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Abstract:  

Humic acid was immobilized on a polypropylene supported sodium 

alginate/hydroxyethyl cellulose blend membrane in the current work. The adsorption property of 

this membrane for the removal of cationic dyes, namely, methylene blue (MB) and rhodamine B 

(RhB) was extensively studied. Batch-adsorption experiments were conducted to investigate the 

adsorption behavior of dyes on the membrane with variation in adsorbent mass, initial dye 

concentration, pH, time and temperature. The membranes were characterized by Scanning 

electron microscopy (SEM), Energy dispersive X-ray analysis (EDX), Fourier transform infrared 

spectroscopy (FTIR) and Atomic force microscopy (AFM). Prepared membranes showed more 

than 98% removal capacity for both dyes under optimal conditions. Kinetic experiments revealed 

that, the pseudo second order model exhibited best correlation with the adsorption data. Dubinin-

Radushkevich model indicated that, the adsorption of dyes onto the membrane surface was by 

simple physisorption. The membrane was easily regenerated by simple acid treatment and its 

efficiency remained significant even after four adsorption cycles. 
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1. Introduction 

 Extensive industrialization has resulted in severe water contamination of water bodies in 

addition to lack of treatment of industrial discharge. A number of contaminants such as 

pesticides, toxic metals, dyes, suspended solids, fertilizers, etc. are known to pollute the aesthetic 

quality of water.
1-2

 Stringent regulations on the quality of water have made the treatment of these 

pollutants very essential before their consumption for domestic purposes. Dyes are commonly 

used in textile, pharmaceutical, food, tanning and paper industry.
3-5

 Removal of dyes from water 

sources is necessary because of their recalcitrant, toxic and non-biodegradable nature.
6-7

 

Presence of dye affects chemical oxygen demand (COD) of the effluent and sunlight penetration, 

which has a detrimental effect on aquatic life.
8
 Basic dyes have such high color intensity that, 

even at trace levels they impart color to water, making it undesirable for consumption. Although 

the effect of basic dyes such as methylene blue (MB) and rhodamine B (RhB) are not as 

hazardous as azo or reactive dyes, acute exposure to the same may however result in serious 

health issues. MB can cause increased heart rate on inhalation; ingestion through mouth may 

lead to vomiting, nausea, jaundice, tissue necrosis and quadriplegia.
3, 9

 RhB is commonly used as 

a staining dye in biotechnology. It is known to cause irritation of skin, eyes and respiratory tract 

in addition to neurotoxicity and carcinogenicity.
10-11

 Removal of these dyes by various 

techniques have been studied in the past, amongst which adsorption is the simplest and widely 

adopted technology.
12-13

 Other techniques include flocculation/coagulation, membrane filtration, 

photo degradation, ozonation, and chemical and/or biological degradation.  

 Adsorption technique is more desirable and economical if the adsorbents used for dye 

removal process are cheaper, non-toxic, and biodegradable in nature. Keeping this in view, more 

and more number of researchers are experimenting to come up with better alternatives to the 

existing options. Humic acid is (HA) one such material which has the capacity to bind to diverse 

nature of chemical compounds and materials due to the presence of functional carboxylic and 

phenolic groups.
14

 In addition to imparting odor and color to water, HA is capable of reacting 

with chlorine in water to produce trihalomethanes which are potential carcinogenic agents.
15

 The 

presence of these groups lead to structural and chemical changes in HA, thereby making it toxic 

in nature. The binding capacity of carboxylic and phenolic groups responsible for HA toxicity 

has been used to address dye removal problem in our current work. The outstanding ability of 
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HA for effective removal of pollutants from water has been studied previously.
16-19

 The 

positively charged basic dyes can be easily adsorbed by the negatively charged HA when the 

carboxylic and phenolic groups in HA are deprotonated in weakly acidic or basic media. 

However, the water-soluble property of HA necessitates its immobilization on water-insoluble 

matrix. For immobilization, sodium alginate (SA) and hydroxyethyl cellulose (HEC) 

biopolymeric membrane crosslinked with glutaraldehyde (GA) was used. SA and HEC are 

water-soluble biopolymers that form compatible blends and are capable of forming film.
20

 HA 

immobilization on this blend has been reported by Chen et al. for removal of heavy metals.
21-22

 

However, no studies have been carried out on this adsorbent membrane for removal of dyes.  

 The objective of this work is to carry out detailed investigation on the use of 

SA/HEC/HA composite membrane crosslinked with GA for the removal of MB and RhB. The 

parameters affecting the dye adsorption, namely, pH, temperature, adsorbent dosage and initial 

concentration have been thoroughly investigated. The adsorption data was tested for four 

isotherm models including Langmuir, Freundlich, Temkin and Dubinin-Radushkevich. The 

kinetic modeling of the adsorption process was also tested using different kinetic models and 

their mechanism was discussed. The thermodynamic parameters were determined to find the 

nature and feasibility of the process. Lastly, the reusability of the membrane was tested for both 

the dyes. 

2. Experimental 

2.1 Materials 

 2-Hydroxyethyl cellulose (HEC) (Mw~250,000 g/mol), methylene blue (MB) (Mw~373.9 

g/mol) and rhodamine B (RhB) (Mw~479.01 g/mol) was procured form Sigma Aldrich Co. 

Sodium Alginate (SA) and sodium salt of humic acid (HA) used for preparation of membrane 

was obtained from Himedia, Mumbai. Glutaraldehyde (GA) (25% solution) was obtained from 

Merck India Ltd. NaOH and HCl required for pH studies were of analytical grade. All the 

chemicals were used without further purification. Structure of MB and RhB are given in Figure1. 
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Figure 1 Structure of A) Methylene blue and B) Rhodamine B 

2.2 Membrane preparation 

 The polymer solution comprising the membrane had an overall composition of 3 wt.%. 

SA (2.2 g), HEC (0.4 g), HA (0.4 g) was dissolved in 100 mL of distilled water for 24 h at room 

temperature (30 ± 1 °C). After its dissolution, the polymer solution was subjected to 

centrifugation at 1500 rpm for 0.5 h so as to remove undissolved particles. This solution was 

then poured onto a glass plate to which a polypropylene support was already pasted using a 

double sided tape. Handling of the adsorbent membrane became relatively convenient and easy 

as a result of the strong polypropylene support. The membrane was then dried in an oven at 40 

°C for 24 h, after which it was crosslinked with GA. For crosslinking, the dried membrane was 

immersed in a solution containing 70% aqueous methanol, 2.5 wt.% conc. HCl and 2.5 wt.% GA 

for 4 h at 27 °C. The crosslinked membrane was then thoroughly washed with distilled water and 

dried overnight at 40 °C in a vacuum oven before subjecting it to characterization and dye 

removal studies. 

2.3 Characterization 

2.3.1 Determination of point of zero charge of membrane 

 Zero point charge (Pzc) of the membrane explains the condition at which the surface of 

the membrane has zero charge density. Pzc was determined as mentioned in the literature.
22

 25 

mL of 0.1 M NaCl solution was transferred in a series of 100 mL Erlenmeyer flasks whose pH 

was adjusted from 1 to 9 by the addition of either 0.1 M HCl or 0.1 M NaOH solutions. The pH 

of the solution was measured using EQUIP-TRONIC pH meter (Model EQ-610). The initial pH 

of these solutions was noted as pH1. 0.1 g adsorbent was added to each of the flasks. The flasks 

were placed on an orbital shaker (Scigenic Biotech) at room temperature, and at 150 rpm till no 

difference in pH values was observed between two successive readings. The equilibrium pH 
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value was noted as pHe, which was used to calculate ǻpH (pH1 ࡳ  pHe). Graph of ǻpH against pH1 

gave the Pzc value at which the ǻpH reads zero. The experiment was performed twice and the 

mean value was reported. 

2.3.2 Membrane characterization  

 The surface morphology of the adsorbent membrane before and after dye adsorption was 

thoroughly investigated by Scanning electron microscopy (SEM) (JEOL-6380LA ) and Atomic 

force microscopy (AFM) (Nanosurf EasyScan AFM). For AFM analysis, 10 µm x 10 µm of the 

membrane sample was scanned by tapping mode in air. The surface roughness was reported in 

terms of root mean square roughness. In order to confirm the adsorption of dye on membrane 

surface, elemental mapping and Energy Dispersive X-ray (EDX) analysis were carried out. For 

this study, the membrane was initially gold sputtered for conductivity. To understand the 

interactions between the membrane and dye, Fourier transform infrared spectra (FTIR) spectra of 

the membranes  were recorded on Perkin Elmer Spectrum 100 equipped with Attenuated total 

reflectance (ATR) analyzer. The spectra was recorded in the working range 650 - 4000 cm
-1

. 

2.3.3 Dye Removal studies 

 The dye removal capacity of SA/HEC/HA membrane was investigated in terms of 

variation in initial dye concentration, adsorbent dosage, pH, time and temperature. All the 

experiments were carried out using batch-adsorption process on an orbital shaker at 27 
o
C and at 

150 rpm. The experiments were performed at pH 7 with adsorbent dosage of 0.3 g unless stated 

otherwise. After the completion of experiment, the absorbance of the supernatant dye solution 

was analyzed using Ultraviolet-visible (UV-Vis) spectrophotometer (Analytikjena Specord 

S600). The absorbance of MB and RhB was measured at wavelength 665 nm and 554.5 nm 

respectively which was determined as by their Ȝmax value (Supporting information S1). A 

calibration plot of absorbance against concentration was used to determine the concentration of 

the dye solution. From the initial and final concentration, dye removal (%) was calculated as 

ሺΨሻ ݈ܽݒ݋ܴ݉݁ ݁ݕܦ ൌ ൬ͳ െ ଴൰ܥ௘ܥ ൈ ͳͲͲǥǥǥǥǥ Ǥ  ͳ ݊ݍ݁

where, ܥ௘and ܥ଴ are the equilibrium and initial dye concentrations in mg/L. The amount of dye 

adsorbed on the membrane was calculated as 
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௧ ൌݍ ሺܥ଴ െ ௧ ሻܸ݉ܥ ǥǥǥǥǥ Ǥ  ʹ ݊ݍ݁

where, ݍ௧  is the amount of dye adsorbed per unit mass of the adsorbent (mg/g), Ԣ݉Ԣ is the mass 

of the adsorbent (g), ‘V’ is the volume of the dye solution (L). As mentioned above, ܥ଴ is the 

initial dye concentration and ܥ௧ is the concentration at time t, (mg/L). All the experiments were 

performed in triplicate and the average value of ܥ௘ and ݍ௧ was considered for isotherm and 

kinetic studies. For time dependent kinetic studies, at given time intervals, aliquots of 

supernatant solution was extracted and analyzed for MB and RhB as described above. 

2.3.4 Membrane reusability 

 The reusability of the adsorbent membrane was studied by performing desorption studies. 

For desorption experiment, dye adsorbed membrane was added to 0.1 M HCl solution taken in a 

100 mL Erlenmeyer flask and was agitated on an orbital shaker at 150 rpm for 5 h at 27 °C. After 

the specified time, membrane was thoroughly washed with distilled water until the pH of the 

solution was neutral. The dried membrane sample was subsequently subjected to second round of 

adsorption process. The adsorption-desorption cycle was repeated for four times to investigate 

the membrane reusability. 

3. Results and discussion 

 For all the studies, desired amount of adsorbent was cut into small pieces of 

approximately 0.5 cm
2
. As stated earlier, the handling of the membrane became convenient 

because of the strong polypropylene support. Cutting of the membrane to smaller pieces ensured 

more surface of the membrane was available for dye adsorption. 

 The adsorbent membrane comprised of SA/HEC/HA film and a polypropylene support. 

Experiments performed on neat polypropylene support indicated that, it did not play any major 

role in the dye removal process. Hence, in order to study the effect of adsorbent dosage, the 

weight of the SA/HEC/HA film alone was decided to find out first. For this purpose, weight of 

neat polypropylene film was noted as w1. The membrane was weighed again after the deposition 

of the crosslinked adsorbent layer. This weight was noted as w2. The difference in weight was 

further used to calculate the actual weight of the adsorbing layer. Hence, when the overall 

adsorbent weighed 0.1 g, only 0.02 g comprised of the SA/HEC/HA film. Similarly, for 0.2 g 



7 

 

and 0.3 g, 0.05 g and 0.08 g respectively formed the active adsorbent layer. The calculations 

were done in triplicate to achieve accuracy. 

3.1 Point of zero charge of the membrane 

 From Figure 2, Pzc of the membrane was found out to be 3.56 (regression coefficient 

0.99). The acidic nature of the surface must have been due to the presence of carboxylic and 

phenolic groups of HA, and acid groups of SA. The membrane, thus, was positively charged 

below 3.56, whereas above this pH value, it possessed negative charge. This implied that, 

adsorption of cation is favored when pH> Pzc, and adsorption of anion is preferred when pH< Pzc. 

 

Figure 2 Point of zero charge of the membrane 

3.2 SEM and FTIR analysis 

 SEM images of the surface of SA/HEC/HA membrane are shown in Figure 3. The 

membrane surface in the absence of dye (Figure 3A) appeared to be relatively smooth in 

comparison to the dye adsorbed membrane surface in Figure 3B and 3C. The surface of the 

membrane coupons adsorbed with dye was coarse and rough. This can be attributed to the dye 

aggregates formed on the membrane surface during adsorption process. This was further 

confirmed by an increase in the surface roughness for dye adsorbed membrane as recorded by 

AFM images (Supporting information S2) 
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Figure 3 SEM, EDX and elemental mapping of A) SA/HEC/HA adsorbent membrane B) MB 

adsorbed membrane C) RhB adsorbed membrane 

Dye adsorption was further confirmed by elemental mapping and EDX analysis. The 

presence of nitrogen and sulfur peak (the elements present in MB molecule) in the EDX spectra 

(Figure 3B) was indicative of MB adsorption on the membrane. A similar observation was made 

for RhB adsorbed membrane sample (Figure 3C), which primarily contained nitrogen in its 

molecular structure.  

The FTIR spectra of the adsorbent membrane showcased characteristic peaks at 3367 cm
-

1
 (OH stretching frequency of carboxyl and phenol groups), 1586 cm

-1
 (CőO stretching of the 

conjugated carbonyl group), 1701 cm
-1 

(CőO stretch of carbonyl group in SA) and 1115 cm
-1 

(C௅O stretching frequency) (Figure 4). The spectra, with dye adsorbed on its surface exhibited 

decreased intensity of OH stretching frequency for MB and RhB. This peculiar observation 

revealed electrostatic interaction between the carboxylate ions of the adsorbent with the cationic 

dye. Had some chemical changes (chemical bond formation) occurred during the adsorption, a 

very prominent change in the IR spectra of the dye adsorbed membrane would have been 

witnessed, which was not the case. By calculating the area under the OH peak, it was concluded 

that, nearly 40% of carboxylate ions of the membrane interacted with the dyes under 

consideration (Supporting information S3). The concentration of the dye on the membrane 

surface was too less to give strong peaks in the IR spectra. 

C 



10 

 

 

Figure 4 FTIR spectra of unadsorbed and dye adsorbed membrane samples 

3.2 Effect of initial dye concentration 

 For this study, six different concentrations (5, 15, 30, 50, 75, 100 mg/L) of MB and RhB 

were prepared at pH 7 to which 0.3 g of the adsorbent membrane was added.  

 

Figure 5 Effect of change in initial A) MB and B) RhB concentration on dye adsorption  

The initial dye concentration plays a major role in governing the mass transfer resistance of dye 

molecules between the aqueous phase and the solid phase. The increase in dye concentration 
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serves as a driving force to overcome this resistance, which in turn increases the probability of 

collision between the dye molecules and the adsorbent, thus leading to higher adsorption.
23

 This 

effect has been reflected in Figure 5, where it is observed that, with an increase in the initial dye 

concentration, the amount of dye adsorbed also increases. At 100 mg/L concentration, the 

maximum amount of dye adsorbed for MB and RhB was 30.14 mg/g and 28.81 mg/g 

respectively. 

3.3 Variation in adsorbent dosage 

 The adsorbent dose strongly influences the amount of dye adsorbed. To investigate this 

effect, weighed amount of adsorbent was contacted with 25 mL of dye solution having initial 

concentration 50 mg/L and 100 mg/L. From Figure 6, it was observed that, dye removal 

increased with increase in adsorbent dosage from 0.1 g to 0.3 g. As the dosage increased, more 

number of adsorption sites were generated on the membrane surface which enabled more dye 

molecules to be adsorbed, hence resulting in higher removal. In addition to this, at neutral pH 

(pH>Pzc), the membrane was negatively charged due to deprotonation of the carboxylic groups 

on the membrane surface.  With an increase in dosage, electrostatic interaction between the 

negatively charged membrane surface and cationic dye molecules was more pronounced. This 

combined effect led to higher MB and RhB removal at 0.3 g. However, with the increase in 

adsorbent dosage, the dye uptake reduced from 58.03 to 15.02 mg/g in case of MB and 49.96 to 

15.36 mg/g in case of RhB at 50 mg/L. Higher number of unsaturated sites at higher adsorbent 

dose, decreased the adsorption density of the membrane. The amount of dye adsorbed per unit 

mass of adsorbent reduced significantly with increase in adsorbent mass which explains their 

lower qe values.
24
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Figure 6 Effect of adsorbent dosage on A) MB and B) RhB removal at 50 mg/L dye 

concentration C) MB and D) RhB at 100 mg/L dye concentration respectively 

3.4 Effect of change in pH 

 Basic dyes exist in cationic form in aqueous solution. The pH of the solution influences 

the charge on the membrane which in turns governs the degree of adsorption of the dye on its 

surface. The pH also influences the degree of ionization of the dye molecules. Since, the 

membrane possesses charged surface containing carboxylic and phenolic groups, it shows 

different behavior in acidic and basic media. At lower pH, i.e at pH<Pzc, the cationic dye 

molecules are in competition with the hydrogen ions to interact with the adsorbent membrane. 

Moreover, the membrane becomes positively charged because of the protonation of carboxylic 

groups, in addition to the adsorbed H
+
 ions on its surface, thus, repelling the incoming positively 
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charged MB and RhB molecules. Owing to this combined effect, adsorption is low at pH<Pzc. 

There is increase in the adsorption efficiency with increase in pH due to the fact that, at higher 

pH, the adsorption sites get deprotonated making the membrane now negatively charged. The 

electrostatic forces of attraction are on highest par between the negatively charged membrane 

surface and positively charged dye molecule under such situation. An important observation in 

case of MB dye can be noted that, the adsorption efficiency is greater at pH 9 than pH 7 (Figure 

7A). The explanation for the same can be as follows. The dissociation of carboxylic groups occur 

at pH>4, whereas that of phenolic OH groups occur at pH>8.
25

 This implied that, at pH 9, both 

carboxylic and phenolic groups are completely dissociated making the adsorbent membrane 

more negative than that at pH 7.  

 Unlike MB, from Figure 7B, it is observed that RhB removal was less at pH 9. Literature 

suggests that, RhB in water exists in the zwitterionic form above pH 4 (Figure 8).
26

 The 

existence of this zwitterionic form reduces the interaction between the negatively charged 

membrane surface and RhB dye which is reflected in the decreased dye rejection. Aggregation of 

RhB molecules at pH>4 due to formation of zwitterions also hinders its entry into the membrane 

pores.
11

 At pH 1, the protons present in the solution competed with RhB molecules to interact 

with the membrane, hence, showed least rejection 

 

Figure 7 Effect of pH on dye removal capacity of A) MB and B) RhB 
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Figure 8 Zwitterionic form of RhB 

3.5 Effect of time 

 Figure 9 shows the plot of dye removal efficiency as a function of time. The plot 

indicates that, for both the dyes, major part of the removal process occurred in the early 40 to 50 

min.  

 

Figure 9 Dye removal efficiency as a function of time A) for MB B) RhB  

In the initial 10 min of the adsorption process, nearly 80% of the dye was removed which 

indicated the adsorption efficiency of the SA/HEC/HA membrane. Equilibrium value of 96% 

was achieved for MB after 120 min, whereas, for RhB an equilibrium value of 94.9% was 

obtained after 180 min. This suggested rapid uptake of MB molecules than RhB molecules. 

Higher removal capacity at initial stages was the result of presence of excess vacant sites on the 

surface which made it easier for the dye molecules to be occupied easily. With advancement in 

time, it became difficult for dye molecules to get adsorbed as the surface was now covered 

partially/completely. This resulted in slower removal of the dye from the bulk solution. Constant 
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value was reached when the amount of dye adsorbed onto the adsorbent was in a state of 

dynamic equilibrium with the amount of dye desorbed.
27

   

3.6 Adsorption Isotherms 

 Information regarding how the adsorbate molecules distribute themselves between the 

liquid and solid phase is provided by the adsorption isotherms.
28

 The dye adsorption onto the 

membrane was studied by fitting the adsorption data into four isotherm models, namely 

Langmuir, Fruendlich, Temkin and Dubinin-Radushkevich equations. 

3.6.1 Langmuir Isotherm 

 Langmuir isotherm is based on the assumption that, all the adsorbent sites are equivalent 

and there is no interaction between the adsorbate molecules formed as a monolayer. The linear 

form of Langmuir equation is given as ܥ௘ݍ௘ ൌ ͳܾݍ௠௔௫ ൅  ͵ ݊ݍ௠௔௫ǥǥǥǥǥǥ݁ݍ௘ܥ

where, Ce (mg/L) and qe (mg/g) are the concentration and amount of dye adsorbed at equilibrium; 

‘b’ is the Langmuir coefficient (L/mg) related to the affinity of binding site; and qmax  is the 

maximum adsorption capacity per unit mass of the adsorbent (mg/g). 

3.6.2 Freundlich Isotherm 

 Freundlich isotherm is applied to heterogeneous surfaces based on the assumption that 

the adsorption sites are not equivalent. The linear form of Freundlich equation is given as  

௘ݍ   ൌ ிܭ݈݊ ൅ ͳ݊ ௘ܥ݈݊ ǥǥǥǥǥǥ݁݊ݍ Ͷ 

 where, Ce and qe  have their usual meaning as mentioned above, KF  (mg
1−1/n

 L
1/n 

g
−1

) and ‘nǯ  are 

Freundlich coefficients related to adsorption capacity and adsorption intensity respectively. If 

reciprocal of Freundlich coefficient (1/n)<1, it is considered as an indication of favorable 

adsorption. 

3.6.3 Temkin isotherm 

 Temkin model takes into consideration the effects of interaction between adsorbate, and 

gives an idea about the heat of the adsorption process.
11

 It takes the form  
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௘ݍ ൌ ܣ݈݊ܤ ൅ ௘ܥ݈݊ܤ ǥǥǥǥǥ Ǥ Ǥ  ͷ ݊ݍ݁

where, ܤ ൌ ܴܾܶ
 

where, R is the universal gas constant (8.314 Jmol
-1

K
-1

); B and b (Jmol
-1

) are Temkin 

coefficients and A (L/mg) is the equilibrium binding constant corresponding to maximum 

binding energy. 

3.6.4 Dubinin-Radushkevich isotherm 

 Dubinin-Radushkevich isotherm helps in determining whether an adsorption process is 

physical, ion exchange or chemical type. It takes the form ݈݊ݍ௘ ൌ ௠௔௫ݍ݈݊ െ  ͸ ݊ݍଶǥǥǥǥǥ݁ߝ஽ܭ

where, KD (mol
2
/J

2
) is the D-R constant which is related to adsorption energy; ‘İ’ is the Polanyi 

potential (J/mol) calculated as ߝ ൌ ܴ݈ܶ݊ ൬ͳ ൅ ͳܥ௘൰ 

‘R’ is the gas constant (Jmol
-1

K
-1

), T is the absolute temperature (K) and Ce (mg/L) is the dye 

concentration at equilibrium. Th D-R constant is used to calculate mean free energy of 

adsorption, ‘E’ as  ܧ ൌ ͳඥʹܭ஽ 

Depending on the value of E, the type of adsorption process can be identified. If the value of E  

is < 8 kJ/mol, physical adsorption prevails. If value lies between 8 kJ/mol-16 kJ/mol, the 

adsorption may be ion exchange adsorption; when, E >16 kJ/mol chemical adsorption may 

explain the adsorption type.  

The adsorption isotherm results of all the models have been tabulated in Table 1. From 

the table, it was concluded that, the adsorption data followed Langmuir and Dubinin–

Radushkevich isotherm more satisfactorily than the other isotherms. The regression coefficients 

for Freundlich and Temkin isotherm were very low. The mean free energy of adsorption (E) 
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calculated from D-R model was < 8 kJ/mol for both the dyes, indicating physical adsorption 

existed between the dye molecules and the adsorbent membrane. From Langmuir plot, qmax for 

MB and RhB was calculated to be 20.83 mg/g and 18.81 mg/g respectively.  

Table 1 Isotherm parameters for MB and RhB adsorption on SA/HEC/HA membrane 

Dye MB RhB 

Langmuir Isotherm   

qmax 20.83 (mg/g) 18.814 (mg/g) 

b 0.171 (L/mg) 0.293 (L/mg) 

R2 0.95 0.96 

Freundlich Isotherm   

1/n 0.95 0.485 

KF 1.404 4.11  

R2 0.517 0.55 

Temkin Isotherm   

B 7.62 3.744 

A 0.819 (L/mg) 4.58 (L/mg) 

R2 0.827 0.787 

Dubinin–Radushkevich Isotherm   

KD 3.548 x 10-6 (mol2/J2) 6.02 x 10-7 (mol2/J2) 

E 0.375 kJ/mol 0.91 kJ/mol 

R2 0.954 0.967 

3.7 Kinetic modeling of dye adsorption process 

 Understanding the kinetics of an adsorption process is essential to predict the designing 

of sorption systems in industries.
29

 Rate of the adsorption process depends upon the nature and 

properties of the adsorbent, and the experimental conditions. The progress of the dye adsorption 

was examined by fitting the experimental data using six different kinetic models. A high 

regression coefficient value (R
2
) (approaching unity), indicated the effectiveness of the model in 

describing the kinetics of dye adsorption. The results have been summarized in Table 2. 

3.7.1 Pseudo first order kinetic /Lagergren equation is expressed as ݈݃݋ሺݍ௘ െ ௧ሻݍ ൌ ݃݋݈ ௘ݍ െ ݇ଵݐʹǤ͵Ͳ͵ǥǥǥǥ Ǥ Ǥ  ͹ ݊ݍ݁
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where, qe  is the amount of dye adsorbed at equilibrium time (mg/g), qt  is the amount of dye 

adsorbed at time t (mg/g) and k1 is the first order rate constant (min
-1

). The rate constant and qe 

values was determined from the slope and intercept of the plot, log(qe ԟqt) as a function of time 

t. Lagergren’s first order kinetic equation is usually applicable for the initial 30 to 50 min of the 

adsorption process.
30

 It is not suitable for the entire contact time of the adsorption process.
31

 The 

model showcased considerable deviation of the experimental values from the theoretical values, 

giving a R
2
 value of only 0.786 for MB and 0.96 for RhB (Figure 10). Moreover, the amount of 

dye adsorbed calculated from the graph did not agree well with the experimental values, 

indicating pseudo-first order model was not best suited to represent the dye adsorption process. 

3.7.2 Simple first order kinetic model is expressed as  

݃݋݈ ௧ܥ ൌ ݇ଵᇱʹǤ͵Ͳ͵ ݐ ൅  ͺ ݊ݍ଴ǥǥǥǥǥ݁ܥ݃݋݈

where, Ct and C0 are the dye concentrations at time t and time t=0. k1ǯ  is the rate constant (min
-1

) 

obtained from the graph represented by the above equation. Since, the concentration of dye 

decreased with progress in time, the slope of the graph was negative giving negative rate 

constant value (Figure 10). Also, the regression coefficient was least for this model amongst the 

studied models, suggesting the non-applicability of this model to the adsorption data. 

3.7.3 Pseudo-second order kinetic equation is given as  ݍݐ௧ ൌ ͳ݇ଶݍ௘ଶ ൅ ௘ݍݐ ǥǥǥǥǥ݁݊ݍ ͻ 

where, again qe  and qt  are the amount of dye adsorbed at equilibrium time and specific time 

respectively (mg/g), k2  is the second order rate constant (g/mg min) evaluated from the intercept 

of the plot t/qt  as a function of time. For most of the adsorbate-adsorbent systems, particularly 

when the adsorbate is a pollutant, the rate of the reaction is best represented by second order 

kinetic model.
32

 The pseudo-second order rate was developed by Ho to describe chemisorption 

involving valency forces between the adsorbent and adsorbate as covalent forces or ion 

exchange.
33

 It enables to find out the adsorption capacity, the rate constant and the initial rate of 

adsorption without knowing any parameter in advance. The correlation coefficient (R
2
) for the 

linear plot of (t/qt) versus t was closer to unity (> 0.99) for both the dyes (Figure 10). Moreover, 
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the calculated qe value was in good agreement with the experimentally determined qe value. This 

suggested that the pseudo-second order kinetic model best explained the kinetics of MB and RhB 

adsorption on SA/HEC/HA membrane.  

3.7.4 Ritchie’s second order kinetic model   is expressed as ݍ௘ݍ௘ െ ௧ݍ ൌ ͳ ൅ ݇ଶᇱݐ ǥǥǥǥ Ǥ Ǥ  ͳͲ ݊ݍ݁

where, kʹǯ  is the rate constant (min
-1

) and can be obtained by plotting  qe /(qe- qt ) versus t. 

Ritchie proposed this model as an alternative to Elovich model on the assumption that, 

adsorption rate  depends solely on the fraction of unoccupied sites at any time t.
34

 The 

investigation on the current adsorbent-adsorbate revealed that, the fitting of this model was not 

suitable to represent the kinetics of the adsorption system (Table 2).  

3.7.5 Intraparticle diffusion model 

The mechanism of the transport of dye molecules to the membrane involves intraparticle 

diffusion process which was studied using Webber and Moris plot 
35

 given as  ݍ௧ ൌ ݇௜ௗݐ଴Ǥହ ൅ ܿǥǥǥǥǥ Ǥ  ͳͳ ݊ݍ݁

where, kid  is the intraparticle diffusion rate constant (mg.g
-1

min
-0.5

) obtained from the slope of 

linear part of the graph of  qt  versus t0.5. The rate controlling step in the adsorption process may 

be governed by one or more than one of the following steps (i) boundary layer diffusion which is 

due to external surface adsorption of dye molecules (ii) intraparticle diffusion explaining the 

gradual adsorption process and (iii) final equilibrium stage.
36

 As observed from Figure 10, it is 

evident that the dye adsorption on the membrane occurred in three steps as mentioned above. 

The first part of the graph, showed a steep increase in qt value indicating fast diffusion of dye 

molecules from bulk solution to the external boundary of the adsorbent. The second part of the 

curve was the rate limiting step involving diffusion from the boundary layer to the interior or the 

active sites of the adsorbent. The final plateau region was due to very slow adsorption rate at 

equilibrium. It is known that, if the plot qt versus t0.5 passes through the origin, then, only 

intraparticle diffusion is the rate limiting process. However, in the current investigation, presence 

of the intercept proved the thickness of the boundary layer; larger the intercept greater is the 
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boundary effect.
37

 Thus, for MB and RhB adsorption onto the membrane, intraparticle diffusion 

and surface adsorption are the rate-limiting steps. 

3.7.6 Elovich Model  

In recent years, Elovich model is used to describe the kinetics of adsorption of pollutants 

from aqueous solutions.
33

 Elovich model is applied to heterogeneous adsorbing systems 

involving chemisorption with the assumption that the adsorption rate decreases with increase in 

time due to increased covering of the surface.
27, 38

 Simplified Elovich equation by applying 

boundary conditions is given as  

௧ݍ ൌ ͳߚ   ሺߚߙሻ ൅ ͳߚ   ሺݐሻǥǥǥǥǥ݁݊ݍ ͳʹ 

where, qt  has its usual meaning, Į is the initial rate of adsorption (mg/g.min) and ȕ (g/mg) is the 

desorption constant related to the activation energy of chemisorption, and indicates the number 

of sites available for adsorption.
39

  

Table 2 Adsorption kinetic parameters of MB and RhB on SA/HEC/HA membrane 

 Methylene blue Rhodamine B 

qe, experimental 15.39 (mg/g) 14.839 (mg/g) 

Experimental parameters C0=50 mg/L, pH 7, T=27 oC 

Pseudo-first order kinetic model   

qe, calculated 2.28 (mg/g) 3.14 (mg/g) 

k1 3.3 x 10-2 (min-1) 3.9 x 10-2 (min-1) 

R2 0.786  0.964 

Simple first order model   

k1ǯ -1.1 x 10-2 (min-1) -1.9 x 10-3(min-1) 

R2 0.75 0.873 

Pseudo-second order kinetic model   

qe, calculated 15.625 (mg/g) 14.97 (mg/g) 

k2 4.04 x 10-2 (g/mg min) 3.17 x 10-2 (g/mg min) 

R2 0.9996 0.9997 

Ritchie’s second order kinetic model   

kʹǯ 0.489 (min-1) 0.555 (min-1) 
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R2 0.912 0.925 

Intraparticle diffusion model   

kid   0.1908 (mg g-1 min-0.5) 0.3574 (mg g-1 min-0.5) 

Intercept c 13.46 11.88 

R2 0.9587 0.9457 

Elovich Model   

R2 0.95 0.934 

ȕ 1.74 (g/mg) 1.183 (g/mg) 

Į 1.99 x 109 3.21 x 105 

 

From Table 2, it was observed that the fitting of the Elovich model was satisfactory with 

regression coefficient 0.95 and 0.934 for MB and RhB respectively. The initial rate of adsorption 

(Į) was very high for MB than RhB.  
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Figure 10 Kinetic modeling of MB and RhB dyes on SA/HEC/HA membrane  

Amongst all the models, the pseudo-second order kinetic model best explained the adsorption 

dynamics of the dye-membrane system. 

3.8 Effect of temperature 

 As observed from Figure 11, an increase in adsorption rate with elevation in temperature 

was confirmed. This indicated that, the adsorption process was endothermic in nature. The 

supplied heat energy helped the dye molecules in overcoming the activation barrier to attach 

themselves to the adsorbent membrane. The intraparticle diffusion rate of the dye into the 

membrane pores also increased with increase in temperature.  

 

Figure 11 Effect of variation tin temperature on dye adsorption A) MB B) RhB 
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3.9 Thermodynamic parameters 

 The thermodynamic parameters ǻH°, ǻS° and ǻG° determine the heat change, feasibility 

and spontaneity of a particular adsorption process. These thermodynamic parameters were 

determined using the Van’t Hoff equation 
10

 

ܭ   ൌ οܵιܴ െ οܪιܴܶ ǥǥǥǥǥǥǥ݁݊ݍ ͳ͵ 

οܩι ൌ െܴ݈ܶ݊ܭǥǥǥǥǥǥ݁݊ݍ ͳͶ 

where, K = m(qe /Ce) is the distribution coefficient, ‘m’ is the mass of adsorbent (g/L), ǻS° is the 

change in entropy (Jmol
-1

K
-1

), ǻH° is the the enthalpy of activation (J/mol), ǻG° is Gibbs energy 

(J/mol), ‘R’ is the gas constant, and ‘T’ is the temperature (K). Entropy and enthalpy of 

activation calculated from the slope and intercept of the Van’t Hoff plot (plot not given), has 

been given in Table 3. The positive values of ǻH° confirms the adsorption of dye on the 

membrane was endothermic in nature. The positive value of ǻS° suggested better affinity of dye 

molecules towards the membrane and increased disorderness at solid-liquid interface. The 

feasibility and spontaneity of the adsorption was proved by the negative values of ǻG°. Also, 

decrease in ǻG° value with rising temperature suggested higher rate of adsorption at higher 

temperature. It is reported that, if the value of ǻG° ranges between 0 and -20kJ/mol, electrostatic 

interactions are prevalent between the adsorption sites and the adsorbing ions (physical 

adsorption).
7, 40

 The values of ǻG° (Table 3) suggest adsorption of MB and RhB onto the 

membrane is a physisorption process. 

 The energy of activation, Ea was calculated from the following equation 

݃݋݈ ݇ଶ݇ଵ ൌ ͵௔ʹǤ͵Ͳܧ ൈ ܴ ൬ ଶܶ െ ଵܶଶܶ ଵܶ ൰ǥǥǥǥǥ݁݊ݍ ͳͷ 

where, k1 and k2 are the pseudo-second order rate constants at temperature T1 and T2 respectively 

(Supporting information S4). 

Table 3 Values of thermodynamic parameters for MB and RhB adsorption onto the membrane 

Dye 
ǻH° 

(kJ/mol) 

ǻS° 

(kJ/mol.K) 

ǻG° (kJ/mol) Ea 

(kJ/mol) 
R2 

308 K 318 K 328 K 
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Methylene blue 46.603 0.176 -7.39 -9.55 -10.905 7.042 0.97 

Rhodamine B 25.306 0.107 -7.703 -8.67 -9.841 8.77 0.99 

3.10 Membrane reusability 

 Facile and efficient regeneration capacity of a process is an indicative parameter of 

environmentally as well as economically viable process. The reusability of the prepared 

membranes for dye adsorption was investigated by running four cycles of adsorption and 

desorption. There was no significant reduction in the efficiency of the adsorbent even after four 

cycles (Figure 12). The results obtained were quantitative where the efficiency of the adsorbent 

was nearly 98% for both the dyes. This implied that, the adsorbent could be regenerated by 

simple acid treatment. 

 

Figure 12 Dye removal for four adsorption cycles after 0.1 M HCl treatment 

Table 4 MB and RhB removal with other reported systems under optimal conditions 

Adsorbent MB RhB 

Modified bentonite clay 41 99.9%, 149.4 mg/g 83%, 155.2 mg/g 

Red Mud 42 75%, 19.55 mg/g 92.5%, 5.5 mg/g 

Baggasse fly ash 12 70% 69% 

Gum ghatti/Fe3O4 nanocomposite 10 - 98%, 654.87 mg/g 
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Kaolinite 43 - 83%, 46.08 mg/g 

Sago waste activated carbon 44 - 91%, 16.12 mg/g 

Fly ash 
45

 - 54%, 10 mg/g 

Orange peel 46  67.5%, 3.22 mg/g 

Graphene oxide/calcium alginate  composite 7 92.7%, 181.81 mg/g - 

Fe3O4 core shell nanoparticles 47 90%, 44.38 mg/g - 

Spent coffee ground 48 > 98%, 18.7 mg/g - 

Wheat shells 49 > 95%, 16.56 mg/g  - 

Coir pith carbon 50 > 99%, 5.87 mg/g - 

Fly ash (sonochemically treated) 51        4.48 mg/g - 

Sludge ash 52              1.87 mg/g - 

Current work > 98%, 20.83 mg/g > 98%, 18.81 mg/g 

4. Conclusions 

  Humic acid immobilized sodium alginate-hydroxyethyl cellulose adsorbent membrane 

was prepared to remove methylene blue and rhodamine B from aqueous solution. The zero point 

charge study revealed the anionic nature of the membrane surface above 3.56 pH. Methylene 

blue and rhodamine B being cationic in nature, interacted electrostatically with the negatively 

charged adsorbent membrane. The amount of dye adsorbed amplified with increase in initial dye 

concentration and temperature due to the higher probability of collisions between the dye 

molecules. However, adsorption decreased with increasing adsorbent dosage due to decrease in 

adsorption density. Membranes were capable of removing more than 80% dye during the initial 

10 min due to the presence of excess of vacant sites. pH studies indicated maximum removal of 

98.5% at pH 9 for methylene blue, and 97% for rhodamine B at pH 7. This was in accordance 

with the extent of interactions prevailing between the membrane and the dye at a given pH. 

Dubinin-Radushkevich model and pseudo second order kinetic model best explained the 

adsorption equilibrium and kinetics of the dye-membrane system. The energy of adsorption 

calculated from D-R model and Gibbs free energy of activation indicated that, the dye adsorption 

occurred on the membrane surface by  simple physisorption process. The intraparticle diffusion 

model suggested surface adsorption and intraparticle diffusion as the rate-limiting steps. 
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Regeneration of the adsorbent was possible by simple acid treatment, and its efficiency remained 

mostly unaltered even after four adsorption cycles. Thus, a simple and efficient biopolymeric 

membrane was utilized in recovering clear water from dye contaminated aqueous stream. 
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