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Abstract A local principal curve algorithm has been imple-
mented in three dimensions for automated track and shower
reconstruction of neutrino interactions in a liquid argon time
projection chamber. We present details of the algorithm and
characterise its performance on simulated data sets.

1 Introduction

Liquid argon time projection chambers (LAr-TPCs), that are
currently in development in various R&D programmes in
Europe, Japan and the USA [1], are acknowledged to be a
detector technology capable of meeting the physics require-
ments of a next-generation neutrino oscillation experiment.
They can provide simultaneous tracking and calorimetry of
particles from neutrino interactions over a wide range of ener-
gies, with exquisite millimetric granularity, as demonstrated
by results from ICARUS [2]. Despite this advantage, it has
proven difficult to achieve an automated software process
that can fully reconstruct neutrino interactions, which will
contain a mixture of ionisation tracks as well as electromag-
netic and hadronic showers, especially when the neutrino
interaction point is not known beforehand. In this paper, we
describe a first application of using local principal curves
[3] to automatically reconstruct neutrino interactions using
three-dimensional LAr-TPC data.

When a charged particle passes through a liquid argon
medium it releases a stream of ionisation charge which can
be measured by a TPC to provide a 3D trajectory in space. We
can represent this data as a collection of “hits”, each of which
contain the spatial cell co-ordinate information (x, y, z) as
well as the charge or energy deposit Q. The task of any
reconstruction algorithm is to first obtain the hits from the
detector output, then group these hits into clusters in order to
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identify the particles coming from the neutrino interaction,
before extracting physics parameters such as momentum or
energy from the reconstructed particles. Here, the first stage
of the analysis chain, hit reconstruction, is assumed to have
already taken place and the input is taken to be the complete
set of hits in three spatial dimensions. Our reconstruction
algorithm takes the collection of hits for each neutrino inter-
action (labelled as an event) and forms clusters of associated
hits in order to identify the particles. The mathematics and
logic behind the local principal curve procedure is described
in Sect. 2, while a description of the simulation methods
used to obtain samples of neutrino interaction events in liquid
argon is given in Sect. 3. The performance of the reconstruc-
tion algorithm is discussed in Sects. 4 and 6, with details
about using it for track-shower discrimination provided in
Sect. 5. Finally, we summarise our findings in Sect. 7.

2 The local principal curve (lpc) algorithm

The key component of the method we are proposing is the
mean shift procedure, a versatile tool which is popular mainly
in the computer vision community [4]. In essence, the mean
shift moves a point to the local mean of the data around this
point. For our case, the points are the positions Xi (x, y, z) of
all of the hits, which are each scaled by their range, defined
to be the difference between the largest and smallest values
of Xi (though it is also possible not to scale at all, or to scale
by other measures of spread such as the standard deviation).
The local mean m(u) for a set of N hits is defined as

m(u) =
∑N

i=1 wi (u)Xi
∑N

i=1 wi (u)
, (1)

where the weights wi (u), which determine the size and shape
of the local neighbourhood at a chosen location u, are mono-
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tonically decreasing with increasing distance from u to Xi . A
common choice of weights is the Gaussian density function

wi (u) = Qi

(2π)3/2h3 exp

{

− 1

2h2 (Xi − u)T (Xi − u)

}

, (2)

where Qi is the energy deposit for hit i and h is a constant
bandwidth parameter that steers the size of the local neigh-
bourhood. The weights play the role of “kernel” functions
and can, if desired, be replaced by other functions such as a
triangular-shaped or truncated probability density. In our sce-
nario, where the co-ordinates are all measured on the same
scale, we keep the Gaussian form and use the same band-
width parameter for all three directions. The value of h can
be selected through a coverage measure [3], though for our
purposes there is not much reason for this, as roughly the
same bandwidth, h ∼ 0.05 after scaling, will be usable in a
wide range of liquid argon detectors. Note that the normal-
isation denominator (2π)3/2h3 can be left out of the kernel
function since it is a constant common factor for all hit points
and has no effect on the properties of the principal curve.

From Eq. 1, we define the mean shift as

s(u) = m(u) − u =
∑N

i=1 wi (u)(Xi − u)
∑N

i=1 wi (u)
. (3)

This quantity has many interesting properties [4], one
of which being that s(u) ∝ ∇ f̂ (u)/ f̂ (u), where f̂ (u) =
1
N

∑N
i=1 wi (u) is a density estimate of f at u. This implies

that the mean shift is a vector pointing into a denser direc-
tion of the data space. When carried out iteratively, starting
at u = m0, one can show [4] that the series of local means

m�+1 = m� + s(m�), � ≥ 0, (4)

converges to a local mode um of f̂ (u) where s(um) = 0. This
has the attractive property of being a clustering technique; a
trajectory can be formed by running the mean shift proce-
dure on each data point Xi iteratively until convergence is
achieved.

Though the convergence towards a local mode of the den-
sity is an appealing property, it has the negative side effect of
getting trapped at the local modes and will not move beyond
them. Therefore, some modification of Eq. 4 is needed which
ensures that particle trajectories are pursued beyond local
modes. The simple idea is to alternate the mean shift with
a local principal component step [3]. More specifically, let
γ (u) be the normalised eigenvector corresponding to the
largest eigenvalue of the local symmetric 3 × 3 covariance
matrix

�(u) = 1
∑N

i=1 wi (u)

N∑

i=1

wi (u)(Xi − u)(Xi − u)T . (5)

Starting from a given point u = m0, we set � = 0 and iterate
between

1. computing the local centre of mass:

m(u�) ≡ u� + s(u�); (6)

2. finding the next local neighbourhood location:

u�+1 = m(u�) + t × γ�, (7)

where t is a given step size (of the same order as h) and
γ� ≡ γ (u�). The local principal curve is then defined as the
series of local centres of mass m(u�). In our case, the starting
point u = m0 is chosen to be the position of the nearest hit to
the energy-weighted centroid of all of the hits. Alternatively,
m0 can be set either at random from the Xi points, set by
hand, or be chosen to be a local density mode using an initial
mean shift procedure as outlined in Refs. [3,5]. The above
iteration is repeated until either the required number of lpc
points (Np) is obtained, or the path length along the local
curve is no longer increasing (convergence).

As we will see later, the angle φ between the normalised
eigenvector γ� and the preceeding eigenvector γ�−1 can be
used to infer the presence of feature points, corresponding
to drops in the angle profile along the principal curve, which
provide evidence for particle decays or possible interactions
between particles.

In order to provide inertia for reducing the chance of the
local principal curve deviating too much from the general
direction of neighbouring points, γ� is multiplied by an angle
penalisation term a = |cosφ|α , where α is usually set to 2,
when the next local neighbourhood location is found using
Eq. 7:

γ� := aγ� + (1 − a)γ�−1. (8)

A technicality to be mentioned is that, for a given �(u), the
first eigenvector may equally well be −γ (u) as well as γ (u),
so for each � ≥ 1, one needs to check whether cosφ > 0 and
set γ� := −γ� otherwise [3].

Based on asymptotic considerations [5], it can be shown
that the sequence of lpc points m(u�) converges to a point
ub close to the boundary of the cloud of data points with
the property f (ub) = h|∇ f̂ (ub)|. In practical terms, conver-
gence is reached when the cumulative path length difference
between neighbouring local curve points, divided by their
sum, is below a chosen threshold typically set at 10−6:

R = λ� − λ�−1

λ� + λ�−1
< 10−6, (9)

where λ� = λ�−1 + |m(u�) − m(u�−1)| and λ0 = 0. In
order to pick up features that may be present in the tails
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Fig. 1 Logic flow of the local
principal curve (lpc) algorithm.
The starting point is at the top
left and the arrows show the
direction to the next action
(rectangle) or decision
(diamond or ellipse)

of the point cloud, convergence is delayed by multiplying
the kernel bandwidth h with a correction factor c if R is
below a certain boundary limit b, which is typically set to
be 5 × 10−3 (which must be larger than the threshold for R
defined in Eq. 9). Initially, c is set to unity, but when R < b,
c is reduced by the factor (1 − b), and h in Eq. 2 needs to
be replaced by h × c. If R ≥ b, then c is increased by 1 %
but must not exceed unity. After convergence, or after we
have obtained 1

2 Np lpc points, the algorithm has to be re-
started with u = m0 in order to cover the other side of the
data cloud, where the next neighbourhood location is defined
as

u�+1 = m(u�) − t × γ�, (10)

and the lpc algorithm continues as usual.
Note that the cumulative path lengths λ� form a discrete

parameterisation of the principal curve, which can be refined
via a cubic spline interpolation towards a continuous param-
eterisation if necessary [6]. This can be useful since it allows
the option to plot, and regress, physical quantities such as the
amount of deposited energy as a function of distance along
the particle trajectory covered by the local principal curve.

Figure 1 summarises the complete logic flow of the lpc
algorithm. Once the lpc points are found, they are scaled-up
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Table 1 Default parameters for the lpc algorithm

Kernel bandwidth factor h 0.05

Neighbourhood step size t 0.05 (t ∼ h)

Number of lpc points Np 100 to 200

Initial kernel bandwidth correction c 1

Angle penalisation factor α 2

Convergence boundary limit b 0.005

Convergence criteria threshold R 10−6

using the initial co-ordinate ranges of the hits. The impor-
tant parameters with suggested (scaled) values are given in
Table 1. These parameters are optimised to provide the best
overall reconstruction performance for specific classes of
neutrino interaction events described in Sects. 4 and 6.

3 Simulation of neutrino interactions in liquid argon

In order to test the reconstruction performance of the local
principal curve algorithm for neutrino interaction events, the
Geant4 simulation toolkit [7] was used to implement a model
of a LAr-TPC detector, defined to be a stainless steel cylin-
der with height and radius both equal to 10 m centred at the
origin (0, 0, 0) and filled with liquid natural argon. Particles
are tracked through the detector volume with all electromag-
netic and hadronic processes enabled. The “QGSP_BIC_HP”
physics list is used to model the hadronic interactions, com-
bining a quark-gluon string and binary cascade model with
high precision low-energy (below 20 MeV) neutron cross-
section data. The detector is divided into “voxels” with vol-
umes equal to (1×1×1) mm3, and all primary and secondary
particles are tracked through these down to an energy of
10 keV or until they leave the TPC volume. Energy deposits
by charged particles passing through the voxels are tallied
into a map between the co-ordinates of the centres of each
voxel (x, y, z) and the total deposited energy (charge) Q. To
take into account the effect of electron–ion recombination
on the particle stopping power in liquid argon, a quenching
factor is applied to all deposited energies using a modified
form of Birks’ law according to results obtained from the
ICARUS project [8]. No attempt is made to model the detec-
tor readout system since this is highly experiment-specific.
The GENIE [9] package is used to simulate the primary parti-
cles from muon–neutrino and electron–neutrino interactions
with a monoenergetic spectrum at 0.77 GeV, which corre-
sponds to the JPARC neutrino beam mean energy. The neu-
trinos are directed in a beam along the x-axis through the
centre (0, 0, 0) of the detector. In order to remove random
hits from secondary low-energy interactions, an initial filter-
ing is applied to all of the hits using a density-based spa-
tial clustering algorithm [10,11]. Hits are required to be part
of density-connected regions which contain at least 10 hits,

whereby the maximum allowed distance between a hit and
its nearest neighbour is 2 cm. Excluded hits are classified as
“noise” and are removed from further processing.

4 Charged-current quasi-elastic interactions:
νμ + n → μ + p

The suitability of using the local principal curve algorithm
to reconstruct neutrino interactions can be demonstrated by
its ability to identify muon–neutrino charged-current quasi-
elastic (CCQE) events, which have a simple two-track topol-
ogy involving a short proton track and a long muon track
originating from a common primary vertex point, with vari-
able opening angle. Figure 2 shows an example reconstruc-
tion of a 770 MeV muon–neutrino to muon–proton event,
where it can be clearly seen that the calculated points on the
curve follow the hits closely. Along the middle portions of
each track, the lpc points are roughly equidistant from each
other, which is an indication that the neighbouring hits are
essentially along a straight line. At the end of each track, the
lpc points begin to clump together as they approach conver-
gence.

Near the primary vertex position, the curve points trans-
fer from the muon track onto the proton track. During this
transition, the angle φ between the eigenvectors of neigh-
bouring lpc points increases. As shown in Fig. 3, plotting the
distribution 1 − |cosφ| as a function of lpc point number (or
alternatively as a function of the cumulative path length λ�)
will produce a peak that will identify the specific lpc feature
point � f which has the largest angle φ, and can be used to
reconstruct the interaction vertex. First, we ignore the two
lpc points on either side of the feature point, since the local
curve is still rapidly changing direction, and only consider
the points numbered between � f +2, � f +4 on one side and
� f −4, � f −2 on the other side. Additionally, any other feature
points (with lower 1 − |cosφ| peaks) that may exist between
� f −4 and � f +4 are ignored and are considered to be just part
of the original feature point � f . For each range, straight lines
are fitted to the hits that are closest to the lpc points. Each
line is defined as a single point, taken to be the centroid of
the nearby hits, and a direction, which is chosen to minimise
the sum of the perpendicular Euclidean distances of each
hit to the line. Next, an initial value of the vertex position,
which will have a typical resolution of approximately 1 cm,
is taken to be the point of closest approach between the two
straight line sections. The reconstruction precision of the ver-
tex location can be significantly improved by extending the
straight lines towards the direction of the initial vertex point
by adding hits that are closest to a given line. These additional
hits improve the accuracy of the new centroid and direction
of the two straight lines. The vertex position is then taken
to be the point of closest approach to these extended lines,
leading to an improved resolution of approximately 1.5 mm.
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Fig. 2 An example lpc reconstruction of a muon–proton event showing
the hits associated to the muon (red) and proton (blue) tracks together
with the calculated lpc points (open circles). Also shown are the two
line segments used to find the position of the primary interaction vertex

(green square). These lines are made from hits on either side of the
feature point of the principal curve, which has the largest 1 − |cosφ|
value, and is shown as an orange-filled circle. Plot b is a close-up view
of the interaction region of plot a

Lpc point number
0 20 40 60 80 100 120 140

|φ
1 
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|c
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0
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Fig. 3 Graph showing the quantity 1−|cosφ|, for the example muon–
proton event shown in Fig. 2, for points along the principal curve, where
φ is the angle between the eigenvector γ� and the preceeding eigenvector
γ�−1 for lpc point �. The feature point is identified as the peak

It is important to emphasise that the above method can only
reliably reconstruct two-prong vertices.

Figure 4 shows the distributions of the primary vertex
position in x , y and z for a sample of 770 MeV neutrino
to muon–proton events when the proton track has a mini-
mum number of 25 hits (equal to a range of 2.5 cm), which
is roughly equivalent to an energy threshold of 10 MeV for
a minimum ionising particle in liquid argon. Approximately
15 ± 1 % of protons from a sample of νμ + n → μ + p
events will not satisfy this minimum range requirement. The
vertex distributions are fitted to double Gaussian functions,
which are defined to be the sum of two Gaussians having the
same mean μ but different widths σ1 and σ2, with relative
amplitude r . The resolution of the vertex position in each

co-ordinate direction is taken to be the effective width of the
corresponding double Gaussian fit σeff = σ1 + rσ2. As men-
tioned previously, the neutrino beam direction is defined to be
along the x axis, and so the muon and proton tracks originat-
ing from the vertex will tend to have their largest momentum
component along x . This has the effect of producing a very
slight positive bias (0.32 ± 0.05 mm) for the determination
of the x position of the vertex point when using the above
extended straight line method. Theoretically, this bias could
be reduced by having a smaller step size so that the principal
curve can get closer to the hits in the primary vertex region.
In practice, this does not significantly improve the overall
vertexing performance, since reducing the step size has the
effect of increasing the occurrence of fake secondary vertices
(i.e. multiple 1−|cosφ| peaks), since the algorithm becomes
more susceptible to fluctuations in the hit point cloud. As
illustrated by Fig. 5, approximately 90 % of the events that
pass the proton range selection have a primary vertex found
within 2 cm from the generated position (0, 0, 0).

Once a primary vertex has been found, it is then possible
to assign the hits on each extended straight line section to be
the start of separate clusters for the proton and muon track.
Further hits are added to each cluster by continuing along the
principal curve direction initially given by the straight line
section and adding hits that are closest to the remaining lpc
points. Figure 6 shows the number of clusters found in muon–
proton events with and without the proton range requirement.
Most events have just two clusters reconstructed, as expected,
although about 6 % of the events only have one cluster found,
which occurs when the proton track has been missed, i.e. the
hits are just assigned to be the muon, and the vertex point is
taken to be just the start of the muon track. More single cluster
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Fig. 4 Double Gaussian fits to the distributions of the reconstructed primary vertex position in x , y and z for muon–proton events that satisfy the
proton range requirement. Approximately 90 % of these events have a primary vertex found within 2 cm from the true vertex position (0, 0, 0)
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Fig. 5 The distribution of the distance of the reconstructed primary
vertex position from the generated position (0, 0, 0) for muon–proton
events that pass the range selection on the proton track

events (about 19 %) are reconstructed when no proton range
selection is imposed. For about 10 % of the events, more
than two clusters are found, which occurs when two or more
feature points are present with 1 − |cosφ| values above the

threshold value of 0.01, which was chosen based on obser-
vations of the typical heights of the feature peaks. Most of
these additional secondary vertices, which are reconstructed
using the same two-line method described earlier, have gen-
uine physics reasons: the proton or muon track scatters off a
nucleus such as that shown in Fig. 7, or the muon decays to a
low energy electron, producing a short two-prong stub at the
end of the muon track. To reduce the chance of incorrectly
finding secondary vertices, neighbouring clusters that have
principal axes within 20 degrees from each other are merged
and considered to be just one cluster, and the secondary ver-
tex between them is removed. Varying this merging angle
did not significantly improve the overall reconstruction per-
formance. When more than one vertex is found, the vertex
with the lowest x co-ordinate is chosen to be the primary
vertex, since the neutrino beam is directed along the positive
x direction. Note that the earlier primary vertex resolution
plots shown in Fig. 4 include events with secondary vertices
found; only the vertex with the lowest x value is included in
the fitted distributions.
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Fig. 6 The distribution of
reconstructed clusters in a
sample of 1000 muon–proton
events for (left) events passing a
range selection on the proton
track and (right) with no range
requirement imposed
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Fig. 7 An example lpc reconstruction of a muon–proton event where
the proton has been hard scattered. Image a shows the hits associated to
the muon (red) and proton (pre-scatter in blue, post-scatter in magenta)
tracks. Also shown are the calculated lpc points (open circles) and fea-
ture points of the principal curve (orange-filled circles), together with

the reconstructed primary and secondary interaction vertices (green
squares). The feature points are those that correspond to the peaks in
the 1 − |cosφ| distribution shown in plot b; these peaks are above the
selection limit value of 0.01 represented by the dotted horizontal line

An important measure of the performance of this recon-
struction algorithm is how well it can correctly associate hits
to each generated particle. The first figure of merit is known
as the average cluster efficiency εc, which is equal to the num-
ber of reconstructed clusters which have the majority of the
hits with the correct particle type divided by the number of
events. This quantity is strongly correlated with the efficiency
of finding a vertex, whereby the initial hit cloud is broken up
into the separate particle tracks (clusters). The second figure
of merit is the hit efficiency εh for each cluster, defined to
be the ratio of correct hits associated to the cluster compared
to all hits produced by the original particle. Therefore, the
overall efficiency of reconstructing a given particle is equal
to the product of the cluster and hit efficiencies. Furthermore,
the hit purity εp is defined to be the fraction of hits in a given
reconstructed cluster that have the correct particle type.

The parameters of the principal curve defined in Table 1
were optimised in order to give, on average, two clusters per
muon–proton event, as well as providing maximal cluster

and hit efficiencies and purities for the reconstructed muon
and proton tracks. The only parameters that can significantly
affect the performance in this regard are the kernel width h,
the step size t and the number of lpc points Np (the other
parameters are left unchanged). Table 2 shows the results
from this optimisation. It was found that variations to the
kernel width and step size within the range 0.04 to 0.06 did
not significantly affect the reconstruction performance, and
using between 100 and 300 lpc points also produced similar
results.

5 Shower and track discrimination

We have seen that the principal curve algorithm has a very
good performance for reconstructing muon–neutrino CCQE
events. We next tested whether the algorithm can infer
the presence of electron–neutrinos via the interaction νe +
n → e + p, which means identifying electron showers and
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Table 2 Optimised performance of the lpc algorithm for 770 MeV neu-
trino to muon–proton events that satisfy the proton range requirement
(845 out of an initial sample of 1,000). Efficiencies and purities are
averaged over all selected events

Quantity Value

Lpc scaled kernel bandwidth h 0.056

Lpc scaled step size t 0.040

Number of lpc points 150

Fraction of events with no vertex found 5.9 ± 0.8 %

Muon cluster efficiency 99.5 ± 0.2 %

Muon hit efficiency 93.7 ± 0.8 %

Muon reconstruction efficiency 93.2 ± 0.9 %

Muon hit purity 98.5 ± 0.4 %

Proton cluster efficiency 93.5 ± 0.08 %

Proton hit efficiency 91.7 ± 0.9 %

Proton reconstruction efficiency 85.8 ± 1.2 %

Proton hit purity 97.3 ± 0.6 %

Vertex efficiency within ±2 cm 89.9 ± 0.6 %

Vertex x position resolution 1.45 ± 0.07 mm

Vertex y position resolution 1.37 ± 0.06 mm

Vertex z position resolution 1.30 ± 0.06 mm

proton tracks originating from a common vertex with variable
opening angle. Before this can be attempted, we first need to
implement a set of selection criteria that can tell us whether
a cluster is either a shower or a track. This can be achieved
by looking at the differences between the transverse and lon-
gitudinal extent of clusters. To avoid overcomplicating the
track-vs-shower analysis, only one principal curve is found
per generated particle, and no vertex finding nor division into
sub-clusters is performed. As shown in Fig. 8, an electron
shower will generally produce a halo of hits that surround
the principal axis of the point cloud, whereas a track will

essentially be a continuous line of hits with slight changes in
direction owing to the effects of multiple scattering. These
topological differences can be quantified by looking at the
Euclidean distance of each hit from its nearest calculated lpc
point. These are known as residuals, labelled as δr , and are
a measure of the transverse extent of the hits in a cluster; in
general, showers will have larger residuals.

Figure 9 shows the distribution of hit-to-principal-curve
residuals for 1,000-event samples of single particle, monoen-
ergetic (0.5 and 1.5 GeV) electrons and muons. In order to
enhance the differences between tracks and showers, very
small residuals are ignored, since they are present in both
samples, and only the residuals δr ′ that are larger than 30 %
of the maximum residual δrmax in a given cluster are con-
sidered. This has the effect of producing a narrowly-peaked
distribution with a longer tail on the high end for tracks,
and a very broad, almost flat, distribution for showers. A
possible selection criterion for discriminating between them
is to require δr ′ to be above the value where the electron
distribution intersects the high-end tail of the muon distri-
bution. For 0.5 GeV, the selection δr ′ > 4 cm will iden-
tify approximately 96 % of electrons as showers and only
6 % of muons as showers. At 1.5 GeV, the intersection value
increases to δr ′ = 12 cm, degrading the shower identifica-
tion efficiency to 86 % for electrons, while slightly improving
the muon shower misidentification probability to 3 %. How-
ever, this selection criteria is energy dependent, meaning that
the energy of the cluster needs to be known before a deci-
sion can be made as to whether the particle is a shower or a
track. To avoid this difficulty, a common selection value is
imposed on all clusters irrespective of their energy, namely
that a shower must have at least 90 % of its δr ′ residuals to be
longer than 2 cm. This gives a comparable performance to the
energy-dependent selection for 0.5 GeV particles, but offers
no discrimination power at 1.5 GeV or higher energies. This
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Fig. 8 Example principal curves (red squares) for 1.5 GeV a electron shower and b muon track with delta electrons
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Fig. 9 Normalised distributions of the hit-to-lpc residuals δr ′ for a 0.5 GeV and b 1.5 GeV muon tracks and electron showers. Here, δr ′ denotes
residuals that are larger than 30 % of the value of the maximum residual δrmax
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Fig. 10 Normalised distributions of the convex hull ratio for a 0.5 GeV
and b 1.5 GeV muon tracks and electron showers that have at least 90 %
of their hits with δr ′ at least equal to 2 cm. The dotted vertical line rep-

resents the selection on the convex hull ratio; showers (tracks) have
convex hull ratios above (at or below) 0.12

can be understood by looking at the example events shown
in Fig. 8. For the muon, there are additional hit points that
are perpendicular to the general direction of the track which
originate from (delta) electrons that are knocked-off neigh-
bouring atoms as the muon passes by. The residuals of these
extra hits are large enough to be comparable to the typi-
cal residuals observed for electron showers. To remedy this
problem, an additional variable is used, namely the ratio of
the transverse-to-longitudinal extent dT/dL of a convex hull
volume that defines the outer edge which encompasses all
of the hits in the cluster [12]. Here, the longitudinal com-
ponent dL is defined to be the hull length along the princi-
pal axis of the cluster, while the transverse component dT

is the sum of the two lengths that are orthogonal to dL. In
general, showers will have larger convex hull ratios when
compared to tracks. Figure 10 shows the distributions of

this quantity for 0.5 and 1.5 GeV electrons and muons after
the previously defined selections on the residuals δr ′ have
been applied. Track-shower discrimination at high energies
is restored, with minimal impact on the performance at low
energies, by requiring the convex hull ratio to be larger than
0.12 for all cluster energies, which corresponds to tracks hav-
ing a length about 8 times longer than the transverse extent
of any hit point filaments originating from delta electrons.

Table 3 provides a summary of the shower identification
efficiencies for electrons and muons; a cluster is classified as
a shower if at least 90 % of the δr ′ residuals are larger than
2 cm, and if it has a convex-hull ratio above 0.12. In fact,
these selection requirements produce the optimal separation
between tracks and showers based on the significance defined
as εe/

√
εe + εμ, where εe (εμ) is the efficiency of identifying

an electron (muon) as a shower. For the previous 770 MeV
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Table 3 Shower identification efficiencies for electron and muon
monoenergetic particles based on 1,000-event samples

Generated energy
(GeV)

Electron efficiency
(%)

Muon
efficiency (%)

0.5 94.7 ± 0.7 3.8 ± 0.6

1.0 98.4 ± 0.4 2.1 ± 0.5

1.5 99.5 ± 0.2 1.9 ± 0.4

2.0 99.8 ± 0.1 1.3 ± 0.4

2.5 99.9 ± 0.1 1.4 ± 0.4

3.0 100.0 0.9 ± 0.3

neutrino to muon–proton event sample discussed in Sect. 4,
the probability of misidentifying muons (protons) as showers
is 6.6±0.6 % (7.9±0.6 %), which is slightly worse than the
expected value of approximately 4 % owing to some of the
original hits being left out of the reconstructed clusters (see
the efficiencies in Table 2), which will affect the distributions
of the residuals and convex-hull ratios.

6 Electron–proton neutrino interactions:
νe + n → e + p

We now have all of the ingredients to fully reconstruct
electron–proton events, which have a two-prong topology
involving a short proton track and an electron which initially
starts off like a track but quickly produces a cascade of hits in
the form of an electromagnetic shower, resulting in a halo of
hits along the initial direction of the electron. Figure 11 shows
an example 770 MeV electron–neutrino interacting with a

neutron to produce an electron shower and proton track orig-
inating from a common vertex point. The calculated points of
the principal curve follow the hits of the proton track closely.
They then bend around the vertex region to follow the hits in
the initial track-like segment of the electron, then continue
along the principal axis of the shower until the end of the core
region has been reached. The primary vertex is reconstructed
using exactly the same extended two-line method that was
used for muon–proton events in Sect. 4. As before, the main
feature point (with 1 − |cosφ| > 0.01) is used to find the
extended straight line sections for the proton and track-like
segment of the electron, and the reconstructed primary ver-
tex corresponds to their point of closest approach. Then, two
clusters are formed, one on each side of the vertex, from hits
that are closest to these straight lines. Further hits are added
to each cluster by continuing along the principal curve direc-
tion initially given by the straight line section and adding
hits that are closest to the remaining lpc points that have δr
residuals below 10 cm.

Figure 12 shows double Gaussian fits to the primary ver-
tex position in x , y and z for a sample of 770 MeV neu-
trino to electron–proton events when the proton track has a
minimum number of 25 hits. Approximately 15 ± 1 % of
protons in a sample of νe + n → e + p events will not
satisfy this hit requirement. The vertexing resolution, taken
to be the effective width of the corresponding double Gaus-
sian fit, is slightly worse than the resolution obtained for
muon–proton events. This is to be expected, since the onset
of the electromagnetic shower will produce hits that will be
some distance away from the initial direction of the electron,
affecting the accuracy of finding the extended line sections.
As was the case for muon–proton events, the determination
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Fig. 11 An example lpc reconstruction of an electron–proton event
showing the hits associated to the electron shower (red) and proton
track (blue) together with the calculated lpc points (open circles). Also
shown are the two line segments used to find the position of the primary

interaction vertex (green square). These lines are made from hits on
either side of the feature point of the principal curve, which has the
largest 1 − |cosφ| value, and is shown as an orange-filled circle. Plot b
is a close-up view of the interaction region of plot a
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Fig. 12 Double Gaussian fits to the distributions of the reconstructed primary vertex position in x , y and z for electron–proton events. Approximately
two-thirds of events have a primary vertex found within 2 cm from the true vertex position (0, 0, 0)
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Fig. 13 The distribution of the distance of the reconstructed primary
vertex position from the generated position (0, 0, 0) for electron–proton
events that pass the range selection on the proton track

of the x position of the vertex point has a slight positive
bias of 0.23 ± 0.06 mm. Despite the rather good vertex res-
olution of approximately 1.5 to 1.6 mm in each direction,
only 67 % of the events that pass the proton hit requirement

have a vertex found within ±2 cm from the generated posi-
tion at (0, 0, 0), as illustrated in Fig. 13. Note that this 33 %
inefficiency includes cases where no vertex is found. This is
significantly worse than the vertexing efficiency for muon–
proton events (90 %) due to the fact that hits from the shower
can distract the principal curve algorithm from picking up
the proton track. Indeed, the random nature of the hit posi-
tions in the shower can induce multiple feature points to be
found along the principal curve. Figure 14 shows the number
of reconstructed clusters for the sample of electron–proton
events with and without the proton hit selection requirement.
Most events have two clusters reconstructed, as expected,
although for about 25 % of the selected events, or 30 % in
the full sample, the proton track has not been found. Approxi-
mately 20 % of the remaining events have more than two clus-
ters found, meaning that a primary vertex (with the lowest x
co-ordinate) has been reconstructed together with secondary
vertices embedded inside the electron shower. This is about
a factor of two higher than the number of multiple vertices
found for muon–proton events, despite including the require-
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Fig. 14 The distribution of
reconstructed clusters in a
sample of 1000 electron–proton
events for (left) events passing a
range selection on the proton
track and (right) with no range
requirement imposed
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ment that neighbouring clusters are merged, and the vertex
between them removed, if the angle between their principal
axes is less than 20 degrees.

As was done for the muon–proton sample, the parameters
of the principal curve defined in Table 1 were optimised in
order to give, on average, two clusters per electron–proton
event, as well as providing maximal cluster and hit efficien-
cies and purities for the reconstructed electron and proton
clusters. Again, the most important parameters are the ker-
nel width h, the step size t and the number of lpc points Np.
Table 4 shows the results from this optimisation, including
the average efficiencies of identifying the electron and proton
clusters as showers, 93.4 ± 0.6 % and 11.9 ± 0.7 % respec-
tively, using the procedure described in Sect. 5. Note that
the efficiency of reconstructing the proton cluster is strongly
dependent on the efficiency of finding a primary vertex. It
was found that variations to the step size within the range
0.04 to 0.06 did not significantly affect the reconstruction
performance, provided the kernel-to-step size ratio was kept
near values between 1.6 and 1.8. Additionally, using between
100 and 300 lpc points produced similar results.

Despite most of the electrons being correctly found and
identified as showers, about 25 % of their hits are not included
in the (main) cluster. Some of these missing hits are at the
outer edge of the shower hit cloud, with δr residuals larger
than 10 cm. However, most of them are misclassified as a
separate cluster within the main shower, which happens if
more than one vertex has been reconstructed. This will have
a direct effect on the reconstructed energy of the electron
cluster, which is simply taken to be the sum of the energy
deposits Qi of all of the associated hits. Figure 15 shows the
generated quenched energy distributions for electrons and
protons (770 MeV νe events), as well as the reconstructed
energies of the electron and proton clusters when most of
their hits have the correct particle type. We can see that there
is a secondary peak below 100 MeV for the electron distri-
bution, corresponding to the missing hits in the main cluster.
Furthermore, most of the protons that are not reconstructed
have generated (quenched) energies below 50 MeV; the hits

Table 4 Optimised performance of the lpc algorithm for 770 MeV
neutrino to electron–proton events that satisfy the proton range require-
ment (857 out of an initial sample of 1000). Efficiencies and purities
are averaged over all selected events

Quantity Value

Lpc scaled kernel bandwidth h 0.072

Lpc scaled step size t 0.040

Number of lpc points 100

Fraction of events with no vertex found 24.4 ± 1.5 %

Electron cluster efficiency 99.6 ± 0.2 %

Electron hit efficiency 74.5 ± 1.5 %

Electron reconstruction efficiency 74.3 ± 1.5 %

Electron hit purity 97.5 ± 0.5 %

Electron shower efficiency 93.4 ± 0.6 %

Proton cluster efficiency 63.9 ± 1.6 %

Proton hit efficiency 92.8 ± 0.9 %

Proton reconstruction efficiency 59.3 ± 1.7 %

Proton hit purity 96.8 ± 0.6 %

Proton shower efficiency 11.9 ± 0.7 %

Vertex efficiency within ±2 cm 67.3 ± 0.9 %

Vertex x position resolution 1.52 ± 0.09 mm

Vertex y position resolution 1.62 ± 0.09 mm

Vertex z position resolution 1.62 ± 0.10 mm

from these protons are instead associated to the main electron
cluster, leading to reconstructed energies that are higher than
the generated values. Figure 16 shows the distributions of
the fractional energy difference fE = (Ereco − Egen)/Egen,
where Ereco is the reconstructed cluster energy and Egen is the
generated particle energy. The fE distribution for electrons
has a main single-Gaussian peak with a width correspond-
ing to a quenched energy resolution of approximately 8 %.
The secondary peak occurs for fE values below −50 %, and
corresponds to additional clusters found inside the electron
shower. The fE distribution for correctly identified protons
has a very narrow peak, which is to be expected since the pro-
ton hit efficiency and purity are both above 92 %. Fitting a
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Fig. 15 Plots a and b show the reconstructed (solid line) and generated (dotted line) quenched energy histograms for the electrons and protons in
770 MeV νe + n → e + p events
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Fig. 16 Distributions of the fractional difference fE between the gen-
erated and reconstructed quenched energies for a electrons and b protons
shown in Fig. 15. The main peak of the electron (proton) distribution
is fitted with a single (double) Gaussian with a quadratic polynomial
background g2 f 2

E + g1 fE + g0. The height of each Gaussian function

is given by N0, while μ and σ denote the mean and width, respectively.
The relative normalisation between the two Gaussian terms (same mean,
different widths σ1 and σ2) for the proton fit is given by the parameter
r

double Gaussian function (common mean, two widths) to this
peak gives an effective quenched energy resolution approxi-
mately equal to 0.3 % for protons. This compares well to the
effective energy resolution of approximately 0.2 % for the
reconstructed clusters in the previously mentioned muon–
proton sample.

So far we have only looked at low-energy (<1 GeV) neu-
trino interactions. Figure 17 shows the lpc reconstruction of
a high energy (∼9 GeV) electron–proton event. The electron
shower extends over a very wide area, which means that the
number of points in the principal curve needs to be signifi-
cantly increased from around 100 to at least 500 in order to
cover most of the core region of the shower, following the
hits along the principal axis. Additionally, the scaled kernel
width needs to be increased to the value 0.11 for a step size

of 0.06. A close-up view of the event near the primary vertex
region shows that the start of the electron shower is almost
track-like, as was observed for the lower energy electrons. In
this region, the principal curve starts to move away from the
electron hits towards the proton track. During this transition,
the sheer number of hits in the shower start to push the prin-
cipal curve back towards itself. However, the local nature of
the algorithm forces the points back onto the proton track.
This push-and-pull effect creates two feature points which are
actually close enough to create a merged range of lpc points
that are used for finding the primary vertex location via the
extended straight line method described in Sect. 4. Inside the
electron shower, there is an additional feature point near the
end of the principal curve, owing to the rather wide spread
of hits at the edge of the shower affecting the convergence
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Fig. 17 The lpc reconstruction of a high energy electron–proton event
showing the hits associated to the 9.0 GeV electron shower (blue)
and 0.1 GeV proton track (red) together with the calculated lpc points
(open circles). Also shown are the feature points of the principal curve

(orange-filled circles) and the reconstructed primary interaction vertex
(green square). Plot b is a close-up view of the interaction region of
plot a

of the curve, producing large angles between the remaining
eigenvectors.

In most high-energy events, the algorithm finds multiple
feature points inside the core of the shower which adversely
affects the performance of correctly finding the primary ver-
tex location, especially if the proton track has a very small
range and is not well separated from the shower. In order to
consistently reconstruct high-energy events correctly, other
tools and methods need to be developed and incorporated
into the lpc algorithm.

7 Conclusion

We have presented a local principal curve algorithm that
can reconstruct neutrino interaction events in liquid argon.
The algorithm creates a series of (three-dimensional) points
that follows the local density of hits. It does so by cal-
culating the localised mean shift, which changes direction
based on the largest eigenvector obtained from the 3 × 3
covariance matrix of a set of weights which determine the
size and shape of the local neighbourhood of points. Dif-
ferences in the angle φ between consecutive eigenvectors
can produce peaks in the 1 − |cosφ| distribution when the
principal curve is rapidly changing direction. These peaks
correspond to feature points which highlight the presence
of interaction vertices, which can be reconstructed by find-
ing the point of closest approach between two straight line
sections associated to nearby hits on either side of a given
feature point. Clusters can then be formed by continuing
along the principal curve direction initially given by each

straight line section and adding hits that are closest to the
remaining lpc points. The residual distance between hits
and their nearest lpc point, together with a measure of the
size of a convex hull encompassing all of the hits in a clus-
ter, can be used to discriminate showers from tracks. The
reconstruction performance of the algorithm with regards
to vertexing, clustering, energy resolution and track-shower
identification has been tested on 770 MeV neutrino interac-
tion muon–proton (CCQE) and electron–proton events. For
high-energy events, further work is required to better use
the information provided by the increased number of feature
points.

There are possible further uses of this algorithm. For
example, it is straightforward to use it to identify clusters
when the hit positions are only known in two dimensions;
the third co-ordinate for all hits is just set to zero or ignored,
and all other procedures remain the same. Additionally, it
should be possible to use the algorithm to find feature points
and reconstruct clusters for events when more than two par-
ticles originate from a common vertex point. Here, points
along the principal curve will only be able to follow the two
main particles which will contain the majority of the hits. To
find the other particles, the hits associated to the two recon-
structed clusters need to be removed and the algorithm re-
run on the remaining hits. However, care must be taken to
avoid removing hits unnecessarily within such a procedure.
A possible way to proceed is to use the ratio between the
first and second largest eigenvalues of the covariance matrix
defined in Eq. 5, which may indicate the presence of bifurca-
tion (“branching”) points that can act as starting locations for
further principal curves. At the time of writing, we have not
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yet studied a strategy for reconstructing multi-particle final
state interactions.

To conclude, the local principal curve algorithm provides
a wealth of information that can be used to automatically
reconstruct neutrino interaction events in liquid argon detec-
tors.
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