
http://wrap.warwick.ac.uk/

Original citation:
Rytter, W. (1987) On efficient parallel computations for some dynamic programming
problems. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-104

Permanent WRAP url:
http://wrap.warwick.ac.uk/60800

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60800
mailto:publications@warwick.ac.uk

R.esearch report L04
-l

ON EFFICIENT PARALLET COMPUTATIONS FOR

SOME DYNAMIC PROGRAMMINIG PROBLEMS

Wojciech Rylter.

(RRr04)

Abslrocl
A gcneral method for parallelism of some dynamic programming algorithms on VLSI was presented in t6l. We present, a
general method for parallelisation for t}re same class of problems on more powerful parallel computers. The method is
dcmonstrated on three typical dynamic programming problems: computing the optimal order of matrix multiplications,
the optimal binary search tree and optimal triangulation of polygons (see[1,2]). For these problems the dynamic
programming approach gives algorithms having a similar structure. They can be viewed as straight line programs of size
O(n3). the general method of parallelisation of such programs descirbed by Valiant et al tl6l then leads directly to
algorithms working in log2 time with O(ne) processors. However we adopt an alternative approach and show that a
special feature of dynamic programming problems can be used. They can be thought as generalized paning problems: find
a lree of the optimal decomposition of the problem into smaller subproblems. A parallel pebble game on fees [10,11] is
used to decrease the number of processors and to simplify the structure of the algorithms. We show that the dynamic
programming problems considered can be computed in logh time using n%og(n) processors on a parallel random access
machine without write conflicts (CREW P-RAM). The main operation is essentially matrix multiplication, which is
easily implementable on parallel computers with a fixed interconnection network of processors (ultracomputers, in the
scnse of [15]). Hence ttre problems considered also can be computed in logh time using n6 processors on a perfect
shuffle computer (PSC) or a cube connected computer (CCC). An extension of the algorithm from [14] for the
recognition of context-free languages on PSC and CCC can be used. If the parallel random access machine with
concurent writes (CRCW P-RAM is used then the minimum of m numbers can be determined in constant time (see t8l)
and consequently the parallel time for the computation of dynamic programming problems can be reduced from log2(n) to
log(n). We investigate also the parallel computation of Fees realising the optimal cost of dynamic programming
problems.

* On leave from Institute of Informatics, Warsaw University,
Palac Kultury i Nauki 8 p, sk.pocztlzl},00-901 Warszawa,
Poland

Deparhnent of Computer Science

University of Warwick
Coventry
CV4 7AL, UK

June 1987

2

The basic model of parallel computations considered in this paper is a parallel random access

machine (P-RAM). Such a machine consists of a number of synchronously working processors

(which are uniform cost RAM's) using a common memory.

The action of the parallel instruction:

for each x satisfying a given condition do in parallel instruction(x)

consists of assigning a processor to each x (if a specified condition holds) and executing

instruction(x) for all such x simultaneously.

The model is called CREW P-RAM if no two processors can write simultaneously into the same

location (however many processors can read at the same time from the same location). CREW

stands for concurrent reads exclusive writes.

If we allow write con{licts (as well as read conflicts) then the model is known as CRCW P-RAM.
We consider also two parallel computers with a fixed interconnection network of processors: the

perfect shuffle computer (PSC) and the cube connected computer (CCC). We refer the reader to [3]
for definitions of PSC and CCC.

Many dynamic programming problems can be reduced to the computation of recurrences of the

following type:

(*) cos(ij)=6in{ cost(i,k)+cost(kj)+f(i,kj) : ickcj },for 0<isj<n, j-i>2;

cost(i,i+1)=init(i)' for i=0..n- 1,

where the values of f(i,kj) and init(i) are nonnegative integers known in advance.

The value of cost(O,n) and a tree T realising this value are to be found. We specify later what we

mean by such a tree T when reformulating the problem as (**).

The recurrences (*) can be interpreted as follows: cost(ij) is the cost of the problem with
parameters (ij). The problem with parameters (ij) is decomposed into subproblems with
pa-rameters (i,k) and (kj). The total cost is the sum of the costs of subproblems plus the additional

cost of the decomposition. The value f(i,kj) corresponds to the cost of the decomposition.

Example (minimum cost to evaluate the product of n matrices)

We consider the evaluation of the product of n matrices

M = M18 MZ @... @ Mn,

where Mi is a matrix with ri-1 rows and ri columns. Assume that the cost of multiplying a matrix

with k rows and l columns by a matrix with I rows and j columns is k.lj . The order in which the

matrices are multiplied together can have some effect on the total cost of the evaluation. Let mil be

the minimum cost of computing Mi+l 8Mi+2 @.... AMj. We have

3

mi,i+1=0, for i=0...n-1;

mil= MIN {mi,k+mkj+rirkl :ick<j }, for j-D2.

Hence in this case init(i)=0 and f(i,kj)= rirkrj .We can compute all products.itttl in O(1) time

with n3 processors and assume later that these values are precomputed constants.

Remark

One can easily convert the recurrences (*) into a straight-line progmm P (see[16]) with operations

min and +. However such a progr:rm consists of O(n3) assignment statements. The size of P is

O(n3) and the degree is O(n). ffwe want to have a distinct variable on rhe left side of each

statement than we have to introduce variables xi,p; corresponding to cost(i,k)+cost(kj)+f(i,kj).

Using the method from [16] one can obtain directly a tog21n; parallel time algorithm which uses

O(n9) processors. However the structure of (*) is very special and we construct parallel algorithms
for this specific type of recurrences which are much simpler than the algorithms derived by the very
general method of [16]. Moreover the number of processors is reduced considerably. Our method

also shows a close relationship between evaluation of expressions and the computation of dynamic
progamming problems. It is an application of a parallel pebble game introduced by the author [10].

Intuitively dynamic programming problems can be thought as instances of the following

parenthesization problem: given a string a1a2...anof n objects, find a minimum (in a certain sense)

parenthesization of the string. Then the optimal tree T is the tree corresponding to the optimal

parenthesization and cost(ii) is the minimum cost of the parenthesization of the substring ai+l...aj.

We now givea more formal definition.

Denote by S the set of all trees T wirh weighted nodes such that

(i) the nodes of T are pairs (ij), 0<i<jSn;

(ii) if (ij) is an internal node then its sons are of the form (i,k), (kj), for i<kcj,
and weight(ii)=f(i,kj); the weights are nonnegative numbers;

(iii) the leaves of T are (i,i+l), for O(i<n, and weight(i,i+1)=i611i1.

Define the weight W(I) of a tree T as the sum of the weights of the nodes of T. Let

w(ij) = min tW(T) : T e S, the root of T is (ij)).
In this context, the tree T which realises the minimal weight also realises the minimum of cost(ij).
It is easy to see that w(ij) = cost(ij). Let S' be the set of trees from S whose root is (0,n).

Now the dynamic programming problem related to the recurences (*) can be reformulated as

follows:

(**) : find the minimum weight of a tree T e S'

The crucial (though auxiliary) concept in parallel computations relating to such trees is that of a

4

partial tree, or a tee with a gap. This is a tree T from the set S rooted at some veftex (ij) with one

of its nodes (p,q) treated as a leaf. In other words it is a tree T with the subtree T'rooted at (p,q)

deleted, except (p,q). T can be treated as a gap (missing subtree), all nodes but the root of T are

missing. More formally, we say that the node (p,q) is the gap of T. For a given (ij) and (p,q) we

denote the set of such partial trees roored in (ij) with the gap (p,q) by PT(ij,p,q).

The (partial) weight PW(T) of a partial tree T e PT(ij,p,q) is the sum of the weights of all its

nodes except the node (p,q). Let

pw(ij,p,q)=MD{{ PW(r): T e PT(ij,p,q) }.

Observe that pw(ij,ij)=0.
Let T be a tree rooted at (ij) ,where the sons of (ij) are (i,k), (kj). Let Tl be the tree rooted at (kj)
and T' be the pafrial tree rooted at (ij) with the node (i,k) treated as a leaf ((i,k) is the gap). Then
(1') PW(T)= f(i,kj)+ w(T1).

This implies the following equality:

(1a) pw(ij,i,k)= ;111,1)+w(kj), where (kj) is the right son of (ij) in the tree realising the

minimum of cost(ij).

Similarly one can derive the equality

(1b) pw(ij,kj)= f(ij,k)+w(i,k), where (i,k) is the left son of (ij) in the tree realising the

minimum of cost(ij).

Let T be a partial tree with the root (ij) and the gap (p,q) and let (r,s) be an intermediate node on
the path from (ij) to (p,q). Denote by T1 the subtree of T rooted at (ij) with the gap (r,s), and by
T2 the subtree of T rooted at (r,s) with the gap (p,q). Then

(2') PW(T) = PW(II) + PW(I2) and the following equality follows:

(2) pw(ij,p,q)= MIN{ pw(ij,r,s)+pw(r,s,p,q) : i3Sp and q<ssj }

If T is a tree rooted at (ij), T1 is a subtree of T rooted at an internal vertex (p,q)*(ij) and T2 is a

partial subtree rooted at (ij) with gap (p,q) then

(3') W(T) = W(Tl) + PW(T2).

This implies the equality:

(3) w(ij)=MN{ pw(ij,p,q)+w(p,q): iSpcqSj, (p,q)*(ij) }.

We introduce the auxiliary iurays w'(ij) and pw'(ij,p,q). At the end of the algorithm we want

w'=w and pw'=pw. Initially all entries of introduced arrays w' and pw' contain the value 4-,
except entries w'(i,i+1)=init(i). Then in the course of the algorithm some of the values will
decrease.

We introduce also three parallel operations activatel, squarel and pebblel which correspond to the

equalities, respectively, (1a) and (1b), (2),(3).

5

activatel: for each 0<<k<3 do in parallel

pw' (i j,i,k) : = MIN I pw' (i j,i,k), f(i j,k)+w'(k j)] ;
pw'(ij,kj):= MIN{ pw'(ij,kj), f(ij,k)+w'(i,k) };

squarel: for each 035pcq<j3, j->2 do in parallel

pw'(ij,p,q):=MlN{ pw'(ij,r,s)+pw'(r,s,p,q) : i(rSp, q<s<j } }

pebblel: for each O<i<p<q<j3 , j->2 do in oarallel

w'(i j) := MfN{ pw'(i j,p,q)+w'(p,q) : i<pcq<j }.

The whole algorithm is now very short.

Algorithm Evaluate;

repeat tog2ntimes

begin

activatel; squarel ; squarel ; pebblel

d.

Theorem I

(a) After termination of the algorithm Evaluate we have w'(ij)=ry1iJ) for each O<i<jgr.
(b) The recrurences (x) can be computed in log2n time using n6Aog(n) processors

on a CREW P-RAM.

(c) The recunences (*) can be computed in log(n) time using a polynomial number of processors

on a CRCW P-RAM.
(d) The recurrences (*) can be computed in tog21n) time using o(n6) processors

on a PSC or on a CCC.

Before starting the proof we describe a parallel pebble game on binary trees. The game was first
introduced by the author in t10l for the parallel evaluation of recursive progmms with independent

calls (which programs for evaluating algebraic expressions are a special case) and later used in an

optimal parallel algorithm for the dynamic evaluation of expressions (see tal). The concept of
parallel pebbling was also used by the author in log(n) time recognition of unambiguous conrexr

free languages [13]. The parallel pebble game is very similar to the tree contraction concept of
Miller and Reif [9], though these were invented independently of each other. Within the game each

node v of the tree has associated with it a similar node denoted by cond(v). At the outset of the
game cond(v) = v, for all v. During the game the pairs (v,cond(v)) can be thought of as additional
edges. Another notion we shall require is that of 'pebbling' a node. We have an unlimited number

of pebbles. A pebble is placed on a node is never subsequently removed. At the outset of the game

only the leaves of the tree are pebbled.

6

We say that a node v is 'active' if and only if cond(v) + v.

The three operations activate, square and pebble are components of a'move' within the game and

are defined as follows:

activate:

fol each nonleafnode v do in parallel

if v is not active and precisely one of its sons is pebbled then cond(v) becomes the other son

if v is not active and both sons are pebbled then cond(v) becomes one of the sons arbitrarily

square:

for each node v do in parallel cond(v):=cond(cond(v));

pebble:

for each node v do in parallel if cond(v) is pebbled then pebble v;

Now we define one (composite) move of the pebbling game to be the sequence of individual
operations:

(activate; squile; square; pebble)

in that order. Assume for simplicity that n is a power of nvo. Then the following fact provides a
key result.

Fact

Let T be a binary tree with n leaves. If initially only the leaves are pebbled then after log2(n)

composite moves of the pebbling game the root of T becomes pebbled.

The fact was proved in [11]. We present a main idea of the proof. We define a modified pebbling

move consisting of the sequence:

(pebble; activate; square; square)

It is enough to prove that after (log2(n)+l) such moves the root will be pebbled. This is because if
a node is pebbled after (k+1) of these leaves moves then it will be pebbled after k of the original
moves. The first pebble operation and the last individual operations activate, square, square are

redundant in this context. Let size(x) denote the number of leaves of T*, the binary (sub)tee

rooted at x. By size (></y) we mean (size(x) - size(y)). We number the modified moves from 0 to

log(n). The followng claim can be proved.

Claim

After the k-th modified move the following invariants hold for each node x of the tree:

(I1) if size(x) < 2 k then x is pebbled

(I2) (size(*/cond(x)) > Zk) or (no son of cond(x) is pebbled) or (cond(x) is a leafl.

7

Rernark

In t10l one composite move was defined as a sequence: (activate; square; pebble). It was proved

there that O(log(n)) such moves are sufficient to pebble the root. Hence alternative algorithms for
dynamic programming problems follow by using the sequences of this type of composite moves.

In this case the constant coefficient before log2n is bigger than two, while in the case of composite

moves with two operations square the coefficient is the smallest possible (it equals one).

Proofoftheorem 1.

(a)

It is easy to see that w'(ij)>w(ij) and pw'(ij,p,q)>pw(ij,p,q) for every ij,p,q in the course of
the algorithm. It is enough to show that at some stage in the algorithm the equalities can be

obtained.The essential point is to prove that log2(n) repetitions are sufficient. We do this using a

relationship between the operations activatel, squarel and pebblel and the operations activate,

square, pebble as defined for the parallel pebble game .

Consider a pair (ii),0<i<j-1<n. Consider a particular ffee T e S (one of possibly many) with
minimal weight and with the root (ij). The weight of this tree equals w(ij) and for each node (p,q)

of T the weight of the subtree of T rooted at (p,q) equals w(p,q). Moreover the weight pW(t') of
the partial tree T' which is a subtree of T with root (ij) and gap (p,q) equals pw(ij,p,q). Hence as

far as nodes of T are only concerned the weights pw' and w' reach their minimal values in
computations involving only nodes of T. Therefore in considering the final value of w'(ij) we can

ignore all pairs (k,1) which are nor the nodes of T.

Now we play the parallel pebble game on T in the course of the algorithm Evaluate . We consider

an extended version Evaluatel of the algorithm Evaluate. Assume that initially all the leaves of T are

pebbled.

Algorithm Evaluatel;

repeat log2ntimes

begin

activate; activatel; square; squarel; square; squarel; pebble; pebblel

end.

It is easy to see that the following two invariants hold after each of the operations activatel;
squarel; pebblel:

If (p,q) is pebbled then w(ij)=w'(p,q)) and

if cond(p,q)=(r,s) then pw(p,q,r,s)=pw'(p,q,r,s),

for every two nodes (p,q) and (r,s) of the tree T.

(In other words if the node is pebbled then its weight w' is reaching its minimal value. Similarly for
pairs of nodes related through the function cond and partial weights pw'.)

Initially only the leaves of T are pebbled, but all of them are of the form (i,i+l) and their values

B

w'(i,i+1)='vv(i,i+1) are correctly computed and set to init(i). Then the equalities (1'), (2'), (3') and

(1a), (1b), (2) and (3) can be used to show that in the course of the algorithm Evaluatel the

invariants are preserved.

Hence in the moment of pebbling the node (ij) the value of w'(ij) is correctly computed. However

this node will be ultimately pebbled because of the fact about the parallel pebble game. Observe

now that the pebble game perforrred on the tree T can be ignored and the operations activate,

square and pebble removed; they are introduced only to show the correcteness. Then algorithm

Evaluatel becomes our initial algorithm Evaluate. Hence w'(ij) is correctly computed in the

algorithm Evaluate. The same argument applies to ever pair (ij) by taking a suitable optimal ree T
with the root (ij). This completes the proof of point (a).

(b)

The biggest number of processors is required in operation squarel. For every 4-tuple (ij,p,q) we
have to compute a minimum of O(n2) values. This can be done in log(n) time using n2log(n)
processors for a fixed 4-tuple, or in the same time using n6llogn processors for all4-tuples

simultaneously.

(c)

If we have concurent writes then a minimum of n2 values can be computed in O(1) time using

O(n4) processors, see [8]. Each of the operations activatel, squarel and pebblel can be performed

in O(1) time with a polynomial number of processors. This proves point (c).

(d)

The operation squarel can be seen as a matrix multiplication with elements from a semiring, where

the rows and columns colrespond to pairs (ij). Here the size of the matrix is O(n4). The operations

involved are minimum and addition. Similarly operations activatel and pebblel can be implemented

as matrix operations. The implementation is very technical. The same method as used in [14] for
the recognition of context free languages on a PSC or on a CCC can be used. No new ideas are

needed. We refer the reader to [14] and [3].
If the matrices have M rows and M columns then matrix multiplication can be done in log M time

using M3 processors on a PSC or CCC computer, see [3]. There are log(n) iterations. Therefore

the whole algorithm can be implemented on a PSC or on a CCC in log2n time using n6

processors. This completes the proof of the theorem.

Corollary 1.1

The minimum cost of the evaluation of the product of n matrices can be computed in log2n time

using n6^og(n) processors.

Our second example of the dynamic programming problem is the optimal triangulation of the

polygon. We are given the nodes of a polygon and a distance between each pair of nodes. The

I

problem is to select a set of diagonals (lines benreen nonadjacent nodes) such that no two diagonals

cross each other, and the entire polygon is divided into triangles. The cost is the minimum total
length of the diagonals.

Irt the polygon be given by its nodes (in clockwise order) vg,v1,...,vn. The subproblem with

parameters (ij) is the computation of the minimal triangulation of the polygon given by nodes

vi,vi+1,...,vj. trt mq be the cost of this subproblem. The equations similar to (*) in the previous

example can be easily found to compute mq . We refer the reader to [1] for details. Applying

Theorem I we obtain

Corollarv 1.2

The triangulation problem can be solved in log2n time using o(n6llog(n)) processors.

Our third example of the dynamic programming problem is the computation of the optimal bina.y

search ffees. Let K1, K2, ..., Kn be some keys given in an increasing order. Let pi be the

frequency of the access to the key Ki. We want to construct a binary tree T with the leaves Kl, K2,

..., Kn . The cost of tree cost(f) is the sum of lip1, for lSi(n, where l1 is the length of the path

from the root to Ki.

For 0Sjcj(n let Til be the minimum-cost tree for the subsequence of keys Ki+l, Kia2,...K3 and

mry be the cost of this tree. Now we can write an equation similar to (*) for rr11 , see 121.

Applyrng theorem 1 again we obtain.

Corollary 1.3

The cost of the optimal binary search tree can be computed in log2n time using O(n6llog(n))
processors.

Observe that in the last three examples not only is the minimum cost of interest also so is an

optimal tree. In the first example such a tree describes the optimal order of matrix multiplication (or

bnacket sffucture imposed), in the second example it corresponds to the structure of diagonalisation.

The problem of recognizing context-free languages can be also formulated as a dynamic
progamming problem, we have to compute the boolean value which says if the string is generated

by a given gmrnmar or not. The parsing problem for context-free languages is to find a parse tree if
one exists. The computation of optimal trees from the last three examples can be thought as a

generalized parsing problem. It was shown in [12] that if we have computed the parsing matrix (see

[12]) then the parsing tree can be found using an efficient parallel algorithm. The matrix cos(ij)
plays the same role in dynamic programming problems as the parsing matrix in the case of context

free languages. We refer the reader to [12] for details. The next theorem follows by using the same

method as that used in [12] for the computation of parse trees from parsing matrices.

10

Theorem2

The optimal tree T realising the minimal value of cost(O,n) in the recurrence (*) can be computed in

logzntime using n6 pro"rrrors on a CREW P-RAM.

The theorem implies (for example) that the optimal binary search tree, not only the cost of such

tree, can be efficiently found using a parallel algorithm. The same applies to the other nvo dynamic
programming problems considered in this paper.

Rernark

In the case of context-free languages it was shown in [13] that if we know in advance that the

parsing tree is unique (if it exists) then log(n) parallel time algorithms on a CREW P-RAM are

possible. Does the same apply generally to the dynamic programming problems if we assume thar

the optimal tree is unique?

Parallel algorithms for dynamic programming problems on the P-RAM were also investigated in

[10] in the framework of path systems and recursive programs. The algorithms presented in this
paper can be generalized and can also be presented using the terminology of path systems. A path

system G is given by a 4-tuple (N,Ter,s,R), where N is a finite set of elements, Ter is a subset of

N (its elements are called terminal elements), seN is a goal element and R is a ternary relation on N.

(x,y,z) is in R iff z is a possible father of x and y. We associate nonnegative weights with elements

of Ter and triples from R. The derivation tree for the goal element s is a tree T whose root is s,

whose leaves are in T and whenever x,y are sons of an element z in T then (x,y,z) is in R. The

weight of an internal node z whose sons are x,y is the weight of the triple (x,y,z). The weight of T
is defined to be the sum of all weights of leaves plus the weights of intemal nodes. Define the cost

c(G) of the system G to be the minimal weight of a derivation tree for s. The cost equals +"" if there

is no such tree.

The problems of computing the dynamic programming problems and of computing the weight of
minimal tree in the sense of 1*'*1 are special cases of a more general problem of computing c(G) for
a given weighted path system G. In these problems the elements of N are pairs (ij), the terminal

elements are pairs (i,i+l) and (x,y,z) is in R igl l=(i,k), y=(kj) and z=(ij) for some 0<i<k<j3.
The weight of such a triple (x,y,z) is f(i,kj). The goal elemenr is (0,n).

The algorithm Evaluate can be easily extended to compute c(G) for any weighted path system such

that the sizes of the derivation ffees for the goal element s are bounded by a polynomial.

However the problem of computing c(G) for general path systems is P-complete, which follows

easily from the fact that the problem of solvability (verification if the goal node can be derived from

terminal elements) for path systems is P-complete.

One can consider proof systems instead of path systems . The terminal nodes are now axioms and

the relation R represents rules which are weighted. Then the problem consists of finding for a given

theorem a proof whose cost is minimal.

11

Acknowledgment

The author thanks W.M. Beynon for linguistic help.

Bibiography.

[1] A.Aho, J.Hopcroft and J.Ullman. Data structures and algorithms. Addison-Wesley (1983)

[2] A.Aho, J.Hopcroft and J.Ullman. The design and analysis of computer algorithms.
Addison-Wesley (1974)

[3] E.Dekel,D.Nassimi,S.Sahni. Parallel matrix and graph algorithms. SIAM Journal on

Computing 10:4 (1981)

[4] A.Gibbons, W.Rytter. An optimal parallel algorithm for dynamic expression evaluarion and its
applications. in Found.of Sofnvare Techn.and Theoretical Comp.Science, Lecture Notes in
Computer Science, Springer Verlag (1936).

[5] A.Gibbons, W.Rytter. Efficient parallel algorithms: an introduction. The book, Cambridge
University Press, to appear (1987).

[6] L.Guibas, Kung H, Thompson C. Direct VLSI implementation of combinatorial algorithms.
Caltech Conference on VLSI, (1979) 509-525

[7] G.Kindervater and J.lrnstra,An introduction to parallelism in combinatorial optimization.
Report OS-R8501,Centre for Mathematics and Computer Science, Amsterdam (1985)

[8] L.Kucera. Parallel computation and conflicts in memory access. Inf.Proc.Letters l4:2 (lgl2)
93-96

[9] G.L.Miller,and J.H.Reif, Parallel tree contraction and its application. 26th IEEE Symp. on
Found.of Comp.Science, (1985) 478-489

[10] W.Rytter, The complexity of two way pushdown automata and recursive programs.In

Combinatorial algorithms on words (ed.A.Apostolica,Z.Galil), NATO ASI Series F:12, Springer
Verlag (June, 1985) (the conference took place in June 1984)

[11] W.Rytter, Remarks on pebble games on graphs. Presented at the conference 'Combinatorial

analysis and its applications' (September, 1985) (ed.M.Syslo), the proceedings published in
Zastosowania Matematyki (I 987).

[12] W.Rytter.On the complexity of parallel parsing of general conrext-free languages. Theoretical

Computer Science (1987)

[13] W.Rytter. Parallel time O(log(n)) recognition of unambiguous context free languages.

Information and Computation 73:l (1987)75-86

[14] W.Rytter. On the recognition of context free languages. Computation Theorey

(ed. A.Skowron), Lect.Notes in Computer Scienc e 208, Springer-Verlag (1 985) 318-325

[15] J.Schwartz. Ultracomputers. ACM Trans. on Programming Languages and Systems 2:4

(1980) 4s4-s21

[16] L.Valiant,S.Skyum,S.Berkowitz, C.Rackoff. Fast parallel computation of polynomials using

few processors. SIAM J.Comp. I2:4 (1983) 641-644

