1.7. The optimal network with linear link cost γ is the complete network

if γ ≤ 1
2 (n− 1) and the empty network if γ ≥ 1

2 (n− 1)

The intuition for this result is that we can ensure that n agents have ci = k by
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constructing a k-regular graph using dn·k2 e links. Therefore the marginal cost of in-

creasing the coreness for these n agents is approximately constant in k (ignoring integer

problems) and is given by

γ

(
dn (k + 1)

2 e − dnk2 e
)

=



γ n2 if n even

γdn2 e if n odd and k even

γbn2 c if n odd and k odd

(1.6)

Since the benefits from raising ci are increasing in k this indicates why the optimal

network must be the complete network.

1.6 Conclusion

This chapter has provided an analysis of the equilibrium properties of games played

on networks where agents’ actions are perfect complements. I show that well known

concepts from the sociology and network science literatures arise naturally out of a

simple game of perfect complements played on networks. This chapter can therefore be

seen as providing a ‘mircofoundation’ for the concepts of the k-core (Seidman, 1983), (a

measure of subgroup importance), and the related concept of coreness (a coarse measure

of centrality).

The first main contribution of the chapter is therefore a characterisation of actions

in the Pareto dominant equilibrium using the notion of coreness. However, as I show in

the chapter, the Pareto dominant equilibrium can be unstable and prone to unravelling

for certain networks. I therefore examine which nodes are more vulnerable to shocks

and hence identify where the resources of a social planner can be best directed in order

to ensure high actions in equilibrium.

I also analyse which equilibria are most likely to persist, in the long-run, in the face

of continual perturbations to actions. Relating this to the concept of stochastic stability

from evolutionary game theory, I characterise the potential maximising equilibrium for

this game and relate it to a well-studied problem in computer science, known as the
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‘densest subgraph’ problem. Whilst the Pareto dominant equilibrium induces a nested

decomposition of the network based on the minimum degree of nodes, I show that

the potential maximising Nash equilibrium of the game provides a decomposition of

the network based on their average degree. Agents who are members of the densest

subgraph (in terms of average degree) will play the highest action in this regime.

Although the setting is related to that of a ‘threshold game’, the results presented

here differ from those of Morris (2000) and Young (1998), and give new insights into the

structural factors which may influence equilibrium decisions. In an exogenously given

network, agents who are located in dense but large subgroups will select high levels of

investment. Peripheral nodes who inhabit sparsely connected areas of the network will

be unable to support high levels of investment even if they have high degrees themselves.

Future work may wish to further consider the role of a social planner in targeting

nodes or links to subsidise. For example, a designer could pay a given node to increase

their effort, raising the actions of others in equilibrium. Considering nodes who have

coreness ci but are first to be removed in the iterative pruning process used to uncover

the ci + 1 core, transfers could be provided to these nodes to increase their efforts and

hence sustain a higher equilibrium. Alternatively, a social planner could wish to identify

particular links which, if added, would bring the greatest increase to the coreness of

agents. Similar questions have been addressed in Bhawalkar et al. (2012) and remain

an open area for study.
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Appendix - Proofs

Proof of Lemma 1.1. First note that adding an edge cannot lower the coreness of

any node in the network. Now suppose that edge (i, j) increased ci from k to k + m

for some m ≥ 2, this implies that i now has at least k + m neighbours with coreness

k + m in the network g + ij. However if we remove this newly added edge this would

leave i with k + m − 1 neighbours with at least coreness k + m − 1, contradicting our

assumption that ci was initially k in g.

To prove for l 6= i, j, suppose again that edge (i, j) raised cl from k to k + m for

some m ≥ 2. Focusing on the subset K ⊆ N who form the largest k-core in g, we can

notice that if either i or j were members of this k-core, then their degrees have only

increased by 1 in g+ ij and, as established, their coreness increases by at most 1. Since

ci (g + ij) ≤ k+1 and cj (g + ij) ≤ k+1, they cannot form part of the new (k +m)-core

needed to support cl (g + ij) = k + m. If i and j were not members of K ⊆ N then

dκ (g) = dκ (g + (i, j)) for all κ ∈ K and hence cl (g) = cl (g + ij).

Proof of Proposition 1.1. I first show that x∗ = c(g) is an equilibrium. Partition

the agents into subsets {S1, S2, . . . , SK} based on their coreness such that ci = k for all

i ∈ Sk. Take the set of agents with the largest coreness SK , since subset are indexed by

their coreness, there must exist a connected graph of at least K + 1 such agents. Since

x∗i = K ≤ d′i (g, x) for all i ∈ SK condition (1.1) is satisfied. We just need to show

that (1.2) holds for SK , but since the subgraph composed of agents playing a strictly

higher action is empty this condition is satisfied. Now take SK−1 and note again that

x∗i = K − 1 ≤ d′i (g, x) for all i ∈ SK−1 since all agents have coreness K − 1. Since

agents i ∈ SK−1 cannot join a higher core, condition (1.2) must also hold as the number

of individuals playing a higher action cannot exceed K − 1. This reasoning holds for all

subsets of lower coreness and so the action profile x∗ = c (g) is a Nash equilibrium.

Now to show that this equilibrium is maximal and therefore Pareto dominant, as-
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sume that there exists another equilibrium vector of actions x′ such that x′ > x∗. Take

any i ∈ N playing x′i > x∗i = ci in equilibrium, the best response condition (1.1) implies

that i has at least dx′ie neighbours playing x′j ≥ x′i. Moreover, these agents j must have

at least dx′je neighbours playing x′k ≥ x′j . Continuing with this reasoning contradicts

the assumption that the coreness of node i was ci = x∗i < x′i since we can now construct

a subgraph containing i (using these nodes and links only) where each node has at least

degree dx′ie within that subgraph.

The fact that the maximal equilibrium is also Pareto dominant follows from Theorem

7 of Milgrom and Roberts (1990).

Proof of Proposition 1.2. Since the Bonacich centrality of a node is increasing in

the number of paths emanating from it, I focus on the case where all nodes reached on

paths from i have exactly degree k. When this is the case I minimise the number of

possible paths from i under the constraint that ci = k. If ci = k then there are at least

kl paths of length l from i to other nodes in the network. Summing paths of all lengths

we get bi (g, δ) =
∑∞
l=0 δ

l∑
j∈N g

l
ij ≥

∑∞
l=0 (δk)l and provided |δk| < 1 this implies that∑∞

l=0 (δk)l = 1
1−δk . To show that this limit is well defined (i.e. δ < 1/k) we rely on an

elementary result from spectral graph theory to bound the largest eigenvalue of G.

I assume without loss of generality that the graph is connected since both the core-

ness and the Bonacich centrality of a node can only depend on structural properties

within the same component. Since we assumed that dj = k for all nodes reachable from

i, these nodes form a k-regular graph (with adjacency matrix Gk). We can therefore

conclude that the largest eigenvalue of Gk cannot exceed k, since the largest eigenvalue

is always bounded from above by the largest degree of any agent in the network (see

Brualdi, 2011) . The condition that δ < 1
|λmax(g)| now means that 1

1−δk is well defined

as 1
1−δk > 1 for any δ where bi is itself well defined.

Proof of Proposition 1.3. In order to proceed with the proof I will first show that
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assuming ci(g) = c−i (ḡ) for all i ∈ N implies that ĝ will be acyclic. Assume to the

contrary that a directed cycle (i→ j → · · · → k → i) in ĝ exists. This implies that

ci (g) ≥ cj (g), and similarly for all subsequent nodes in the cycle, implying that ci (g) =

cj (g). However, if i → j but ci(g) = c−i (ḡ) this means that i is linked to a larger

number of individuals with coreness at least ci than agent j. To see why, note that i

has ci(g) = c−i (ḡ) but (i, j) 66∈ ḡ by assumption, so i has at least ci + 1 neighbours of

coreness ci or higher (since j also has coreness ci). However, since i → j this means

that j has exactly ci neighbours of coreness ci since cj(g − ij) < cj(g) and the coreness

of others cannot be affected by the removal of (i, j) from g due to the assumptions that

ci(g) = c−i (ḡ) for all i ∈ N , and (i, j) 6∈ ḡ. Iterating this logic fully along the cycle we

reach a contradiction and so ĝ must be acyclic.

I now show that ci(g) = c−i (ḡ) implies stability of x∗. Assume that node i0 lowers

action to 0 at period t = 0. Since ci0(g) = c−i0(ḡ), a sufficient number of neighbours are

unaffected by this and permit i0 to revert back to playing ci0 in period t = 1. For nodes

i1 ∈ N−i0 (ĝ), their action must also fall in period t = 1 but return to ci1 in period t = 2

for the same reason. Since the graph ĝ is acyclic, each node can only be affected by

a cascading shock a finite number of times and so the assumption that ci(g) = c−i (ḡ)

always ensures that nodes revert to playing ci the period after they receive a shock to

their action. After all nodes revert following their final shock the profile has converged

back to x∗.

Finally I show that if ci(g) > c−i (ḡ) for some i ∈ N then x∗ cannot be stable. Pick

any individual i ∈ N with ci(g) = c−i (ḡ) and lower their action to 0 in x̂. In period

t = 1 i’s action returns to ci but the actions of neighbours in the set {j ∈ Ni | i → j}

must fall to cj − 1. In period t = 2, i’s action again falls to c−i (ḡ), causing the actions

of neighbours in the set {j ∈ Ni | i → j} to fall back to cj − 1 in period t = 3. The

pattern of periods 2 and 3 then cycles and so xt does not return to x∗.

Proof of Lemma 1.2. For (a) we need that ρ (x′ ∨ x′′) + ρ (x′ ∧ x′′) ≥ ρ (x′) + ρ (x′′)

for any x′ and x′′. Applying (1.5) we can see that costs immediately cancel on both
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sides, leaving

∑
(i,j)∈g

min
{
max{x′i, x′′i },max{x′j , x′′j }

}
+ min

{
min{x′i, x′′i },min{x′j , x′′j }

}
≥

∑
(i,j)∈g

min
{
x′i, x

′
j

}
+ min

{
x′′i , x

′′
j

}
,

which clearly holds. Since −1
2
∑
i∈N x

2
i is strictly concave in X it suffices to check for

each that
∑

(i,j)∈g min {xi, xj} is not convex. As can be easily verified,
∑

(i,j)∈g min {xi, xj}

can increase at most linearly with x.

Proof of Proposition 1.4. Assume that {S̃1, . . . , S̃K} is the optimal partition of N

where x̃i satisfies (1.6) for all i ∈ N . It is obvious that x̃k = |Ē(Sk)|
|Sk| is a necessary

condition for optimality of x̃ if x̃i = x̃j for all i and j ∈ S̃k. To show that {S̃1, . . . , S̃K}

is the density decomposition of G, I show first that S̃1 = D1. If S̃1 = D1 then it must

be the case that no subset of nodes can optimally play a higher action in equilibrium.

Since the optimal action of any S̃1 cannot be influenced by the actions of other nodes

and since D1 forms the densest subgraph, (1.5) =⇒ S̃1 = D1 . To show that S̃2 = D2

we can apply the same logic. Taking the actions of S̃1 = D1 as given, if S̃2 = D2 then

no other subset of nodes can play a strictly higher action as a joint best response to D1,

which is again guaranteed by necessary condition (1.5).

Noting that changes in xi by nodes playing lower effort in equilibrium cannot influ-

ence incentives, we can continue this reasoning downwards for all other subsets in the

partition to complete the proof.

Proof of Proposition 1.5. To show the ‘if’ part for a d-regular graph we can note

that xi = xj for all i, j ∈ N in the social welfare maximising profile x = argmax
∑
i∈N ui (x).

This follows from the fact all actions are weak complements and all agents are identical.
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The problem then becomes

max
x

2 |g|x− |N |2 x2

First order conditions imply that the social maximise profile of actions satisfies xi =
2|E|
|N | = d = ci. To show the ‘only if’ part I use a constrained optimisation formulation

of the problem:

max
x

2
∑

(i,j)∈g
min {xi, xj} −

1
2
∑
i∈N

(xi)2

I reformulate the problem using a dummy variable yij for min {xi, xj}:

max
x,y

2
∑

(i,j)∈g yij − 1
2
∑
i′∈N (xi′)2

subject to yij ≤ xi

yij ≤ xj

In the above reformulation, at least one of the constraints must bind with equality. The

Lagrangian for reformulated problem is:

L = 2
∑

(i,j)∈g
yij −

1
2
∑
i′∈N

(xi′)2 −
∑

(i,j)∈g
λij (yij − xi)−

∑
(i,j)∈g

µij (yij − xj)

The first order conditions with respect to some yij and some xi′ give:

∂L
∂yij

= 2− λij − µij = 0

∂L
∂xi′

=
∑

(i,j)3i′
λij − xi = 0

Rearranging and summing these over all edges and N respectively gives 2 |g| =∑
(i,j)∈g (λij + µij) and

∑
i′∈N xi′ =

∑
(i,j)∈g (λij + µij) and so

∑
i xi = 2 |g| =

∑
i di at

any social optimum. If the network is not regular then ci < di for some i ∈ N and so

there is too little effort relative to the social optimum.
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Proof of Proposition 1.6. The proof proceeds in three steps:
First I establish that the price of stability is bounded from below by the ratio of the

surplus generated in the potential maximising equilibrium of the game to that of the

socially efficient action profile. Using the results of Proposition 1.4 and Proposition 1.5

we get that if x is the action profile in the socially efficient case, then x = 2x̃. Since

the surplus in the potential maximising equilibrium cannot exceed the surplus in the

Pareto dominant equilibrium we have that

PoS (g) ≥
∑

(i,j)∈g 2 min {x̃i, x̃j} −
∑
i

1
2 x̃

2
i∑

(i,j)∈g 4 min {x̃i, x̃j} −
∑
i 2x̃2

i

≡ PoS (g) . (1.7)

Since the action in the Pareto dominant equilibrium is weakly higher than x̃, the

price of stability cannot be lower than the expression given in (1.7).

I now show that the price of stability in a star network is equal to PoS(g). Since

the coreness of all agents in any star network is ci = 1 and since the star as a whole is

the densest subgraph of the network, the potential maximising equilibrium action in a

star network with 1 hub and M spokes is given by

x̃i = M

M + 1

Taking the limit of this as M →∞ gives us

lim
M→∞

M

M + 1 = 1 = ci

Therefore, the potential maximising equilibrium profile approaches the Pareto dominant

one as M gets large. For large M , the price of stability approaches

lim
M→∞

PoS = lim
M→∞

2M − 1
2(M + 1)

4M − 2(M + 1) = lim
M→∞

3M − 1
4M − 2 = 3

4

Finally, I show that for all other networks, PoS (g) ≥ 3
4 . Assume to the contrary
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that PoS (g) < 3
4 for some g, substituting from (1.7) reduces this to

∑
(i,j)∈g

min {x̃i, x̃j} >
∑
i∈N

x̃2
i (1.8)

Therefore, PoS (g) < 3
4 if, in the potential maximising equilibrium for g, the surplus

gained along links exceeds twice the sum of the costs accrued at each node.

I restrict attention to complete networks, as if there exists some network g which

satisfies (1.8), then the complete network also satisfies (1.8). Since
∑

(i,j)∈g min {x̃i, x̃j}

−
∑
i∈N x̃

2
i has increasing differences in (x,d), then by applying the insights of Topkis

(1998), the x which maximises this function is increasing as we add more links, strictly

increasing
∑

(i,j)∈g min {x̃i, x̃j}−
∑
i∈N x̃

2
i .

In the complete network, actions are symmetric and given by x̃ = |g|
n = n(1−n)

2n which

implies that the condition in (1.8) becomes

n (1− n)
2

n (1− n)
2n > n

(
n (1− n)

2n

)2

Which after cancelling becomes n(1−n)
2n > n(1−n)

2n , a contradiction.

Proof of Proposition 1.7. To find the optimal network g in the feasible set of graphs
G we are given the problem

max
g∈G

∑
i∈N

∑
j∈Ni

min (ci, cj)−
1
2c

2
i − γdi

The utility surplus generated by all nodes in the complete network is

n
(
(n− 1)

(
1
2 (n− 1)− γ

))
since di = ci = n − 1. This surplus is non-negative when

γ ≤ 1
2 (n− 1). Now consider a g′ which is not complete and an agent i in that network.

Agent i has coreness ci and therefore has at least ci neighbours with coreness ci or

higher. The maximum possible surplus generated at i in g′ is dici − 1
2c

2
i − γdi =

ci
(
di − 1

2ci
)
− diγ. Since ci ≤ di in any network this surplus cannot exceed 1

2d
2
i − diγ,

which ensures that each node has non-negative surplus only if γ ≤ 1
2di. If γ ≤

1
2 (n− 1)

then the maximum possible surplus at any node i ∈ g′ is 1
2di (di − γ), strictly less than
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1
2 (n− 1) ((n− 1)− γ) for each node in the complete network. If on the other hand
1
2 (n− 1) < γ then no node can contribute a non-negative surplus in any non-empty

network since di ≤ (n− 1) for any g ∈ G.
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Chapter 2

Pre-Launch Publicity and Third

Party Reviewers

2.1 Introduction

This chapter examines the role of pre-launch publicity in providing information for

buyers regarding the value of a good offered by a seller. For example, firms in the movie

industry benefit from publicity campaigns and positive initial reviews from film critics

to increase opening week sales. Smartphone manufacturers and software companies

selectively allow access to early versions of their product to provide pre-launch product

demonstrations and generate ‘buzz’. Politicians might rely on favourable interviews or

articles in the media in order to enhance their image before selecting a policy platform.

When a firm brings a new product to market they generally have two methods

of releasing information about the product prior to launch. One option for the firm

is to release information directly to buyers via advertising campaigns, public product

demonstrations, press releases, and similar marketing activities. The other option is to

release the product to an independent third party who can make public their assessment

of the product. These two channels perform different, although complementary, roles

in attracting buyers to purchase the product. On the one hand, information released

directly by the firm tends to be descriptive in nature, conveying details about the

particular features of the product. The seller may choose to put a focus on information
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which they deem as likely to be viewed favourably by buyers and obfuscate other details

in order to maximise the appeal of the product.

The seller may find it difficult, however, to directly make claims about the objective

quality of their product, as these claims are generally not seen as credible, since they

can be costlessly mimicked by low quality sellers. Evaluations of the quality of the good

being sold are therefore generally conducted by independent third parties. Although

third-party reviews may also be descriptive in nature, the crucial role which they perform

is in evaluating the quality of the product, often giving a purchasing recommendation

to the buyer.

In this chapter, I first examine how a seller of a good would optimally design their

launch campaign in the face of a trade-off between generating favourable posterior beliefs

and maximising the probability that the campaign is a success. I assume that the seller

has full flexibility over the design of the information structure and draw on the insights

of the recent literature on ‘Bayesian persuasion’ (Kamenica and Gentzkow (2011)).

The seller’s optimal campaign will take one of three possible forms: a mass market

campaign which (if successful) targets all buyers, a niche campaign which targets only

high-type buyers, and a segmented campaign which is a hybrid of the two. I exam-

ine when these campaigns are appropriate and how the seller benefits by withholding

information from buyers in each case.

Buyers in this model have private information about their likely valuation for the

product. The pre-launch publicity campaigns which sellers optimally choose will de-

pend on the accuracy of this private information. In particular, when buyers have weak

private information about the product’s likely value, this induces sellers to design cam-

paigns which are more revealing. In contrast to much of the existing literature, the

seller never wishes to subject themselves to ‘all or nothing’ tests where information is

either completely obscured or perfectly revealed.

In this chapter I also examine how the differing standards of product reviewers

can affect the amount of pre-launch publicity carried out by the seller. Reviewers can

provide a valuable service to buyers (and sellers), but, as will be shown, reviewers who

are excessively soft will limit the ability of firms to manipulate buyers’ beliefs via their

35



launch campaign. For this reason, sellers who perfectly observe their quality as high

may benefit from picking reviewers who give a less useful signal of product quality.

My model therefore builds on the work of Gill and Sgroi (2012) who analyse the op-

timal choice of pre-launch reviewer. Perhaps counter-intuitively, there can be situations

where buyers prefer overly soft reviewers, whereas sellers prefer overly harsh ones. Softer

reviewers will force the seller to reveal more information about the product pre-launch,

benefiting buyers, yet harsh reviewers can be more attractive to the seller since they

allow them to separate from lower quality sellers.

The remainder of the chapter is structured as follows: First I explain how this

work relates to the previous literature before discussing the application of the Bayesian

persuasion framework of Kamenica and Gentzkow (2011) to the case of multiple receivers

with private information, utilising the recent insights provided by Alonso and Câmara

(2014). I then provide an exposition of the main results on the optimal choice of launch

campaign for the seller. Following this I look at a simple model of third party reviewers

and extend the model to account for endogenous selection of a pre-launch reviewer. I

end the chapter with a discussion of the main findings of the model in the context of

the other results in the literature.

2.2 Related Literature

This chapter is related to the emerging literature on Bayesian persuasion and informa-

tion control. Kamenica and Gentzkow (2011) study the design of optimal signal struc-

tures which persuade the receiver of the signal to take actions which will benefit the

sender. They provide conditions under which a sender will benefit from persuasion and

provide a tractable framework which has opened up the study of optimal signal design.

The authors have also extended their model to multiple senders who compete in provid-

ing information for a receiver (Gentzkow and Kamenica, 2012) and to the case of costly

signals (Gentzkow and Kamenica, 2014). Another recent paper by Alonso and Câmara

(2014) examines the case of information control where the sender and receiver have

differing prior beliefs, extending the original work of Kamenica and Gentzkow (2011)
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to a broader class of problems.

Although the literature on Bayesian persuasion is still in its nascent stages, there

have been a sequence of important contributions on persuasion and information revel-

ation by monopolists which have preceded this literature. Work on ‘persuasion games’

was initiated by Milgrom (1981) and Milgrom and Roberts (1986) who examine the

release of verifiable reports about the quality of a good provided by a seller with private

information. In this setting a seller must make a verifiable statement about the qual-

ity of the form “the product is of quality at least q”, which buyers must then choose

how to interpret, before making a purchasing decision. The central conclusion of these

papers is that scepticism by buyers ensures that the payoff from full information rev-

elation cannot be improved upon by attempting to misrepresent the product. These

early contributions therefore suggest that sellers may have little to gain from this form

of persuasion.

Lewis and Sappington (1994) were the first to specifically address how a monopolist

might design an information structure in order to extract value from consumers. In their

paper, the monopolist has control over how much consumers can learn about their tastes

for the product by varying the noise of a signal which the firm transmits. Following the

design of the signal structure by the monopolist, buyers observe their individual signals

and decide whether or not to purchase. In the two focal results of the paper, they show

that the monopolist will prefer extreme information structures where consumers are

provided with the most informative signal or no signal at all.

Another related contribution is that of Ottaviani and Prat (2001). Their model

builds on the insights of Lewis and Sappington (1994) and those of Milgrom and Weber

(1982) to the case where an uninformed monopolist can commit to publicly revealing

information about product quality. Their setting is more general than Lewis and Sap-

pington (1994) as they assume weaker conditions on the distribution of the signals,

yet they focus solely on the release of public information. Ottaviani and Prat (2001)

show that the monopolist always benefits from the release of public information which

is affiliated with buyer’s private valuations for the product. Moreover, the monopolist

will prefer to have more informative public signals, and so signals which perfectly reveal
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product quality are superior to partial revelation. This paper again suggests that the

value of information control for sellers may be limited.

A final key contribution to this strand of the literature is Johnson and Myatt (2006)

who develop a theoretical framework for the analysis of transformations of demand

curves. This framework is then applied to the study of advertising and the release of

product information by a monopolist. They note that the release of product information

causes a dispersion of buyer valuations in expectation and so causes the demand curve

to rotate. The authors go on to show that extreme information structures are optimal

(i.e those which reveal no information or allow maximal dispersion of private beliefs)

echoing the previously mentioned contributions. Taken as a whole, this strand of the

literature seems to suggest an ‘all or nothing’ position for the seller, such that they will

either wish to publicly disclose the maximal amount of information or nothing at all.

Another branch of the literature which is relevant to this chapter is the research that

has been carried out on the endogenous selection of reviewers by monopolists. The most

closely related paper in this branch is that of Gill and Sgroi (2012), who consider the

optimal choice of pre-launch review in the case when firms can condition their pricing

decision on the outcome of a public test. They show in their model that when the seller

perfectly observes their quality, the high quality seller will always wish to select the

toughest or softest possible reviewer, where ‘toughness’ is defined as the propensity to

fail high quality products. The low type seller always pools on this decision and so the

optimal choice of pre-launch reviewer for the firm is at one of the two extremes.

As pointed out by Gill and Sgroi (2012), the literature has, until recently, largely

ignored the role of selection of pre-launch reviewers by sellers, when reviewers vary in

their toughness. An exception to this is Lerner and Tirole (2006) who examine the joint

decision of product design and certifier for a monopolist who must submit their product

for certification by a third party such as a standard setting organisation. They find that

firms generally prefer a weak certifier who have standards which are just low enough

to endorse the product, in order to minimise the concessions made to the certifier.

Although, they also show that there is an inverse relationship between the credibility

of the chosen certifier and the pre-test belief about product quality. This chapter will
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build on both Gill and Sgroi (2012) and Lerner and Tirole (2006) by examining the

choice of a publicly observable pre-launch reviewer in the case when the seller has some

private information about the quality of the good for sale.

Another paper which looks at similar phenomena is Hvide (2009), who analyses the

case of competition between testers of differing standards who charge fees for certific-

ation. The analysis in his model shows that by setting fees for certification, testers of

differing standards can segment the market. He shows that high quality sellers (who de-

sire tough tests to separate from low quality sellers) will be willing to pay larger fees to

tested by tougher certifiers. His model differs in focus from mine as it looks at reviewers

with exogenous toughness setting prices in order to extract surplus from sellers.

Other models such as Gill and Sgroi (2008) and Sgroi (2002) have considered how a

monopolist may be able to influence early opinions about a product via pre-launch tests.

In particular, Gill and Sgroi (2008) analyse how the choice of pre-launch test can be

used to manipulate the process of observational learning which occurs when a product

of unknown quality is released. The favourable opinions which are induced following the

passing of a tough test are of value to the seller, as they maximise the possibility of an

informational cascade on buying. The authors show that a seller will optimally select

reviewers who deliver beliefs which are just enough to induce informational cascades

without being so tough as to significantly lower the probability of passing the test.

To summarise this area of the literature, the work on the optimal choice of pre-launch

reviewer/certifier is still underdeveloped and the key insights are unclear. On the one

hand, the most extensive treatment of this issue by Gill and Sgroi (2012) highlights the

attractiveness of reviewers who are either very tough or very soft, yet other papers have

shown that found intermediate reviewers to be optimal. A key difference between this

paper and Gill and Sgroi (2012) is that the latter permit the monopolist to condition

the price of the product on the result of the signal. In my case, the signals are privately

observed by buyers and so cannot be conditioned upon, as I will now discuss.
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2.3 The Optimal Launch Campaign

The model described in this section will consider a seller who is introducing a new

product to a unit mass of buyers that must choose to either accept or reject a seller’s

product offer. The seller produces their good at zero cost and is randomly drawn a

product quality q ∈ {0, 1} by Nature, which is then privately observed by the seller.

The buyers and the seller share identical prior beliefs about the product quality and

assign probability λ ∈ (0, 1) to q = 1. Each buyer i will also receive an informative

private signal about their match type θi ∈ {0, 1}, where the buyer has prior belief

µ ∈ (0, 1) that θ = 1 before private signals are received. This is common knowledge and

so the seller expects a fraction µ of the population to have match type θ = 1. If buyer

i accepts the product offer by taking action ai = 1 then they receive utility u(ai) = θiq,

while if they reject the offer by taking action ai = 0 they receive their outside option

which gives utility u < 1. I focus on pure strategy equilibria throughout and assume

that the buyer accepts the seller’s offer if E [ui] = u.

The assumption that the seller’s offer must meet a reservation utility, as opposed to

allowing sellers to set a price, is appropriate in some circumstances and less appropriate

in others. In the running example of a movie production company who must design a

publicity campaign this assumption fits well, as generally the price of admission is fixed

and buyers must select between competing movies. The case where a monopolist sets

their price conditional on the result of a public test is examined in Gill and Sgroi (2012).

In my case, the only tool which the seller has at their disposal in order to increase payoff

following the review is to engage in persuasive marketing of their product.

The payoff for the seller is given by the total fraction of buyers who accept the

product offer and is denoted by π. I assume that each buyer i learns about their

match type via a noisy private signal σi ∈ {L,H} with accuracy α ∈ (0.5, 1), such that

Pr(σi = H | θi = 1) = Pr(σi = L | θi = 0) = α and Pr(σi = H | θi = 0) = Pr(σi = L |

θi = 1) = 1− α.1 This results in updated beliefs µL and µH where α ∈ (0.5, 1) ensures
1I will follow the convention of distinguishing between buyers by the private information which they

hold. I shall therefore refer to σi as a buyer’s ‘type’, which is known to buyer, as opposed to their
unknown match type θi.
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that µL < µH < 1.

In addition to the private signal about their match type, buyers will be able to learn

about their expected valuation via a launch campaign (conducted by the seller) and a

product review (conducted by a third party reviewer). The role of the seller’s launch

campaign is to manipulate the buyer’s beliefs about their match type through the release

of information about the product. The launch campaign can be thought of as generating

a signal for each buyer as a result of the seller’s advertising campaign, promotional work

(such as interviews with industry magazines) or public product demonstrations. I model

the combination of these activities as a signal generating mechanism (a set of possible

signal realisations and a collection of conditional probabilities over these realisations)

which induces a distribution over the possible posterior beliefs of the buyers.

This form of information revelation differs from that considered in Ottaviani and

Prat (2001). My approach has two distinguishing features: firstly, each buyer receives

their own private signal which is independent of other signals; and secondly, some buyer

types are more likely to receive certain signals than other buyers. In that respect,

although the seller only designs a single publicly observed launch campaign, it is best

viewed as a ‘signal generating machine’ which can output possibly different signals to

each buyer.

I assume throughout that the seller’s product is an experience good and so the

quality can only be gauged following consumption. Due to this fact, the seller’s launch

campaign only allows buyers to gain information about their likely match type, even

though the seller also has private information about product quality. Although the

seller may benefit from the release of this private information, it is assumed that they

have no way of credibly doing so without being mimicked by low quality sellers. Hence

quality certification must be conducted by an independent third-party reviewer.

The third-party reviewer subjects the product to a publicly observable and costlessly

verifiable test, the result of which conveys information about the product quality q.2

As in Gill and Sgroi (2012), the test which the product is subjected to can vary in
2In an alternative interpretation of the model, the review could also release information about the

match type in the form of the private signal which the buyers receive.
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its toughness, where tough tests are those which are more difficult to pass but deliver

strong posterior beliefs in the event of a pass. Soft tests are easier to pass and so a

product which fails a soft test is more likely to be bad quality than a product which

fails a tough test. I assume that the result of the reviews are announced pre-launch, so

the seller’s decision about the launch campaign can be conditioned on the result of the

review. For now I will assume that the toughness of the reviewer’s test is exogenously

given, but examine this in more detail in Section 2.4.

This description of the setting fits the distinction provided by Johnson and Myatt

(2006) between hype and real information as being different forms of advertising for

the firm. In my case, reviews provide hype for the product, which corresponds to

advertising which informs consumer about any unambiguously desirable property. The

seller provides real information which allows consumers to learn about their subjective

preferences.

As an example of where this model might apply, consider a movie production com-

pany who are launching a new film and must decide on the optimal amount of informa-

tion (e.g. about the setting, plot, and so on) to release to audiences following the results

of early reviews. Although I will generally refer to the two parties as the seller and the

buyers, this setting also fits other applications. For example, the seller of the good

could be a politician seeking endorsement by a group of voters where θ represents the

ideological position of the politician, and q their ‘valence’ or overall competence. In this

case, the publicly observable pre-launch review could represent a televised interview or

debate, whereas the launch campaign could represent campaign speeches made by the

politician.

The decision problem for the seller is one of signal design and so I build on the

framework of Kamenica and Gentzkow (2011) (henceforth KG) to allow the seller to

design their launch campaign under minimal restrictions on the structure of the signal

itself. Since buyers may have differing beliefs about the match type pre-launch, the

extension of this framework by Alonso and Câmara (2014) (henceforth AC) to the case

of heterogeneous priors allows me to extend the standard framework to the case of
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Figure 2.1: Timing of the Model

multiple receivers with private information.3

I summarise the timing of the model in Figure 2.1 before discussing the optimal

launch campaign in more detail.

2.3.1 Information Control with Multiple Receivers and Private Sig-

nals

For the remainder of this section I shall fix the behaviour of the third-party reviewer and

return to this aspect of the model in Section 2.4. I therefore assume that the result of

the review has been released and has endowed the seller and buyers with shared belief

λ about product quality. The task for the seller is to manipulate the buyers’ beliefs

about their match type, in order to maximise the number of buyers who purchase the

product. In principle, the seller can release all the relevant information about the

product at launch, so in the absence of information control, the buyers receive a signal

which allows them to perfectly identify their match type. From this perspective, we

should view the information control decision as being concerned with how much we

garble the information about the details of the product.

As in the standard Bayesian persuasion model, the seller manipulates the beliefs

of buyers by specifying how the signals which buyers get are generated. This involves

defining a finite set of signal outcomes S and a collection of conditional probabilities

{Pr (· | θ)}θ∈{0,1} over S. This set S and collection of probabilities {Pr (· | θ)}θ∈{0,1}
shall be referred to as the seller’s launch campaign. The launch campaign is therefore

3This set-up allows more flexibility over the possible posterior beliefs of the buyers when compared
to the approach of Lewis and Sappington (1994), who restrict attention to specific signal structures.
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not a signal itself but a signal generating mechanism which outputs an informative

private signal for each individual buyer.4

In the simplified setting of KG, a seller and a single buyer would share a common

prior belief µ ∈ (0, 1) about the match type of the buyer, which is then updated following

the signal realisation s ∈ S.5 By specifying the conditional probabilities {Pr (· | θ)},

each launch campaign would imply a marginal distribution over S and hence induce a

distribution τ over the possible posterior beliefs µs of the buyer. Since the action of the

buyer will depend on these posterior beliefs, the seller must optimally design the signal

environment in order to induce posterior beliefs (and a distribution τ over these beliefs)

which maximises their expected payoff.6

An important contribution of KG is to reduce the complexity of this problem to one

of solely selecting the posterior beliefs which the seller wishes to induce. To ensure that

any chosen posterior beliefs are consistent with Bayesian rationality, Proposition 1 of

KG provides a characterisation of the admissible posterior beliefs and distributions τ

over these beliefs. They show that if the sets of states and signal realisations are finite,

then the martingale property Eτ [µs] = µ (‘Bayesian rationality’ in KG) is a necessary

and sufficient condition for the existence of conditional probabilities {Pr (· | θ)} which

generate those beliefs according to Bayes’ rule. This allows us to focus directly on the

posterior beliefs which are induced by the signal without concerning ourselves with the

details of the signal which generates them.

Applying this framework to the design of an optimal launch campaign, the seller

commits to S and {Pr (· | θ)}, which then generates a signal si for each buyer i. Signals

are independent across buyers and I assume that each buyer’s signal realisation is private

information. Although the details of the launch campaign are common knowledge,

buyers can have different pre-launch private signals and therefore different beliefs about
4The specification of the launch campaign is common knowledge.
5In my model there is a continuum of buyers, however this presents no problem since the assumption

of a continuum of buyers performs essentially the same function as the ‘concavification’ of the payoff
function which is used in KG.

6This is similar to the setting of Bergemann and Pesendorfer (2007) who examine how an auctioneer
might design an information structure for buyers prior to auction. The main difference is that the
Bayesian persuasion approach does not allow the seller to tailor the structure of each signal to individual
buyer.
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their match type θi prior to launch. The posterior belief about θi from a buyer who sees

signal si would differ from a buyer j who received sj = si, but received private signal

σj 6= σi pre-launch.

This creates a potential problem in directly choosing posteriors for the buyers subject

to Eτ [µs] = µ, as it is no longer clear which µ and τ should be used. Furthermore, the

existence of multiple different posterior beliefs for any given launch campaign also ap-

pears to increase the dimensionality of the problem, making it potentially less tractable.

These issues are addressed by Alonso and Câmara (2014), who extend the framework of

KG to the case of heterogeneous priors. They show that it is possible to reformulate the

problem in terms of selecting the posterior beliefs of one party and then use a biject-

ive function to map these into the resulting posterior beliefs of the others. Selecting

Bayes rational posterior beliefs from the perspective of one party therefore selects Bayes

rational (although different) posterior beliefs from the perspective of the other party.

Since the buyer’s action space and the state space are binary, the possible signal

realisations can be restricted to be either a ‘good’ signal g ∈ S or ‘bad’ signal b ∈ S

where µg ≥ µb.7 The Bayesian rationality condition implies that by restricting attention

to two signal realisations, we have that µg ≥ µ and µb ≤ µ.

Taking advantage of the insight of Alonso and Câmara (2014), the task for the seller

is therefore to select posterior beliefs µg and µb for the marginal buyer (i.e. averaged

across both buyer types), subject to τµg + (1− τ)µb = µ, in order to maximise E [π].8

This choice of posteriors also results in a choice of µσg and µσb for σ ∈ {H,L} using

(2.1), which is found by applying Proposition 1 of Alonso and Câmara (2014):

µσs =
µs

µσ

µ

µs
µσ

µ + (1− µs) (1−µσ)
(1−µ)

(2.1)

For any launch campaign such that S = {g, b}, we can use the Bayesian rationality

condition τσµσg + (1 − τσ)µσb = µσ to back out τσ ∈ [0, 1]. This gives the probability
7See Proposition 2 of Alonso and Câmara (2014).
8In fact, since the function mapping the seller’s posteriors to those of either buyer type is a bijection,

we could equivalently select posteriors for either buyer type which are consistent from their point of
view (i.e. satisfy Bayesian rationality with respect to their prior beliefs µH or µL) and then transform
back in to corresponding beliefs for the seller using (2.1).
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that the launch campaign will be successful in generating a ‘good’ signal for a buyer

who has private pre-launch belief µσ as

τσ = µσ − µσb
µσg − µσb

Applying a similar logic for the seller with marginal belief µ, the probability of a suc-

cessful launch campaign is therefore

τ = µ− µb
µg − µb

(2.2)

Examining (2.2) reveals an important feature of the seller’s design problem, namely that

a campaign is more likely to deliver a good signal when the belief induced following a

good signal is lower.9 Similarly, the higher the posterior belief following a bad signal,

the less likely it is that a good signal will be drawn. When selecting the optimal launch

campaign the seller will face a clear trade off between maximising the probability that

a favourable signal is drawn and generating beliefs which are sufficient to encourage the

buyers to purchase.

A second important feature about the launch campaign is also worth highlighting

at this point. Not only do high type buyers find themselves with higher posterior

beliefs following the same launch signal as a low type consumer, but they also perceive

the launch campaign as a priori more likely to be successful. In other words, the

same launch campaign with fixed conditional probabilities {Pr (· | θ)} is more likely to

be persuasive for buyers who already have higher prior beliefs. I now summarise the

structure of the private signals and launch campaign in Figure 2.2 before moving on to

discuss the seller’s payoff from any launch campaign.

The Seller’s Payoff Function

The extension of KG to the case of heterogeneous priors allows us to express the seller’s

payoff function solely in terms of the posterior (post-launch) beliefs of a reference player.
9Although the ex-ante probability of a good signal being drawn will differ across types, increasing

µσs for type σ will also do so for the seller, meaning that τσ and τ move in the same direction following
a change of µσs .
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Figure 2.2: Summary of Private Signals and Launch Campaign

To illustrate how this helps, assume momentarily that each launch signal is observable

by the seller. Prior to launch, each buyer has private signal σi, which is informative

about their match type. Although this private signal is not observable by the seller,

we can let µs denote the belief of the seller about buyer i’s match type if they were

to observe launch signal s being drawn for buyer i. I shall therefore refer to µs as the

reference belief, which the seller will be selecting when designing the optimal signal.

Whether the seller actually observes the launch signal or not is of little consequence, as

this only aids us in formulating the seller’s design problem.

Since the private signal has accuracy α, the pre-launch beliefs of the high and low

type buyers are given by

µH = αµ

αµ+ (1− α)(1− µ) µL = (1− α)µ
(1− α)µ+ α(1− µ)

Substituting this in to (2.1) and simplifying gives the following beliefs µHs and µLs after

the launch campaign signal s:

µHs = αµs
αµs + (1− α)(1− µs)

µLs = (1− α)µs
(1− α)µs + α(1− µs)

(2.3)

These probabilities are the posterior beliefs held by each by type, written as a

function of the (seller’s) reference belief µs. We can also interpret the updated beliefs

in (2.3) by changing the order in which private signals are received, so that µs is the
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Figure 2.3: Expected Buyers as a Function of the Posterior Belief µs

post launch belief for all buyer types, who then receive an additional private signal

σi ∈ {H,L}.

Having updated their beliefs to µσs , the buyer would gain expected surplus µσsλ

from accepting the seller’s product when the public belief about product quality is λ.

Therefore a buyer of type σ takes action ai = 1 if µσsλ ≥ u and action ai = 0 otherwise.

By defining 1u (x) as an indicator function which is 1 when x ≥ u and 0 otherwise,

we can more easily express the seller’s expected payoff. If the launch campaign were

designed such that it always generated belief µs then the seller’s expected fraction of

buyers is given by

E [π] = Pr (H) 1u
(

αµs
αµs + (1− α)(1− µs)

λ

)
+(1−Pr (H))1u

( (1− α)µs
(1− α)µs + α(1− µs)

λ

)

By focusing on pure strategy seller preferred equilibria (i.e. if buyers are indifferent

then they choose to purchase), E [π] is upper semicontinuous in µs. Substituting (2.3)

in to the above, the expected payoff from any launch campaign is therefore

Pr (H)
[
τH1u

(
µHg λ

)
+ (1− τH)1u

(
µHb λ

)]
+ Pr (L)

[
τL1u

(
µLg λ

)
+ (1− τL)1u

(
µLb λ

)]

As shown by Proposition 2 of Alonso and Câmara (2014), an optimal signal must

exist by Berge’s maximum theorem.
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2.3.2 The Seller’s Choice of Launch Campaign

I now consider the choice of launch campaign by the seller, focusing on high type seller

preferred perfect Bayesian equilibria. Although the seller has private information about

their quality q ∈ {0, 1}, the mechanism through which information about quality is

revealed by the reviewer is currently exogenous. Since the choice of launch campaign is

conditioned on the result of the review, the low type seller will always wish to replicate

the launch campaign of the high type seller, for any public belief λ which is generated.10

An assumption which is made about the launch campaign is that it is costless to

provide. If it is costly for the seller to engage in promotion of their product, then this

opens up the possibility of signalling when the seller has private information about the

quality of the good.11 I wish to focus purely on the design of the launch campaign itself:

who it targets, which features of the product it seeks to mask, and how the behaviour of

external reviewers influences this decision. For this reason, I maintain the assumption

that the launch campaign is costless throughout.

Buyers will purchase the product if their private belief about their match type

following the launch campaign meets some threshold belief which is determined by λ

and u. From the buyers’ perspective, these correspond to µHs λ = u and µLs λ = u for

the high and low types respectively. I denote by µ̄H and µ̄L these threshold beliefs from

the perspective of the seller (i.e. in terms of the marginal reference belief). Using (2.3)

we can see that these are given by

µ̄H = (1− α)(u/λ)
(1− α)(u/λ) + α(1− u/λ) µ̄L = α(u/λ)

α(u/λ) + (1− α)(1− u/λ)

Or equivalently as

µ̄H = (1− α)u
(1− α)u+ α(λ− u) µ̄L = αu

αu+ (1− α)(λ− u) (2.4)

As seen from (2.4), whenever u < λ, the threshold beliefs are such that µ̄H < µ̄L < 1.
10In order to restrict attention to high type preferred equilibria I assume throughout that off path

beliefs are such that buyers assume that any deviation from the high type’s optimal choice is believed
to be a deviation by the low type. I discuss this choice of refinement later in Section 2.4.1.

11The signalling impact of advertising has been analysed elsewhere and is surveyed by Bagwell (2007).
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As highlighted previously, a launch campaign which induces stronger beliefs following

a good signal must produce good signals less frequently in order to satisfy Bayesian

rationality. This is the sense in which it will be easier to persuade high types to purchase

than it will be for low types, as the reference belief needed to encourage them to buy is

lower, and so a launch campaign which generates this signal will do so more often.

Moreover, it is for this reason that a fully informative launch campaign which reveals

all product information (i.e. µg = 1 and µb = 0) may not be optimal, as it could

reduce the probability that the campaign succeeds. As I show below, a fully informative

campaign is only optimal in one special case:

Lemma 2.1. The seller strictly benefits from information control if and only if u < λ

Corollary 2.1. Full revelation is only optimal only if u = λ

If u > λ there is no launch campaign which can persuade buyers to purchase, so

information control does not benefit the seller. Whenever u < λ then the seller will

always benefit from manipulating how much the buyers can learn about the product.

The only case where full revelation is optimal is when u = λ. In this case, buyers will

only purchase if they are certain they are match type θ = 1, therefore a fully revealing

campaign is the seller’s only option to persuade them to purchase. Ignoring this case,

the seller never wishes to allow buyers to discover their match type with certainty. In

particular, since the seller never wishes to induce posterior µg = 1, this implies that

they find it desirable to have some agents with match type θi = 0 receive a good signal.

Another point to note about the structure of the optimal launch campaign is that

the seller wishes to conduct an informative campaign if and only if λµL < u. Clearly,

if λ is such that u ≤ µLλ < µHλ then all types buy and an informative launch signal

cannot increase the payoff of the seller. If µLλ < u ≤ µHλ then the seller can benefit

from a launch campaign such that µHb λ = u and µLg λ = u as all high types will still

purchase, and the low types now have a non-zero probability of purchasing. Similarly,

for µLλ < µHλ ≤ u, neither type purchases and so a campaign which has a non-zero

probability of persuading either type is always beneficial.

The seller will therefore only wish to provide extra information to buyers if the
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public belief about quality is sufficiently pessimistic, as the result of especially negative

or uninformative reviews. However, if the public belief about quality is too low following

the review then it may be impossible to persuade either of the two types to buy as u > λ

and consequently µ̄L > 1 and µ̄H > 1. I will return to these cases later in the chapter

but for now I assume that the review has endowed buyers with belief λ such that

u < λ and information control is beneficial. Ignoring the above mentioned case where

it is optimal for the seller to provide a completely uninformative launch campaign (i.e.

u ≤ µLλ < µHλ), I now examine the two main cases where it is beneficial for the seller

to commit to an informative launch campaign:

Case 1: µLλ < u < µHλ

In this case, low type buyers will not endorse the product unless the seller conducts

a persuasive launch campaign. Here the optimal launch campaign takes one of two

possible forms. The belief induced following a successful launch must always be such

that the low types purchase - if this were not the case (e.g. a good launch signal only

persuaded the high type to purchase) then the seller gains nothing from the launch

campaign. The optimal campaign is therefore such that a good signal encourages the

low types to buy.

Bayesian rationality ensures that the seller faces a trade-off when picking the pos-

terior belief µb. On the one hand, the seller wishes to select µb such that all high types

will still purchase after a bad signal, yet lowering µb also increases the probability that a

good signal will be drawn. I show below that the seller will prefer to pick an information

structure which yields more extreme posterior beliefs when the private information of

the buyers is less accurate.

Proposition 2.1. If µLλ < u < µHλ then there exists an ᾱ such that the optimal

launch campaign satisfies:

• µLg λ = u and µbλ = 0 if α ≤ ᾱ

• µLg λ = u and µHb λ = u if α > ᾱ
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Figure 2.4: Optimal Launch Campaign with λ = 0.7, µ = 0.7

This result demonstrates that in this case two types of launch campaign can be

desired by the seller. In both campaigns µLg λ = u is satisfied, meaning that all types

buy following a good signal. The optimal belief which is induced after a bad signal

will either be just enough to persuade the high types to purchase, or it will deliver a

posterior belief of µb = 0, maximising the chance of a good signal.

When the private information of buyers is more accurate this has two effects on

the design of the signal. Firstly, a larger α means that high type buyers have a strong

pre-launch belief that they are match type θ = 1. This means that the seller can design

a launch campaign which delivers a very negative signal and the high types will still

wish to purchase. In other words, almost nothing that the seller could reveal about

the product would be able to put the high types off. Inducing a more pessimistic belief

when the launch campaign goes badly will be desirable for the seller since this actually

increases the probability that a good type signal is drawn. When α is low, the beliefs of

consumers are less dispersed and so a campaign which targets the high types following

a bad signal is less likely to be successful, since the beliefs which the high types hold

are close to the prior. This makes the realisation of a bad launch signal more likely.

Secondly, a higher α can also result in there being a larger fraction of high types in

the population if µ > 0.5. If µ > 0.5, then the larger the fraction of high types, the

more desirable it is to design a campaign which does not alienate them in the event

that it sends them a bad signal.
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Figure 2.5: Optimal Launch Campaign with λ = 0.5, µ = 0.2

Case 2: µLλ < µHλ < u

In this case λ is sufficiently low that no buyers wish to purchase unless they are per-

suaded to do so by the seller’s launch campaign. Again, the optimal campaign takes

one of two possible forms:

Proposition 2.2. If µLλ < µHλ < u then the optimal launch campaign satisfies:

• µLg λ = u and µbλ = 0 if α ≤ ᾱ

• µHg λ = u and µbλ = 0 if α > ᾱ

Again there are two distinct launch campaigns which the seller may wish to commit

to. When α is low, the seller wishes to have a launch campaign such that both types

purchase following a good signal, yet no one purchases following a bad signal. When

buyers have sufficiently strong private information, the seller adopts a niche marketing

strategy where only high types are targeted, but with a higher probability of success

than in the case where private information is low. A niche campaign is more beneficial

when α is high but µ is low, since low types will need to have a signal which delivers

posterior close to 1, making the campaign very unlikely to succeed.

As shown in Propositions 2.1 and 2.2, higher public beliefs about quality will induce

different launch campaigns for the seller. The public belief about product quality is

endowed by pre-launch reviews, which a feature of the model that is currently exogen-

ous. With a view to later endogenising the behaviour of reviewers, I examine how the

expected payoff for the seller will vary in λ.
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µLλ < u < µHλ µLλ < µHλ < u

α ≤ ᾱ µLg λ = u; µbλ = 0 µLg λ = u; µbλ = 0
(Mass market) (Mass market)

α > ᾱ µLg λ = u; µHb λ = u µHg λ = u; µbλ = 0
(Segmented) (Niche)

Table 2.1: Summary of Optimal Launch Campaigns

When buyers have weak private information (α ≤ ᾱ), the seller will always opt for a

mass market campaign. This launch campaign aims to persuade all buyers to purchase

if successful and maximises the probability of success by setting µHb λ = 0. Therefore,

the expected payoff for the seller from this launch campaign is simply Pr (g). When

buyers have strong private information (α > ᾱ), the seller will always opt for a niche

campaign or a segmented campaign, yielding payoffs Pr (g,H) and Pr (g) + Pr (b,H)

respectively. The following lemma demonstrates that the seller always benefits from

higher public belief λ for any campaign which they run.

Lemma 2.2. Conditional on λ > u, the seller’s expected payoff is strictly increasing in

λ

The seller will always prefer to have a higher λ since it makes the job of persuading

buyers to purchase easier. In the case where private information is weak, increasing λ

means that it is easier to persuade low type buyers to purchase, since they will now

have a lower threshold belief. Lowering the threshold belief increases the probability

that the launch campaign is successful, since µg is now closer to µ.

In the case of strong private information, two effects work in different directions in

the case of a segmented launch campaign. On the one hand, a higher λ means that the

launch campaign is more likely to be successful for a larger proportion of buyers, but

on the other hand, a higher λ means that there are more high types (in expectation),

who would otherwise purchase and could be discouraged by a poor launch campaign

signal. I show that increasing λ is always beneficial for the seller for all possible launch

campaigns.
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2.3.3 Endogenous Pricing

The results in this section stand in partial contrast to those in the existing literature.

The findings of Lewis and Sappington (1994), Johnson and Myatt (2006) and Ottavi-

ani and Prat (2001) would suggest that a seller should prefer ‘all or nothing’ launch

campaigns, where buyers are allowed to discover their match type with certainty. Pro-

positions 2.1 and 2.2 demonstrate that the seller never wishes to commit to ‘all or

nothing’ campaigns in this setting (except when λ = u), as when µg is close to 1, in-

creases in µg will increase the probability that the campaign fails without increasing

the payoff when it succeeds.

This result is a consequence of the assumption that the seller cannot set prices, and

so is not able to extract the extra surplus which might arise from a higher µg. I now

drop this assumption and allow for the seller to be a monopolist who to jointly picks

their price and launch campaign. I show that allowing the monopolist full flexibility in

setting their price restores the incentive to fully reveal information.

I assume that the seller is not able to condition their price on the outcome of

the launch campaign. This assumption differs from Gill and Sgroi (2012), who allow

conditional pricing, but is justified in this particular setting since si is privately observed

by each buyer, unlike a public signal of quality. Therefore, the monopolist acts in two

stages: first they set their price p and second they commit to their launch campaign by

designing a signal. Buyers then observe their private signal σi, their launch signal si

and the seller’s price p; choosing to purchase if p ≤ λE [θi | σi, si].

The analysis proceeds by replacing u from the previous case with p and then ex-

pressing the seller’s payoff as a function of p. Conditional on the seller’s choice of p, the

optimal launch campaign is identical to the previous case, as the seller simply wishes

to maximise the number of buyers who purchase at price p, rather than subject to a

reservation utility u. I maintain the assumption that the pre-launch reviewer endows a

public belief of λ and so the seller never wishes to price at p > λ.

When buyers have weak private information (α ≤ ᾱ), then Propositions 2.1 and 2.2

have shown that the seller commits to a mass market launch campaign which targets
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all buyers. The payoff for the seller in this case is therefore given by p · Pr (g), where

the seller charges price p, that is accepted by all those with good signals.12

Proposition 2.3. If α ≤ ᾱ and the seller has the ability to set prices then a fully

revealing launch campaign is always optimal.

The insights of Lewis and Sappington (1994), Johnson and Myatt (2006) and Ot-

taviani and Prat (2001) are upheld when private information is weak and the seller

is able to set their price prior to launch. As in Rayo and Segal (2010), who study a

model of optimal information disclosure, allowing the seller to select optimal monetary

transfers from buyers makes full revelation optimal. Intuitively, full revelation ensures

that buyers gain no informational rents.

This complements the basic intuitions of Lewis and Sappington (1994) and Ottaviani

and Prat (2001), who consider price discriminating monopolists that have the ability

to offer a menu of contracts to buyers. My model partially extends the insights of

Lewis and Sappington (1994) who place restrictions on the joint distribution of signals

which the monopolist can provide, and Ottaviani and Prat (2001) who allow the seller

to observe a public signal of quality and condition their contracts on the result. I show

that even without offering a menu of contracts, or being able to observe the outcome

of the signal, that a price setting monopolist will opt to allow buyers to discover their

true valuation for the product when private information is weak.

When buyers have strong private signals (α > ᾱ) then the seller either selects a niche

campaign when µLλ < µHλ < p , giving payoff p · Pr (g,H), or a segmented campaign

when µLλ < p < µHλ, giving payoff p · (Pr (b,H) + Pr (g)). It is straightforward to

show that the seller’s payoff is non-decreasing in p when they run a niche campaign,

yet it is harder to show this for segmented campaigns. Although I have been unable to

prove this result directly, numerical computations indicate that the same conclusion as

in Proposition 2.3 holds in the case when private signals are strong.

To conclude this subsection, it is the inability to extract the surplus that buyers

gain from fully learning their match type which drives sellers to obfuscate details of the
12Clearly, setting p > µLg λ cannot be optimal.
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product. It should be noted however, that when the seller can price their product freely

and fully reveal the product details, then all surplus is extracted from buyers. When

the setting of prices is restricted, high type buyers will be able to earn an informational

rent. I now move on to examine how the behaviour of external reviewers influences the

seller’s campaign where the buyer’s reservation utility is again exogenously given.

2.4 A Simple Model of Third Party Reviewers

Although the seller has private information about their quality, they are not able to

disclose this credibly to buyers. For this reason, I assume that an independent third

party (a reviewer) must evaluate the product’s quality and produce a review which

either passes or fails the product. I assume that the initial public belief of buyers is low

enough that the firm must submit their product for review in order to attract buyers.

Therefore I assume that λ < u, so that even high type buyers will not wish to purchase

unless the product is deemed high quality by the reviewer. This assumption fits the

case where a seller is bringing a new product to market and must convince buyers to

purchase over an incumbent product which has already been certified as good.

When evaluating a product, I assume that the reviewer receives an impression of

the product which is a realisation of random variable X̃. The reviewer’s impression of

the product is distributed according to distribution function G (x, q) where q is used to

denote the quality of the good as either 1 or 0. Following the realisation x ∈ X, the

reviewer then certifies the product as either passing or failing based on whether their

impression of the product is sufficiently high (i.e. if x ≥ x̄). I assume throughout that

G (x | 1) and G (x | 0) have full support on X so that noise is a necessary feature of the

reviewer’s technology and that all reviews are subject to some error.13

A higher threshold x̄ for passing should be interpreted as a reviewer having higher

standards which any product must meet before being certified as good quality. A

reviewer therefore reveals the test result as either a pass or a fail according to the
13I assume also that G (x | 1) and G (x | 0) admit corresponding density functions g (x | 1) and

g (x | 0).
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function

T (x) =


P if x ≥ x̄

F if x < x̄

Following the result of the test, buyers will update their beliefs about quality to either

λP or λF . A condition which the density functions g (x | 1) and g (x | 0) could satisfy in

order to satisfy this interpretation of the certification technology used by the reviewer is

the strict monotone likelihood ratio property (MLRP) which was introduced by Milgrom

(1981).14 The standard intuition for this condition is that higher x are more likely to be

observed when the quality of the good is 1 rather than 0. As shown by Eeckhoudt and

Gollier (1995), whenever a family of densities satisfy MLRP, then the corresponding

family of distribution functions satisfy what they call the monotone probability ratio

property (MPRP):

Definition 2.1. A family of cumulative distribution functions {G (x | q)}q∈{0,1} has the

strict monotone probability ratio property (MPRP) if and only if for every x̄ > x̄′ and

q > q′

G (x̄ | q)
G (x̄ | q′) >

G (x̄′ | q)
G (x̄′ | q′)

The interpretation of this condition is similar to MLRP and can be most easily seen

by using Bayes’ rule to rewrite the condition as

Pr (1 | x ≤ x̄) Pr (x ≤ x̄) /Pr (1)
Pr (0 | x ≤ x̄) Pr (x ≤ x̄) /Pr (0) >

Pr (1 | x ≤ x̄′) Pr (x ≤ x̄′) /Pr (1)
Pr (0 | x ≤ x̄′) Pr (x ≤ x̄′) /Pr (0)

and then cancelling to express the condition in terms of the posterior odds ratio

Pr (1 | x ≤ x̄)
Pr (0 | x ≤ x̄) >

Pr (1 | x ≤ x̄′)
Pr (0 | x ≤ x̄′)

14A family of probability density functions {g (x | q)}q∈{0,1} has the strict monotone likelihood ratio
property (MLRP) if and only if for every x̄ > x̄′ and q > q′

g (x̄ | q)
g (x̄ | q′) >

g (x̄′ | q)
g (x̄′ | q′)

As is well known, if the density functions satisfy MLRP then this implies first order stochastic
dominance (FOSD).
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The condition now states that the higher the threshold for passing the test, the

more likely it is that the quality is 1 as opposed to 0 if the product fails. Intuitively,

reviewers with higher thresholds fail more good products than reviewers with lower

thresholds. For any two reviewers A and B, I will say that reviewer A is harsher than

B if x̄A > x̄B. Since their threshold for passing the test is higher, they incorrectly fail a

larger number of good quality products. I now show that if MPRP holds, then harsher

reviewers always deliver higher posterior beliefs following any outcome of their test.

Proposition 2.4. If Reviewer A is harsher than Reviewer B then λFA > λFB and λPA >

λPB

If a reviewer has particularly high standards, then a pass provides a strong signal

that the product quality is good. On the other hand, failing a harsh test is far less

damning than failing a soft test and so λFA > λFB and λPA > λPB whenever A is harsher

than B.

Taking the null hypothesis as q = 0, soft reviewers have a stronger tendency to

commit ‘Type I’ errors by incorrectly passing poor quality products, whereas harsh

reviewers have a stronger tendency to commit ‘Type II’ errors by incorrectly failing

good quality products. Harsh reviewers have very little downside in terms of the beliefs

which they generate post-test, as a pass is a strong signal of quality yet a fail carries

little weight. The major detractor of having a harsh review is therefore the low pass

rate associated with it. To summarise their relative merits, soft reviewers pass a larger

fraction of products but provide very weak signals of quality following a pass, whereas

harsh reviewers provide a stronger signal following a pass at the cost of having a lower

pass rate.

A corollary of Proposition 2.4 is that if private information is weak (α ≤ ᾱ ), then

conditional on the result being either a pass or a fail, harsher reviewers will induce

the seller to provide a less informative launch campaign. This arises due to the fact

that when beliefs about quality are higher, the seller needs to do less to convince the

buyers to purchase. In the case of weak private information, the seller will always run a

mass market launch campaign, and since the beliefs about quality are higher, all cut-off
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Figure 2.6: The PDF and CDF for X̃

beliefs for the seller to induce buyers to purchase are lower.

However, it may of course be the case that, on average, harsher reviewers induce

the seller to undertake a more informative launch campaign. I now examine this issue

in more detail.

2.4.1 The Seller’s Optimal Reviewer

In order to proceed I will restrict attention to a particular functional form for the

distribution of X̃. I assume that X = [0, 1] with {G (x | q)} having full support on

X. I assume that x is drawn from triangular distributions on X with densities given

by g (x | 0) = 2(1 − x) and g (x | 1) = 2x and corresponding distribution functions

G (x | 0) = 2x−x2 and G (x | 1) = x2. These distributions satisfy MLRP and therefore

G (x | 1) first order stochastically dominates G (x | 0).

From a buyer’s perspective, all reviewers perform fair tests of the product and will

induce the same posterior belief in expectation. However, the same is not true for the

seller, since they have private information about their product’s quality. Given that the

high type seller knows that their product is of quality q = 1, their expectation of the

reviewer’s result will be more favourable. From the perspective of a high quality seller,

different reviewer harshnesses will imply different expected posteriors. For example, a

reviewer who is maximally soft or harsh (i.e. x equal to 0 or 1) will pass/fail every

product and so will always induce posterior beliefs equal to the buyer’s prior belief,

even when the product is of high quality. However, any reviewer x̄ ∈ (0, 1) will provide

an informative test of quality, which is more likely to certify high quality products as
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passes.

As Lemma 2.2 demonstrates, conditional on the seller being able to run an effective

launch campaign, they will always benefit from having a test which maximises the

posterior λT . However, some reviewers may have thresholds such that even if the

product passes, the public belief will be so low that the seller is unable to use their

launch campaign to manipulate the beliefs of buyers.

I consider now the possibility for the seller to select a reviewer from a continuum

of reviewers x̄ ∈ [0, 1]. For example, a company may select amongst investment banks

of differing standards to underwrite an IPO, or a record company may select amongst

differing magazines to provide a preview of a new album. As mentioned previously,

conditional on being able to run a launch campaign, the seller benefits from having the

highest possible public belief about quality. However, there will be cases where some

excessively soft reviewers will eliminate the possibility for the seller to run their launch

campaign, and so the sellers choice x∗ ∈ [0, 1] must take account of this fact. Since it

was assumed that λ < u, only reviews which certify the product as passing will enable

the seller to run their launch campaign. Reviewers who are too soft to induce a pass

belief λP > u will leave the seller with a payoff of 0, since the seller is unable to persuade

buyers with high match types to purchase.

The choice of reviewer by a seller with private information also opens up the pos-

sibility of signalling via choice of test (as in the classic literature on signalling). I show

below that all equilibria must be pooling equilibria, as here it is costless for the low

type to mimic the high type’s choice.

Lemma 2.3. The low type seller always pools on any test chosen by the high type

To support this equilibrium I assume that beliefs are such that if buyers observe an

action off the equilibrium path, then they place probability 1 on the seller being a low

quality type. Gill and Sgroi (2012) also place this restriction on off path beliefs and

note that this is a variant of the ‘undefeated’ equilibrium refinement of Mailath et al.

(1993). I also appeal to a version of this refinement used by Perez-Richet (2014) in his

study of models of Bayesian persuasion where the seller has private information about
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their type.15 Intuitively, this refinement states that for any off path deviation which is

observed, the buyers must put positive weight only to those types who would benefit

from such a deviation if it were an equilibrium. Since the high types are strictly worse

off in any other pooling equilibrium, buyers must assume that any such deviation is by

a low type.

Separation by the low type is never beneficial, even weakly, so long as tests are noisy

to some small degree. Any type who separates reveals their quality as q = 0 but since I

have assumed full support for {G (x | v)}, no review could ever perfectly reveal product

quality and so they always do better by pooling. Consequently, a seller who observes

their type as low prefers to mimic the high type.

Focusing therefore on the high type seller’s choice of reviewer, I define X ′ as the set

of reviewer thresholds which generate a pass belief sufficient to allow the seller to run

an effective launch campaign (i.e. X ′ ≡
{
x̄ ∈ X | λPx̄ ≥ u

}
). Proposition 2.4 tells us

that λPx̄ is increasing in x̄ and so X ′ = [x′, 1] , where x′ solves λPx′ = u. Recalling the

result of Lemma 2.2, the high type seller’s problem is

max
x̄∈X′

Pr (P | q = 1)λPx̄ (2.5)

Using x∗ to denote the solution to (2.5) I now show that softer tests will be desired

when public beliefs about quality are higher

Proposition 2.5. The threshold of the seller’s optimal reviewer x∗ is weakly decreasing

in λ

The seller’s optimal reviewer x∗ is strictly decreasing in λ until x∗ is such that

lowering it further would imply that λPx̄ < u, in which case the optimal reviewer has

threshold x′. Harsh reviewers will generally be preferable to the seller when λ is low

for two reasons. Firstly, when the public has low prior beliefs about quality, then harsh

reviews are expected to make fewer ‘Type II’ errors from a buyer’s perspective. The

major detractor of harsh tests is that they fail too many good products, yet when the

seller knows her quality is high but the public believe that the product is very likely
15See the definition of R1 in the working paper version of Perez-Richet (2014) for more details.
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Figure 2.7: Effect of λ on the Seller’s Choice of Reviewer

to be of low quality, then a pass from a harsh reviewer provides a very strong signal.

For this reason, harsh reviews are more attractive to the seller when the public belief

λ is low, since the buyers will view a fail as having eliminated the vast majority of bad

quality products.

Harsh reviewers have a second feature which benefits the seller when the prior belief

is low. Since the seller must generate a posterior belief λP which at least matches the

reservation utility u, the sellers are drawn to the harsh end of the reviewer spectrum,

since only the high posterior induced by harsh reviewers will give them a platform to

promote their product. Solving λPx′ = u reveals that

x′ = u− λ
u(1− λ) + λ(1− u)

which is also a decreasing function of λ, meaning that as the prior gets lower, the seller’s

choice is restricted to only the harshest reviewers. Therefore, as λ decreases, the high

quality seller (who wants to reveal their quality) may be forced to pick a reviewer who is

excessively harsh. This effect is more pronounced for higher u, as shown in Figure 2.7,

where I use x′′ to denote the optimal reviewer in the unconstrained problem (i.e. where

u = 0). The seller’s optimal choice of reviewer x∗ is effectively the upper envelope of

these two functions.

This highlights the difference between my results and those of Gill and Sgroi (2012),

who show that when the seller can price their product conditional on the result of the
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review that the seller may desire the softest possible test available. In contrast to my

model, Gill and Sgroi (2012) contend there can be demand for ultra-soft reviewers who

effectively rubber stamp every product, even when the seller has private information

that they are high quality. In my case, because the seller must run a launch campaign

to persuade sceptical buyers to endorse their product, a sufficient level of credibility

must be met before buyers will be open to persuasion.

This also has a consequence for the launch campaign that the seller will eventually

run. When the seller is forced to pick a reviewer x′ who will deliver posterior λPx′ = u,

Corollary 2.1 tells us that the seller will opt for a fully revealing launch campaign. If

we view the value of the outside option as a proxy for the saturation of the product

market, then when the market is more saturated, the seller will be driven to submit

their product to overly harsh reviewers and reveal all product information at launch.

Overly harsh reviewers in this case means reviewers who do not maximise the high type

seller’s expectation of the buyer’s posterior.

As for the welfare of the buyers, these two effects go in opposite directions. Overly

harsh tests will fail a larger number of good products, but more information about their

match type will always be beneficial. I now move on to briefly examine how the choice

of reviewer (and resulting launch campaign) impacts the buyers.

2.4.2 The Buyers’ Optimal Reviewer

I now consider how the positioning of the reviewer affects the welfare of the buyers,

taking in to account the seller’s design of launch campaign. In this case, I assume

that the reviewer is ‘buyer focused’ and wishes to maximise the buyer’s welfare by their

choice of x̄. Alternatively, the reviewer could be selected by a social planner, who wishes

to install a consumer watchdog or standards setting organisation to regulate product

quality.

From the buyers’ perspective, all reviewers deliver the same posterior belief in ex-

pectation, however not all reviewers are equally desirable. In the absence of a launch

campaign run by the seller, the optimal reviewer for the buyers is one who will maximise

the posterior belief that product is high quality, conditional on the buyers purchasing.
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If, for example, a reviewer’s threshold for passing were so low that no buyers will ever

purchase, (even if the product passes the test), then this reviewer provides no service

for the buyers (or the seller). A buyer will only find a review useful if the outcome of

the review will be able to have an impact on their purchasing decision.16

If we take account of the action of the seller through their launch campaign, then the

optimal reviewer for the buyers may differ, as the amount of ‘match type’ information

released by the seller is contingent on λP . Given the results in the previous section, low

type buyers always earn u in expectation, for any reviewer x̄. If the reviewer fails the

product, then they take their outside option, yet if they pass the product the seller runs

a launch campaign which either gives u in expectation or simply u if they run a niche

campaign. Therefore, only high type buyers stand to benefit, conditional on the seller’s

launch campaign and I focus therefore on reviewers who aim to maximise the expected

welfare of the high type buyers.17

The only possibility for the high type buyers to earn a payoff above u is when the

seller runs a mass market or segmented campaign and the buyer receives a good signal.

The ex-ante expected payoff for high type buyers is therefore Pr (g,P | H)λPµHg + (1−

Pr (g,P | H))u. To keep this section of the chapter tractable I restrict attention to

the case of α ≤ ᾱ, focusing on the case where the seller always runs a mass market

launch campaign. By doing so and noting that result of the review and the realisation

of private signals about match types are independent events, Pr (g,P | H)λPµHg can be

re-written as Pr (g | H,P) Pr (P)λPµHg = Pr (P | q = 1)λµH , meaning that the problem

for a buyer focused reviewer is

max
x̄∈X′

Pr (P | q = 1)λµH + (1− Pr (g,P | H))u (2.6)

In addition to the usual trade off between harsh and soft reviewers, there is another

factor which influences the decision. Although softer reviews generate lower post-review
16Similarly, if the prior were such that λ > u, then excessively harsh reviewers who induce beliefs

λF > u following a fail would be of no value to the buyers.
17In an alternative version of the model, one could analyse the incentives of reviewers who cater to

high type buyers, perhaps hoping to extract surplus from them via advertising or charging a fee to
access the review. In that case, however, the signal is no longer public and so low and high type buyers
would have different beliefs about q also.
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beliefs, this induces the seller to reveal more information about buyer’s match types.

Therefore, soft reviewers can become more appealing to buyers when the risks associated

with them become relatively insignificant.

Lemma 2.4. If the buyers have weak private information then the buyers’ optimal

reviewer x̂ is decreasing in λ and is given by

x̂ = (1− λ)u
(1− λ)u+ λ(1− u)

As in the seller’s case, the optimal reviewer harshness is decreasing in λ. Note also

that x̂ > x′, so that the buyers never wish to assign a reviewer who is so soft as to force

the seller to reveal all the information about the quality of the good. That is not to

say, however, that the buyers always desire a harsher reviewer than the seller, as the

following result shows:

Proposition 2.6. When α ≤ ᾱ and u < 1
4 , then for λ sufficiently high, the buyers

would select a softer reviewer than the seller.

Somewhat counter-intuitively, the buyers may opt for a softer reviewer than the high

type seller would choose. This occurs when the outside option u is low (buyers have

little to lose if the soft reviewer passes a bad product) and the prior λ is sufficiently

high (fewer bad products exist in expectation). When these conditions hold, the high

type buyers will choose a softer reviewer than the seller would, in order to induce the

seller to provide more information about their match type. Learning more about their

match type is always beneficial for the buyers, but when there is a larger share of bad

products in the market, or when the opportunity cost of their outside option is high,

this incentive to select soft reviewers is diminished.

2.5 Discussion and Conclusion

The contribution of this chapter to the literature on persuasion and the revelation of

product information by a seller is threefold. Firstly, I add to the Bayesian persuasion

literature by considering the case of multiple receivers with private signals and show
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that the framework can be extended to this setting. Secondly, I add to the literature on

provision of private signals by a seller, by examining the structure of optimal marketing

campaigns. Thirdly, I develop the literature on the optimal choice of pre-launch reviewer

initiated by Gill and Sgroi (2008) and Gill and Sgroi (2012).

Although Kamenica and Gentzkow (2011) mention that their model can be extended

to the case of private information and (separately) multiple receivers, I have shown that

their framework can be applied more broadly. To my knowledge, this model is the

first to examine the case where a sender must design a signal to persuade a group of

buyers with differing beliefs. The Bayesian persuasion framework has previously been

applied to analyse the control of public information, yet I have shown that it can also be

readily applied to the case of private information. Therefore, the key difference between

my approach and the standard one is that although the signal generating mechanism is

static, it generates potentially different signals for each buyer, rather than being publicly

announced. This is an important application because it allows the model to extend to

a number of different settings where a single seller wishes to persuade a multitude of

heterogeneous buyers to endorse their product.

This model is also amongst the first to embed the Bayesian persuasion framework in

a setting of heterogeneous types. One similar contribution is the recent paper of Perez-

Richet (2014) who looks at a model of interim Bayesian persuasion whereby the seller

of the good (not the buyer) has private information about their type before designing

the signal. Although both the seller and the buyers have private information in my

model, it is the private information of the buyers which plays a key role in determining

the seller’s optimal information structure. Another recent paper which allows a sender

to condition their design of signal on their private information is Kolotilin (2014). The

key differences between my model and that of Kolotilin (2014) are firstly that I focus on

the case of multiple buyers, secondly, he examines signals which are ex-ante optimal for

the seller, rather than focusing on high type preferred signals, and lastly the receivers

learn about the sender’s type, rather than their own type.

In this model, firms send private signals about product features in the form of

a launch campaign, whereas reviewers release a public signal about the underlying
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quality of the good. As mentioned by Johnson and Myatt (2006) and Ottaviani and

Prat (2001), although the literature on the value of public information for a monopolist

is well developed, the literature on the value of private information is still lacking. This

chapter can therefore be viewed as a step in this direction which takes advantage of

some of the recent developments in the field of information control and the design of

optimal signals.

The results presented in Section 2.3 stand in partial contrast to some of those in

the existing literature (e.g. Johnson and Myatt (2006), Lewis and Sappington (1994),

Ottaviani and Prat (2001)). The main result of Lewis and Sappington (1994) is that

the seller prefers either no information release or a signal which allows buyers to fully

reveal their type. I have shown that fully revealing signals are only optimal for one

special case, and sellers will generally wish to obfuscate the product details in order to

increase the chance of a successful product launch. A key difference between my paper

and both Lewis and Sappington (1994) and Ottaviani and Prat (2001) is that they

make the assumption that the seller is a price discriminating monopolist and is able

to offer a menu of contracts to extract surplus from both buyer types. Indeed, when

the seller has full monopoly power and private signals are weak, then fully revealing

tests are also optimal in my set-up, under weaker assumptions about the ability to price

discriminate than Ottaviani and Prat (2001) and under more general signals than Lewis

and Sappington (1994).

My model therefore shows that restricting the ability of firms to set prices can

induce intentional obfuscation of product information by the seller. As is the case in all

Bayesian persuasion models, the sender of a signal finds it difficult to induce posteriors

for the receiver which are very far away from their prior belief. For that reason, launch

campaigns which aim to fully reveal types have a larger risk of failing as they must

reveal information which is ‘surprising’ to buyers and viewed (correctly) as ex-ante very

unlikely.

Finally, I also bring out several novel points about the choice of optimal pre-launch

reviewers. The main result is Proposition 2.6 which demonstrates cases where the

buyers of a good wish to commission reviewers who are softer than those who would be
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commissioned by the seller. The optimal reviewer will be a decreasing function of the

public’s belief about quality, and unlike Gill and Sgroi (2012) where only the harshest or

softest reviewers are used, my model accounts for the existence of reviewers of varying

standard, who cater to products with different priors.

The other contribution which I make in this area is the result of Proposition 2.5,

which is more in line with the paper of Gill and Sgroi (2008), who find that ‘mildly

tough’ tests (i.e. just tough enough to induce informational cascades on buying) are

optimal. Sellers will often be forced to submit their product for overly harsh tests,

as only these test will generate sufficient credibility for the sellers to run their launch

campaigns effectively. We should therefore expect to see the thresholds of reviewers

being skewed more toward the harsher side, since soft reviewers will only be useful

when the outside option of buyers is very low.

Recent work by Ely et al. (2014) has examined dynamic information revelation in the

Bayesian persuasion framework with applications to the design of sports games, mystery

novels and auctions. The ‘seller’ in this case has preferences over the entire sequence

of the buyer’s beliefs and wishes to provide information to maximise the amount of

‘suspense’ and ‘surprise’ experienced by the buyer. The task of selecting the optimal

sequence of signals from the space of all possible belief paths can be simplified drastically

by applying the insights of KG’s original model. In their paper they focus on Markov

processes, utilising the martingale property of beliefs which characterises feasible signals

in KG to select the optimal policy amongst all Markov belief martingales.

Although their approach opens up the possibility of studying multi-period launch

campaigns, such campaigns seem unlikely to be beneficial for the seller in my particular

framework. Match types are independent across buyers and the seller learns nothing

about the quality of their good which they do not already know, so they cannot use

information gained in the first period to benefit them. Moreover, observational learning

by consumers cannot take place since they only have a public signal of quality. Introdu-

cing other aspects such of word of mouth communication or observational learning may

have an impact on the optimal dynamic campaign, but I leave this avenue for future

work.
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Appendix - Proofs

Proof of Lemma 2.1. Consider a fully revealing campaign run by the seller. If µ̄H <

µ̄L < 1 then by (2.2) the seller can increase the probability of a good signal for all types

by lowering µg to µg = µ̄L < 1. If u = λ then µ̄H = µ̄L = 1 and only buyers who are

revealed to have match type θ = 1 with certainty will purchase. In this case µg < 1

yields zero payoff so µg = 1 is optimal. To see that µb = 0 is optimal in this case note

again by (2.2) that the seller can increase the probability of a good signal by lowering

µb as much as possible.

If 1 < µ̄H < µ̄L then buyers cannot be persuaded to purchase and all launch

campaigns yield the same payoff.

Proof of Proposition 2.1. First I show that an optimal launch campaign satisfies

µLg λ = u. If µLg λ < u then low type buyers will never purchase and so the seller cannot

benefit from such a signal. If µLg λ > u then low types buy following a good signal, yet

(2.2) implies that reducing µLg to satisfy µLg = u/λ increases τL, and hence τ .

To show that either µHb λ = 0 or µHb λ = u for any optimal launch signal, note that

the martingale condition implies that µHb ∈ [0, µH0 ). Since only high types can ever buy

following a bad signal, if the posterior is such that µHb ∈ [u/λ, µH0 ) then only they will

purchase. Yet for µHb > u/λ, (2.2) implies that we strictly benefit from lowering µHb to

satisfy µHb λ = u. If the bad posterior is such that µHb ∈ [0, u/λ) then high types never

buy, and again (2.2) implies that we would strictly benefit from lowering µHb to µHb = 0

to maximise the probability of a good signal.

Finally, to show that there exists a cut-off ᾱ, using (2.2) I write the payoff of the

second campaign (µLg λ = u;µHb λ = 0) in terms of the reference belief as

Pr (si = g) = µ

µ̄L
(2.7)
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And the payoff for the second campaign (µLg λ = u;µHb λ = u) as

Pr (g) + Pr (b) Pr (H | b) = µ− µ̄H

µ̄L − µ̄H
+ µ̄L − µ
µ̄L − µ̄H

(
αµ̄H + (1− α)(1− µ̄H)

)
(2.8)

Where the expression for Pr (H | b) is arrived by first rewriting it as Pr (H | b) = Pr(H,b)
Pr(b) ,

then conditioning on θi to give

Pr (H, b | θi = 1)
Pr (b) Pr (θi = 1) + Pr (H, b | θi = 0)

Pr (b) Pr (θi = 0)

Finally, noting the conditional independence of σi and si gives

Pr (H | θi = 1) Pr (b | θi = 1) Pr (θi = 1)
Pr (b) + Pr (H | θi = 0) Pr (b | θi = 0) Pr (θi = 0)

Pr (b)

Using (2.7) and (2.8) we see that the first campaign is preferred to the second when

µ0
µ̄L
≥ µ0 − µ̄H

µ̄L − µ̄H
+ µ̄L − µ0
µ̄L − µ̄H

(
αµ̄H + (1− α)(1− µ̄H)

)

Which simplifies to

µ̄H ≥ µ̄L
(
αµ̄H + (1− α)(1− µ̄H)

)
Substituting in from (2.4) reveals after some manipulation that this condition holds if

and only if

α (u/λ) + (1− α) (1− (u/λ)) ≥ α2

Since by assumption u < λ, when α = 1
2 this holds, yet when α = 1 this is violated. The

left hand side is bounded between 1
2 and (u/λ) whilst the right hand side is bounded

between 1
4 and 1. Both sides are continuous monotone functions of α, therefore the

existence of a unique cut-off is established by the intermediate value theorem. This

cut-off can be found using the quadratic formula to yield

ᾱ = 1
2

(
(2 (u/λ)− 1) +

√
5− 8 (u/λ) + 4 (u/λ)2

)
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Proof of Proposition 2.2. By a similar argument to Proposition 2.1, the seller will

only ever wish to pick µHb = 0, since no buyers can ever purchase after a bad signal,

and setting µHb = 0 maximises the probability of a good signal being drawn. As in the

proof of Proposition 2.1, the good signal targets either all buyers or high type buyers

only, so either µLg λ = u or µHg λ = u.

When comparing the payoff of the two campaigns, targeting all buyers with µLg λ = u

is preferred to targeting only high types with µHg λ = u if

Pr [si = g] ≥ Pr
[
si = g′

]
Pr
[
σi = H | si = g′

]

Or
µ

µ̄L
≥ µ

µ̄H

(
αµ̄H + (1− α)(1− µ̄H)

)
Yet, this is an identical condition to the one in Proposition 2.1, and so the same

cut-off applies.

Proof of Lemma 2.2. If α ≤ ᾱ then the seller’s expected payoff is Pr (g) = µ
µg
. The

threshold belief µ̄L = µg is strictly decreasing in λ, therefore the seller’s expected payoff

strictly increases in λ. If α > ᾱ and µLλ < µHλ < u, the seller runs a niche campaign

which gives payoff Pr (g,H) = Pr (g) Pr (H | g) = µ
µg

(αµg + (1− α) (1− µg)) . Since

µ̄H = µg, a similar argument shows that the payoff is strictly increasing in λ.

Finally, if α > ᾱ and µL0 λ < u < µH0 λ then the seller’s payoff from a segmented

campaign is Pr (g) + Pr (b,H) which can be written as

Pr (g) + (1− Pr (g | H)) Pr (H) = Pr (H) + Pr (L | g) Pr (g) (2.9)

Using (2.4), Pr (L | g) becomes

Pr (L | g) = (1− α) αu

αu+ (1− α)(λ− u)+α (1− α)(λ− u)
αu+ (1− α)(λ− u) = α(1− α)λ

αu+ (1− α)(λ− u)
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then multiplying by Pr (g) means that Pr (L | g) Pr (g) is given by

α(1− α)λ
αu+ (1− α)(λ− u) ·

µ− (1−α)u
(1−α)u+α(λ−u)

αu
αu+(1−α)(λ−u) −

(1−α)u
(1−α)u+α(λ−u)

Multiplying the numerator and denominator of the second term by (1−α)u+α(λ−u),

then simplifying eventually leads to

Pr (L | g) Pr (g) = α (1− α)λ
[

αµ

(2α− 1)u −
(1− α) (1− µ)
(2α− 1)(λ− u)

]
(2.10)

The term in square brackets is positive, as this is simply Pr(g)
αu+(1−α)(λ−u) . Then we see that

differentiating (2.10) with respect to λ proves that Pr (L | g) Pr (g) is strictly increasing

in λ for λ > u.

Proof of Proposition 2.3. If α ≤ ᾱ the seller wishes to conduct a mass market cam-

paign such that µLg λ = p and µLb λ = 0. Since the threshold belief µ̄L is a function of p,

we write the payoff from a mass market campaign as

p
µ

µ̄L
= pµ

αp+ (1− α) (λ− p)
αp

which is a linear function of p. Simplifying this expression gives µα (αp+ (1− α) (λ− p)),

which is increasing in p since α ∈ (0.5, 1). The constraint that p ≤ λ ensures that p = λ

is the optimal price for any mass market campaign. Given the fact that µLg λ = p for

any mass market campaign, this shows that µLg = 1.

Proof of Proposition 2.4. We want to show firstly that if x̄A > x̄B then Pr (1 | x < x̄A) >

Pr (1 | x < x̄B). Or, since the state space is binary, we want to show that Pr(1|x<x̄A)
Pr(0|x<x̄A) >

Pr(1|x<x̄B)
Pr(0|x<x̄B) . Using Bayes’ rule this condition reduces to G(x̄A|1)

G(x̄A|0) > G(x̄B |1)
G(x̄B |0) , which is

satisfied due to the monotone probability ratio property, proving that λFA > λFB.
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Next, to show that Pr(1|x≥x̄A)
Pr(0|x≥x̄A) >

Pr(1|x≥x̄B)
Pr(0|x≥x̄B) , Bayes’ rule gives 1−G(x̄A|1)

1−G(x̄A|0) >
1−G(x̄B |1)
1−G(x̄B |0)

which can be re-expressed as

G (x̄A | 1)G (x̄B | 0)+G (x̄A | 0)+G (x̄B | 1) > G (x̄A | 0)G (x̄B | 1)+G (x̄A | 1)+G (x̄B | 0)

Due to FOSD we can replace G (x̄B | 0) with G (x̄B | 1) and cancel to give

G (x̄A | 1)G (x̄B | 0)−G (x̄A | 0)G (x̄B | 1) > G (x̄A | 1)−G (x̄A | 0)

Where G (x̄A | 1)−G (x̄A | 0) < 0 again from FOSD.

The previous inequality holds if G (x̄A | 1)G (x̄B | 0) − G (x̄A | 0)G (x̄B | 1) > 0,

which is satisfied since G(x̄A|1)
G(x̄A|0) >

G(x̄B |1)
G(x̄B |0) by assumption, proving that λPA > λPB.

Proof of Lemma 2.3. Assume that a separating equilibrium exists, since the choice

of reviewer is costless, the low type seller could mimic the decision of the high type

seller and increase their payoff. To show that pooling is an equilibrium I repeat the

argument in the text. Off path beliefs ensure that neither high type or low type seller

can deviate to increase their payoff.

Proof of Proposition 2.5. Using the definition of G (· | q), the seller’s objective func-

tion can be written as

Pr (P | q = 1) Pr (P | q = 1)λ
Pr (P) = (1− x2)(1− x2)λ

Pr (P)

This function is strictly concave in x for x ∈ [0, 1], so first order conditions imply that

2(1− x2)(−2x)λPr (P)− (1− x2)2λ
dPr (P)
dx

= 0

Rearranging and cancelling terms gives the condition −4xPr (P) = (1−x2)dPr(P)
dx , then
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substituting in for Pr (P) this becomes

−4x
(
(1− x2)λ+ (1− x) 2(1− λ)

)
= (1− x2) (−2xλ− (2− 2x)(1− λ))

After rearranging we can express this as

2x(1− x)(1− λ) = (1 + x)(1− λ− x)

Finally, expanding and collecting all terms on the left hand side we arrive at

x2 (2λ− 1) + x(2− λ) + (λ− 1) = 0 (2.11)

Implicit differentiation of (2.11) with respect to λ reveals that if x ∈ [0, 1] and λ ∈ [0, 1]

then
∂x∗

∂λ
= −2x2 − (1− x)
λ(4x− 1) + 2 (1− x)

It is easily verified that the denominator is > 0, proving that x∗ is decreasing in λ. To

find the optimal x we solve the quadratic in (2.11), taking only the solution such that

x lies in the interval [0, 1]. This assumes that x in (2.11) satisfies the condition that

λPx ≥ u. If this does not hold then x∗ is given by a boundary case where it solves the

equation
(1− x2)λ

(1− x2)λ+ (1− (2− x2))(1− λ) = u

Proof of Lemma 2.4. Rewriting (2.6) by again exploiting the independence of T and

σ we can express the objective function as

Pr (P | q = 1)λµH + (1− Pr (g | P, H) Pr (P))u

The results of Proposition 2.1 and 2.2 show that Pr (g | P, H) = µH

µHg
, substituting in for
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µHg = α2u
α2u+(1−α)2(λP−u) we get

Pr (P | q = 1)λµH +
(

1− µH
(

1 + (1− α)2(λP − u)
α2u

)
Pr (P)

)
u

Or

Pr (P | q = 1)λµH +
(

1− µH
(

Pr (P)
(

1− (1− α)2

α2

)
+ (1− α)2

α2
Pr (P |q = 1)λ

u

))
u

Further manipulation yields

Pr (P | q = 1)λµH
(

1− (1− α)2

α2

)
+ u− uµH

(
Pr (P)

(
1− (1− α)2

α2

))

and finally

µH
(2α− 1)
α2 (Pr (P | q = 1)λ (1− u)− Pr (P | q = 0) (1− λ)u) + u

Substituting in for Pr (P | q = 1) and Pr (P | q = 0) and then maximising with re-

spect to x gives the expression for x̂.

Proof of Proposition 2.6. The buyer’s optimal reviewer is given by

x̂ = (1− λ)u
(1− λ)u+ λ(1− u)

To find the seller’s optimal (interior) reviewer we solve (2.11) and take the only solution

which lies in interval [0, 1] to get

x∗ = 2− λ−
√

(8− 7λ)λ
2(1− 2λ)

By directly substituting in the values u = λ = 1
4 we see that x̂ = 1

2 and

x∗ = 2− 1
4 −

√(
8− 7

4

) 1
4 = 1

2
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Therefore, at values u = λ = 1
4 , the seller and the buyer pick an identical reviewer

of toughness 1
2 . Note however that x̂ is strictly increasing in u, yet x∗ is constant in

u. Therefore, for u < 1
4 , there exist λ sufficiently close to u such that x̂ < x∗, as

limλ→u x̂ = 1
2 , but as shown in Proposition 2.5, x∗ is strictly decreasing in λ.
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Chapter 3

Costly Communication and

Organisational Attention

3.1 Introduction

As we move further into the age of ubiquitous information gathering and data collection,

it is clear that while information is abundant, not all of it is worthy of our attention.

Indeed, as was highlighted by Simon (1973): “In a world of this kind, the scarce resource

is not information; it is the processing capacity to attend to this information”. Not only

what we listen to, but who we listen to (and who listens to us), can greatly affect

the decisions we make. The same is true inside of organisations, where the need to

coordinate with others meets our capacity (or desire) to diligently process and interpret

what they have to say. In this chapter, I examine how the allocation of attention within

organisations impacts their ability to react in a coordinated manner to the ever-changing

external environment.

This chapter follows the team theory approach of Marschak and Radner (1972), Prat

(2002) and Dessein and Santos (2006), which abstracts from the incentive issues tra-

ditionally studied in the literature and views firms primarily as information processing

entities. In this framework, organisations must process information about their compet-

itive environment and then take actions which strike some balance between adaptation

to external conditions and coordination of internal activities. Knowledge is dispersed
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throughout the organisation and agents must communicate with others in order to learn

about local conditions and plans of action.

As absorbing information about the activities of those around us is costly (in that

it consumes our attention), agents in the model allocate more attention to those who

require it most. I extend the model of Dessein et al. (2013), who examine attention

allocation in organisations, to the case of non-uniform task structures. In my model,

the tasks of some agents will be broadly defined and will require coordination with many

other individuals in the firm, whereas other tasks will be more specialised and insular.

I look at how the scope of a given agent’s task influences the amount of attention paid

to them by others in the organisation.

I also examine how the span of control for the CEO of an organisation can influence

their allocation of attention amongst members of the top management team. The idea

that limited attention creates a trade off between information processing and coordin-

ation, particularly at higher levels of the organisation, was also highlighted by Simon

(1973):

“Attention is the chief bottleneck in organizational activity, and the bot-

tleneck becomes narrower as we move to the tops of organizations, where

parallel processing capacity becomes less easy to provide without damaging

the coordinating function that is a prime responsibility of these levels.”

Recent empirical findings by Bandiera et al. (2014), using a unique data set on CEO

time use, have suggested some counter intuitive facts about the allocation of attention

for CEOs in large firms. Their main finding is that CEOs with larger executive teams

(more subordinates) tend to spend more time and attention interacting with others in

the firm and focus more on coordinating activities. This suggests that the documented

increase in the span of control of CEOs over the last two decades (Rajan and Wulf, 2006)

has not been driven by a desire to free up attention for CEOs by delegating decision

making.

This chapter therefore applies the insights of the model to examine how the com-

position of top management teams can affect the CEOs attention allocation. I proceed
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by first examining the existing literature on information processing and communication

in organisations, in addition to more recent work on information transmission in social

networks. Following this I present the main results of the model, before discussing the

relationship to observations in the empirical literature.

3.2 Literature

This chapter spans two main areas of the literature: organisational economics and the

economics of social networks. A number of papers also explore the interplay between

organisations and networks, many of which have emerged due to recent developments in

the latter literature. There are also some earlier contributions in the intersection of these

two areas, going back at least to Marschak and Radner (1972), who analyse optimal

information processing networks in their seminal work on ‘team theory’. These ideas are

developed much later in Radner (1993), who examines why information processing and

computation can best be done in hierarchies. This is an important contribution, but

has become somewhat removed from the current literature on information processing

in firms, as it is mainly concerned with centralised decision making (although decent-

ralised information processing) and optimal networks for computation. Another early

paper which is similar in spirit is Bolton and Dewatripont (1994), who also analyse

the structure of optimal information processing and communication networks in firms.

Again, decision making is centralised, and the organisation wishes to maximise the

flow of information which can be processed from the external environment. Bolton and

Dewatripont (1994) introduce increasing returns to scale, both in information processing

and communication, showing again that hierarchical processing has an inherent benefit

in permitting specialisation at lower levels, allowing for more information processing,

which can then synthesised for use by agents at the top. The difference between my

model and Bolton and Dewatripont (1994) lies in the reason for communication within

the firm, as they assume it is to aggregate information, rather than coordinate actions.

In their model a central agent makes all decisions and so coordination is not the main

issue of concern.
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A vast number of papers in organisational economics have examined the role which

incomplete information plays in determining the organisation’s balance between special-

isation and coordination. Indeed, this has been seen as one of the central problems of

organisations and has been discussed in the literature for several decades (e.g. Chand-

ler (1962), Arrow (1974)). The trade off which incomplete information imposes on the

organisation is the primary focus of Marschak and Radner (1972) and the voluminous

literature which has arisen as a result of their work.

A recent contribution in that vein which is particularly relevant to the model at hand

is that of Dessein and Santos (2006), which addresses the argument, originally put for-

ward by Becker and Murphy (1992), that the division of labour is limited not by the

extent of the market but primarily by the cost of coordination. They analyse the impact

of task bundling on the adaptiveness of an organisation to the external environment,

where specialisation increases the need to coordinate activities across complementary

tasks. Since communication is noisy, centralised decision making in their model re-

duces the need for information sharing and increases the adaptability of the firm to

the changing environment. This increase in coordination is then traded off against an

exogenously given benefit from task specialisation. They point out that the trade off

between coordination and specialisation is in fact more complicated than Becker and

Murphy (1992) suggest, since an increased need for coordination may lead to less spe-

cialisation, but also to tasks becoming more routinised, and therefore less variable (and

hence less communication is needed).

Closer still to the approach of this chapter is Dessein et al. (2013), who examine

the role which attention constraints play in the design of organisational communication

channels. In order to do so, the authors combine ideas present in the classical literature

on bounded rationality in organisations with the approach developed in Dessein and

Santos (2006). Limited attention is introduced in the form of a constraint on the time

which agents can spend coordinating activities. This paper also appeals to ideas from

finance and macroeconomics on ‘rational inattention’ and information theory (Sims

(2003), Veldkamp (2011)). They take the task structure of the organisation as given

and ask how the organisation should best devote its time to strike a balance between
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adaptability and coordination. They find that organisational focus arises endogenously

as agents who seek to balance attention costs with benefits from coordination look to

only a subset of ‘leaders’ in order to coordinate action. Too many focal hubs in their

firm results in a lack coordination and reduces the ability of the organisation to jointly

adapt their actions to changing local conditions.

This team theory literature abstracts from incentive problems within the firm, as

do I, however much focus has been placed on these issues by others. An important

contribution in the area of strategic communication in organisations is Dessein (2002)

who investigates the role of communication in determining issues of integration and

bundling of tasks when preferences are not aligned. Another example of work in this

area is Alonso et al. (2008) who consider a situation where two divisions with differing

objectives communicate strategically about locally observed states of the world. Aghion

and Tirole (1997) discuss the impact of the allocation of decision making authority by a

principal, where this allocation may influence the agent’s incentives to collect relevant

information. They show that delegation of decision making authority may encourage

biased agents to collect more information than they would if authority lies with the

principal.

My model aligns itself more with the costly communication side of the literature,

such as Dewatripont and Tirole (2005) who analyse a model where agents choose com-

munication efforts (at a cost) and also must exert effort in listening to messages sent to

them. This chapter therefore develops the idea first present in Chapter 6 of March and

Simon (1958), but later in Arrow (1974) and more prominently in Crémer et al. (2007),

that the capacity for organisations to process and communicate information about the

environment can be constrained by a lack of attention, effort or expertise.

The second strand of the literature to which this paper contributes is the recent work

on information transmission in social networks. Examples of such work includes models

of word of mouth communication and information aggregation in networks (Golub and

Jackson, 2010), communication games with endogenous link strength (Bloch and Dutta,

2009), information acquisition and dissemination (Galeotti and Goyal, 2010), and the

literature on cheap talk in networks, exemplified by Galeotti et al. (2013) and Hagenbach
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and Koessler (2010).

A paper which deals directly with the link between organisational communication

and networks is Calvó-Armengol et al. (2014). This paper extends the ideas present in

Crémer et al. (2007) and Dewatripont and Tirole (2005) to a network setting in which

agents may invest in active and passive communication and must match their actions

with their local information and the actions of others. They show that equilibrium

actions and communication efforts are found to depend on a version of the individual’s

Bonacich centrality, building on earlier results regarding games of strategic complements

in network settings due to Ballester et al. (2006). Another closely related model is

that of Calvó-Armengol and Beltran (2009) who derive similar results but also use a

communication protocol akin to the consensus building process studied in Golub and

Jackson (2010) to characterise the properties of optimal firm communication networks.

Finally, this chapter relates to the models of endogenous information acquisition

which have been studied by Hellwig and Veldkamp (2009) and Myatt and Wallace

(2012). The central insight from Hellwig and Veldkamp (2009) is that when agents ac-

quire information endogenously, complementarity in action leads to a complementarity

in information acquisition. Knowing what others know becomes valuable as it helps to

coordinate actions in the face of uncertainty. When actions are substitutes the opposite

incentive arises, since we wish to have actions which are negatively correlated with the

actions of others. A similar model is analysed in Myatt and Wallace (2012) where agents

play a linear quadratic ‘beauty contest’ game with endogenous information acquisition.

In their model, attention to different sources of information is costly and must be al-

located to sources with higher intrinsic precisions. As in Hellwig and Veldkamp (2009),

complementarity in action drives agents to select similar information sources. I now lay

out the details of my model in the following section.

3.3 Model

The modelling approach taken in this chapter is inspired by the normal-quadratic team

theory framework of Marschak and Radner (1972), which is predominant in the literat-

84



ure on organisational communication where the incentives of all players are aligned.1 In

particular, I extend the model of Dessein and Santos (2006) and Dessein et al. (2013)

who consider a set of agents N = {1, . . . , n} who must individually carry out a task

based on information which they process from the environment. In contrast to them, I

assume that the production externalities between tasks are represented by an exogenous

undirected network g, where g is as set of links or edges such that (i, j) ∈ g implies that

tasks i and j are linked in the network.

This network of interactions is given exogenously and is determined by which tasks

exhibit synergies or externalities in the production function of the organisation. The

realisation of this network can be viewed as the result of an earlier job design choice

which the firm has made, so that in principle, tasks could be made more or less inter-

dependent by altering who does what in the organisation. I choose to interpret tasks

with many interactions as being very broadly defined and encompassing many separate

activities and responsibilities (e.g. management positions), whereas tasks which have

very few links should be viewed as being highly specialised.

Each agent i ∈ N perfectly observes their local state of nature θi selecting an action

aii ∈ R to minimise the loss function (aii − θi)2. Local states should be viewed as

idiosyncratic conditions which affect the optimal action for agent i ∈ N . For example,

the agent may be a marketing director who is deciding how much to spend for the

coming month, and needs to tailor this decision to the behaviour of competitors or

demand conditions.2

In addition to the local action ai, each agent interacts with a subset of other agents

Ni ⊆ N \{i}. I define the neighbourhood of agent i ∈ N to be Ni = {j ∈ N | (i, j) ∈ g}

and their degree to be di (g) = |Ni|. Production externalities within the firm mean

that each agent must also select a coordinating action aij ∈ R for each agent j ∈

Ni to minimise the loss function (aij − θj)2 for each j ∈ Ni with whom he interacts.

Continuing the previous example, if the marketing director decides to spend more than
1That is, in contrast to the case where different agents may have biases for certain actions to be

taken by managers and communicate via cheap talk. For example, Alonso et al. (2008).
2For simplicity I assume that local states are independent, as is commonly done in the literature,

e.g. Alonso et al. (2008), Calvó-Armengol et al. (2014), Dessein and Santos (2006)
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usual this coming month then the purchasing manager must adjust his plans to take

into account the anticipated change in output.

As pointed out by Dessein and Santos (2006) and Dessein et al. (2013), although

other approaches in the team theory tradition and elsewhere (e.g. Morris and Shin

(2002),Hellwig and Veldkamp (2009)) have used a single action rather than a vector

of actions, this introduces a necessary trade off between coordination and adaptation.

Even with perfect communication and unlimited attention, the organisation cannot be

perfectly adaptable and perfectly coordinated unless all realisations of the local states

are equal. Since I am interested in how the endogenous allocation of attention affects

the adaptability and coordination of the organisation, this particular set up will provide

a clearer picture of its influence.

Although each agent i ∈ N perfectly observes their own local state θi , they only

receive noisy signals about other local states. I denote the vector of local states by

θ = (θ1, . . . , θn) and assume that agents have a common prior distribution over θ such

that θ ∼ N (0,Σθ) where Σθ is a diagonal covariance matrix with identical diagonal

entries σ2
θ . An agent i can receive a message mij from agent j, informing them about

agent j’s observation of their local state. This message takes the form mij = θj + εij

where the receiver’s errors εij are independent across messages and distributed normally

with mean 0 and variance σ2
ij . The correlation between mij and θj is denoted by ρij .

As the earlier quote by Simon (1973) highlights, “attention is the chief bottleneck in

organizational activity”. Allocation of attention in this model will reduce the variance

of the messages received by agents by lowering σ2
ij . I assume that attention is costly and

the agent must always trade off the benefits from listening closely to a given message

versus its cost. We could also view message noise as being partially a result of prob-

lems in codifying information sent between individuals who have differing expertise, as

discussed in Crémer et al. (2007). As the model of Crémer et al. (2007) argues, the

ability to communicate accurate information about the state of the world must rely on

a shared language between the two parties. When a sender has more expertise, then his

understanding of the state of the world is more precise than a receiver who is unfamiliar

with important terminology or concepts involved in another employee’s role. Therefore,
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the assumption that the message is never perfectly understood can be thought of as

arising from a combination of agents having differing areas of expertise while also being

attention constrained.

For now, I will ignore the attention allocation decision of the agents and focus on

their optimal actions ai, contingent on the signals they receive. The team payoff function

which agents maximise is given by

π (ai, a−i) = π̄ −
n∑
i=1

(aii − θi)2 − γ
∑
j∈Ni

(aii − aji)2


where the coefficient γ > 0 measures the degree to which coordination is important to

the firm relative to adaptation. Letting di (g) or simply di denote the degree of the

agent (i.e.di ≡ |Ni|), best responses are then given by

a∗ii = 1
1 + γdi

θi +
∑
j∈Ni

γ

1 + γdi
E [aji | mi] (3.1)

a∗ij = E [ajj | mi] (3.2)

The best response conditions for this normal-quadratic set-up take the usual form,

where a∗ii is a weighted function of the local state and agent i’s expectation of j′s

coordinating action. The optimal coordinating action a∗ij is simply agent i’s best guess

of agent j’s local action, given the information they have available. Ideally, each agent

wishes to match their action to their observed local state, yet we can see from (3.1) that

when they have more ties to others in the organisation, then their action will have to

take more of an account of what they think other’s believe their state to be.

As in Calvó-Armengol et al. (2014), Dessein et al. (2013) and Myatt and Wallace

(2012), I will restrict attention to equilibrium strategies which are linear in the signals

received. If other players also use linear strategies, then due to the linearity of condi-

tional expectations when states and signals are normally distributed, we can express

the player’s equilibrium strategy as linear functions of their signals.3

3This assumption is frequently made in normal quadratic team-theoretic models and while non-linear
equilibria could exist there are currently no known counter-examples. This is discussed further in Myatt
and Wallace (2008) and Myatt and Wallace (2012).
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Agent i knows that j’s coordinating action aji can only depend on the message

mji which they receive, since all local states are independent. Moreover, agent i’s

expectation of the signal which j receives is simply θi, since the errors are mean zero

and independent. Given this, equilibrium strategies therefore take the form

a∗ii = wiiθi (3.3)

a∗ij = wijmij (3.4)

The weights wii and wij can be seen as the responsiveness of the agent to the

information they receive. Substituting the actions in (3.3) and (3.4) into the team

payoff function gives the following expected payoff:

π̄ −
N∑
i=1

((1− wii)2 σ2
i︸ ︷︷ ︸

Adaptation Cost

+ γ
∑
j∈Ni

[(wjj − wij)2 σ2
j︸ ︷︷ ︸

Coordination Cost

+ w2
ijσ

2
ij︸ ︷︷ ︸])

Communication Cost

(3.5)

The total cost of noisy communication for the organisation can be decomposed into

three components. The first component is a cost of adaptation, where if wii is low

then agent i does not respond to his signal of θi and task i is poorly aligned with the

environment. The second cost results from poor coordination, such that if agent i is

very responsive to his signal about θi but j does not respond to i’s message about their

signal (or vice versa), then their actions are uncoordinated. The final term is the cost

incurred from the noisy messages sent from each i to their neighbours j. If the error

variance of the signal is high, then when agent j puts more emphasis on i’s signal, (i.e.

responds more elastically to it), the costlier this becomes for the firm, since it is not an

accurate signal of i’s local state.

Attempting to solve for these coefficients involves substitution from (3.3) and (3.4)

into (3.1) and (3.2), and are given in the following lemma

Lemma 3.1. Optimal actions are given by

a∗ii = 1
1 + γ

∑
j∈Ni(1− ρ

2
ji)
θi (3.6)
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a∗ij =
ρ2
ij

1 + γ
∑
k∈Nj (1− ρ

2
kj)

mij (3.7)

We see that each agent is less adaptive to their own local state when the correlation

between their state and the message received by others is low. Noisy communication

induces inertia in the actions of each agent, as the uncertainty introduced will encourage

them to select actions which are more closely aligned with the common prior of θi = 0.

As pointed out by Dessein et al. (2013), this resonates with the ideas present in March

and Simon (1958), who noted two distinct forms of coordination within organisations:

coordination by plan and coordination by feedback. Actions can be coordinated by

having a commonly understood notion of what the usual state of affairs is (i.e. a

common prior on θi), or conversely by constant communication and feedback.

Equation (3.6) also shows that if communication is imperfect, then an increase in

di will lower the responsiveness of agent i to their private information. This occurs

because a higher degree in the network (broader task assignment) means that we have

a greater incentive to ensure that our action is more predictable. When di is high, the

coordination cost associated with task i will increase, meaning that deviating too far

from our prior expected action of 0 will lead to miscoordination. With more accurate

messages (i.e. ρ2
ji close to 1) this effect is diminished, however, the fact that wji ∈ (0, 1)

means that other agents j ∈ Ni always put some positive weight on their prior belief of

ai, which is E [θi] = 0.

As one might expect, (3.7) shows that agents are less responsive to the messages

sent by others if these messages are noisier. However, (3.7) also demonstrates that when

the sender of the message has more interactions (i.e. dj is higher), then their message

is more likely to be ignored. This again arises due to the noise in the communication

process, since agent i who receives message mij from j will not be aware of the messages

received by other agents k ∈ Nj \ {i}. Because k will not be fully responsive to their

message mjk, agent j’s action will be less responsive to θj and so this renders the

message mji less useful.

This highlights a central property of the model, that agents with broadly defined

roles (i.e. many connections in the network of interactions) will find their private in-
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formation less useful due to the uncertainty introduced by noisy communication. This

means that agents with broader roles must select their actions more on the basis of the

prior expectations of others, rather than their own observation of θi.

As is clear from (3.5), reducing the noise inherent in the communication process

will benefit the organisation. When communication is less noisy, then each agent i can

be more responsive to his local information, as he knows that others can understand

his message clearly. This increases wii towards 1, thereby reducing the adaptation

cost. In addition to lowering the adaptation and communication costs, more accurate

communication lowers the coordination cost, as now agents will have the confidence

to act more elastically to the messages they receive. Since the organisation would

benefit from minimising the message variances as much as possible, I now consider the

endogenous allocation of attention in the organisation as a means of achieving this.

3.3.1 Endogenous Attention

As discussed earlier, owing to the difference in expertise between employees, all messages

will be subject to some misinterpretation and therefore noise. I now allow for agents

to reduce the level of noise through allocation of effort or attention, as in Dewatripont

and Tirole (2005) and Calvó-Armengol et al. (2014). In particular, I assume a simple

linear cost of attention given by c
(∑

j∈Ni τij
)
, where τij is the precision of the error

εij and therefore εij ∼ N
(
0, 1

τij

)
. The parameter c can be seen as representing the

opportunity cost of attention spent on listening to messages, as opposed to devoting

it to other responsibilities. Alternatively, we could suppose that each individual is

attention constrained such that
∑
j∈Ni τij ≤ κ and that c is the marginal cost of hiring

support staff to increase their capacity.

To avoid uninteresting cases where agents pay no attention to signals because it is

too costly to do so, I assume that c < σ4
θ

1+γdmax where dmax ≡ maxi∈N di. Each agent

therefore selects a level of attention τij > 0 for each neighbour in order to maximise

the payoff Π = π−
∑
i∈N c

(∑
j∈Ni τij

)
. To more easily work with the term π, I rewrite
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1 2 3

Figure 3.1: A Three Person Organisation

(3.5) first as

π̄ −
n∑
i=1

σ2
θ (1− wii)2 + γ

∑
j∈Ni

(
w2
ii E

[
(θi − E [θi | mji])2

])

Then, since E
[
(E [θi | mji]− θi)2

]
is given by Var [θi | mji] = σ2

θ

(
1− ρ2

ji

)
, we can

rewrite this as

π̄ −
n∑
i=1

σ2
θ (1− wii)2 + γ

∑
j∈Ni

w2
iiσ

2
θ

(
1− ρ2

ji

)
Substituting in from (3.6) and (3.7), it is possible to express the total payoff in the

following convenient form:

π = π̄ −
n∑
i=1

σ2
θ (1− wii) (3.8)

The rewritten payoff above is similar to that found in Dessein et al. (2013) and shows

that by allowing for the endogeneity of actions, the total payoff now depends only on

the responsiveness of each task. I now consider the attention allocation decision in two

archetypal organisational forms, the star and the tree. I concentrate on these forms

as firstly it most easily highlights the key mechanism of the model, and secondly as it

allows me to relate the results to some recent empirical work by Bandiera et al. (2014).

3.3.2 Endogenous Attention in the Star Network

I show in Figure 3.1 an example of a simple organisation in the case of n = 3 and

g={(1, 2) , (2, 3)}. This could correspond to a situation where 1 and 3 are two separate

divisions or local offices and 2 is a central office. Each observe separate local states and

play actions in accordance with (3.6) and (3.7) in order to maximise Π.

Whether peripheral agents 1 and 3 should allocate more costly attention to the

central agent 2, or vice versa, is not initially clear. The actions of 2 will incur the
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largest coordination cost for the organisation when they take actions very far from

their prior of 0. Therefore, attention allocated to this agent will help to minimise the

coordination cost. However, as is suggested from (3.6) and (3.7), the central agent’s

task should be less adaptable to the environment and so attention is better allocated

elsewhere.

Proposition 3.1. If the network of interactions is a star, then peripheral tasks receive

the most attention per task and central tasks the least.

Corollary 3.1. If n = 3 and g={(1, 2) , (2, 3)} then τ12 < τ21 and τ32 < τ23.

Taking the example of the simple firm with three divisions, the centralised offices

must allocate more attention to the local offices than vice versa, since their task will be

more adaptable.

In the model of Dessein et al. (2013), ex-ante identical tasks can lead to organisa-

tional focus, where attention is concentrated on a select few ‘leaders’. In their model,

‘leaders’ in the firm will be allowed to adapt more elastically to their local state, since

more attention is paid to their messages and hence the rest of the organisation is better

coordinated with their action. As Dessein et al. (2013) point out, this provides a jus-

tification for why firms may wish to focus on performing a small number of tasks well,

without appealing to increasing returns to scale arguments. However, since the task

structure is symmetric in their model, this means that their network of connections is

a complete network, and any node can be selected as a ‘leader’.

However, when the tasks are not ex-ante identical, then as shown in (3.6) and (3.7),

agents with broader overarching roles in the organisation will exhibit more inertia in

their actions than those with more narrowly defined roles (fewer links). The asymmetry

in responsiveness to local information therefore provides an anchor for the attention

allocation decision within the firm. Even though broader tasks have a greater need for

coordination, it is precisely this which causes them to be made routine and therefore

relatively unresponsive to changing external conditions. The inertia of central tasks has

the effect of lowering the amount of attention paid to them, which then further lowers

their responsiveness.
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I now turn to how the optimal allocation of attention depends on the parameters of

the problem. The effect of γ on the attention allocation decision is again not obvious. On

the one hand, when coordination costs are high relative to adaptation, then we should

expect relatively more intensive communication, since this enables actions to be better

aligned. On the other hand, when coordination becomes relatively more important, it

becomes optimal to make all tasks more routine and so communication is less valuable.

As I show, the effect of γ on the optimal τij is shown to be non-monotonic in γ.

Corollary 3.2. Increasing γ causes the optimal τij to increase if and only if

γ <

(
σθ

2dj
√
c

)2

If γ is low, then higher coordination costs lead to more demand for communication.

If γ is high then the second effect dominates, and an increased demand for routinisation

leads to less attention being devoted to messages. As can also be seen, a higher variance

of θi will ceterus paribus lead to more intensive communication, since the prior belief is

now less dependable.

Attention Constraints

A difference between my approach and Dessein et al. (2013) is that they assume that

each agent’s total allocation of attention is constrained, as opposed to assuming a cost

function.4 Assuming briefly that each agent has a strict attention constraint such that∑
j∈Ni τij ≤ κ, I now show that again the central agent of the star is least adaptive to

the local environment. Since the attention constraint always binds at any optimum, the

central agent must receive the full attention of all peripheral nodes. Moreover, since

there are decreasing returns in allocating attention, the central agent must divide his

attention equally amongst all peripheral nodes. Letting the central node be denoted by
4Different approaches have been seen in the literature, for example Maćkowiak and Wiederholt (2009)

and Myatt and Wallace (2012) assume costly attention, yet Sims (2003) and Van Nieuwerburgh and
Veldkamp (2010) assume an attention constraint.
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Organisation A Organisation B

Figure 3.2: Tree Networks with Differing CEO Spans of Control

i and any peripheral node by j, this gives

wii = 1
1 + γdi

(
τθ

τθ+κ

) wjj = 1
1 + γ

(
τθ

τθ+κ/di

)
It is easy to verify that by assuming wii > wjj we reach a contradiction. Therefore,

the central agent, although by default receiving the most attention, has the least ad-

aptable task and the insights of the previous subsection hold. The main point which

is made by Dessein et al. (2013) is that attention and adaptability are complements.

Indeed, this same mechanism drives the main result of this section, namely, that adapt-

able tasks command more attention and that tasks can be more adaptable if they have

fewer associated costs of miscoordination.

3.3.3 Endogenous Attention and Span of Control

It is well documented in the literature that the composition of top management teams

of leading firms has changed significantly in the period since the early 1980s, with

the average CEO’s span of control (number of managers who report directly to them)

increasing dramatically. For example, Rajan and Wulf (2006) study the managerial

structure of over 300 large US firms between 1986 and 1999, showing that the average

CEO’s number of direct reports increased from 4.4 to 7.2 in this period. A more recent

study by Guadalupe et al. (2014) has shown that this trend has continued in subsequent

years with the average number of direct reports increasing to 9.8 for a large sample

Fortune 500 companies.

I now focus on recent empirical findings by Bandiera et al. (2014) in their study of

94



CEO time use in a sample of 65 large US firms. One explanation for the increasing size

of the average executive team is that it results from delegation of responsibilities and

a move towards decentralised decision making. However, the main conclusion of the

authors is that the larger the executive team, the more time and attention CEOs tend

to spend interacting with them. This suggests that the documented increase in the span

of control of CEOs has not led to more delegation of tasks to members of the executive

team (freeing up attention of the CEO) as might be assumed. On the contrary, they

show that, particularly for large firms, CEOs spend more time dealing with internal

activities and less time working alone or with outsiders.

In Figure 3.2, I give two examples where the network of interactions within the

organisation takes the form of a tree. I refer to the individual at the top of the tree as

the CEO of the organisation and the individuals at the second level as the directors.

The leaf nodes which comprise the final level will be referred to as subordinates. In

Organisation A, the CEO interacts with fewer directors, yet these directors have more

broadly defined roles and therefore more subordinates. In Organisation B the CEO has

a larger span of control, yet these directors are more specialised in their roles, hence

having to coordinate their actions with fewer subordinates.

Treating all agents at the same level symmetrically and again assuming that the

marginal cost of attention is sufficiently low, I find the following result:

Proposition 3.2. The CEO devotes more attention per director in Organisation B than

Organisation A

The intuition for this result is similar to the previous case of the star network. By

creating more directors, each individual director’s role is more specialised and hence

has less interactions with other tasks in the organisation. As a consequence, each

director can afford to be more responsive to her local information, since her associated

coordination cost is lower. In turn this leads the CEO to devote more attention to each

director’s messages, since their activities are less routinised.

This result therefore provides one possible explanation for the recent empirical find-

ings of Bandiera et al. (2014) relating the CEOs span of control to their allocation of
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attention within the firm. The recent study of Guadalupe et al. (2014) also finds that

the documented increase in the average CEO’s span of control has resulted primarily

from the growth in functional managers, who are often highly specialised (e.g. Directors

of R&D, CMOs, CIOs) as opposed to more broadly interacting general managers. In my

model, specialised directors are more adaptable to their local conditions and so require

more attention from the CEO.

3.4 Conclusion

In this chapter I have examined how the allocation of costly attention within organisa-

tions influences their ability to adapt to the changing external environment and main-

tain internal coordination. I bring into focus the relationship between specialisation,

coordination and attention, which was first highlighted by March and Simon (1958)

over half a century ago.

I show that the actions of those in broadly defined roles which encompass many

separate activities and responsibilities (such as managerial positions) are subject to

inertia. This inertia arises due to the need for coordination, which forces these central

agents to be more predictable in their actions. On the other hand, tasks which are more

isolated and narrowly defined are concerned less with coordination and can afford to

respond more elastically to their own local shocks. The endogenous allocation of costly

attention, which lowers the cost of communication, compounds this effect. Individuals

who are more generalised will be focused on less by other members of the organisation,

since they have tasks which are more routinised. Consequently they must conform to

the prior expectations of others by limiting their adaptiveness.

The model presented here is based on an extension of Dessein et al. (2013) to the

case of non-uniform task structures. Although their model is similar in set-up to the

one presented in this chapter, the questions which are asked differ. Their paper focuses

on the question of why leadership emerges in firms, what determines how many leaders

an organisation has, and what this says about the optimal size of the firm. To state

that leaders are focused on due to their wide influence is almost tautological, so one
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of the key insights of their paper is to show that leadership can emerge, even with a

completely uniform task structure and ex-ante identical agents.

I take a different approach and have assumed that division of labour within the

firm has endowed some individuals with more interconnected tasks than others. This

is represented in my model by an exogenous network of production externalities, which

is predetermined by the job design decision of the organisation. Whilst Dessein et al.

(2013) restrict attention to ex-ante identical tasks and allow the communication network

to vary, I consider more general patterns of interaction while restricting communication

to occur only along these channels. The definition of what constitutes a ’leader’ differs in

the two cases differs and so different conclusions are arrived at. On the one hand, Dessein

et al. (2013) consider leaders to be focal points of the organisation whose messages are

closely listened to and will be well coordinated with. On the other hand, I equate agents

with high degrees in the network with individuals who have many separate activities

and responsibilities, such as managers, directors or executives. If we take leaders to be

those who interact most broadly with the organisation, then I show that the need for

predictability limits the amount of attention placed on them by others. However the

central insight of their paper (that attention and adaptiveness are complements) holds

throughout.

With the work presented in this chapter, I have also highlighted a possible mechan-

ism for the recent empirical observations of Bandiera et al. (2014). The main finding

of Bandiera et al. (2014) is that CEOs with larger executive teams tend to spend more

time and attention dealing with activities inside the firm. This effect is present in my

model and results from the endogenous reallocation of attention following the growth

of the executive team. When directions have fewer subordinates, their actions become

more responsive to the outside environment, and so more attention must be placed on

them.

An alternative explanation which is also in line with the insights of this model is that

even if directors themselves are not more specialised, the process of delayering brings

them ‘closer to the product’ and increases their focus on external conditions (and hence

their adaptability).

97



As recently discussed by Garicano and Prat (2011), research by economists over the

last several decades has placed a heavy focus on incentive problems within organisations.

For that reason, there are several promising directions for research in organizational

economics. One possible line of study which is directly related to this chapter, is the

organisation’s endogenous choice of job design within the firm and how this impacts its

adaptability and internal allocation of attention. With the exception of Dessein and

Santos (2006), this is an area which has been relatively under explored in the literature.
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Appendix - Proofs

Proof of Lemma 3.1. Solving first for a∗i , we must substitute from (3.3) in to (3.1),

giving wiiθi = 1
1+γdi θi +

∑
j 6=i

γ
1+γdiE [aji | mi]. Substituting in (3.4) we get

wiiθi = 1
1 + γdi

θi + γ
∑
j 6=i

1
1 + γdi

wjiE [mji | mi]

Since, E [mji | mi] = θi, so this gives wii = 1
1+γdi + γ

∑
j 6=i

1
1+γdiwji. To find wji we

use the standard results on conditional expectations of mean zero normally distributed

random variables following normal signals to get

wjimji = wii
Cov [θi,mji]
Var [mji]

mji

Substituting in to the above, therefore gives

wii = 1

1 + γ
∑
j 6=i

(
1− Cov[θi,mji]

Var[mji]

)

Noting that in this case Cov[θi,mji]
Var[mji] = ρ2

ji gives the equation in (3.6). Substituting (3.4)

into (3.2) gives wijmij = wjjρ
2
ijmij , yielding the equation in (3.7).

Proof of Proposition 3.1. The payoff function which each individual maximises is

given by πi = π̄ −
∑n
i=1 σ

2
θ (1− wii)− c

(∑
j∈Ni τij

)
. Writing wjj in terms of precisions

we get

wjj = 1
1 + γ

∑
k∈Nj

τθ
τθ+τkj

We can easily verify that this is increasing and strictly concave in τij and that

limτij→∞
dwjj
dτij

= 0. The linearity of the cost function then implies that the central

node will allocate the same amount of attention to all peripheral nodes at any interior

optimum. Peripheral nodes also choose identical attentions at any optimum since mar-

ginal benefit is strictly increasing in own attention τij and marginal cost is constant.
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First order conditions for central node i are found after differentiating πi with respect

to τij :

γ (τθ(1 + γ) + τij)−2 = c

Solving this for the central node’s optimal attention τij yields

τij =
√
γ

c
− τθ(1 + γ)

Similarly for the peripheral nodes, by imposing symmetry of actions we arrive at

τji =
√
γ

c
− τθ(1 + diγ) (3.9)

Thus showing that attention allocated per task is decreasing in di, the broadness of that

task.

Proof of Proposition 3.2. For simplicity I normalise τθ to 1 without loss of gen-

erality and appeal to a version of Topkis’s Theorem presented by Amir (2005). Let

τcd denote the attention that the CEO pays to each director’s message, and similarly

for subordinates define τsd. Again assuming that c is sufficiently low to allow interior

solutions, differentiating Π with respect to τcd gives

∂Π
∂τcd

= γ

(
1 + τcd + γ (1 + |sd|)

1 + τcd
1 + τsd

)−2
− c (3.10)

It can be noted that ∂2Π
∂τcd∂τsd

> 0 whereas ∂2Π
∂τcd∂|sd| < 0 . Differentiating Π with respect

to τsd gives

∂Π
∂τsd

= γ

(
1 + τsd + γ |sd|+ γ

1 + τsd
1 + τcd

)−2
− c

It can be noted that ∂2Π
∂τsd∂|sd| < 0 . This shows that Π is supermodular in the

attentions of the CEO and subordinates, and moreover exhibits decreasing differences

in − |sd|. The statement then follows from Theorem 10 of Amir (2005) after applying
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appropriate bounds to the action space. This implies that the optimal τcd and τsd are

strictly decreasing in |sd|.
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