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Injection of anthropogenic carbon dioxide (CO2) into geological formations is a prom-

ising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the

amount of CO2 that can be captured and its long-term storage stability in subsurface

requires a fundamental understanding of multiphase displacement phenomena at the

pore scale. In this paper, the lattice Boltzmann method is employed to simulate the

immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic

flow cells, one with a homogeneous pore network and the other with a randomly

heterogeneous pore network. We have identified three different displacement patterns,

namely, stable displacement, capillary fingering, and viscous fingering, all of which

are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the

media heterogeneity. The non-wetting fluid saturation (Snw) is found to increase nearly

linearly with log Ca for each constant M . Increasing M (viscosity ratio of non-wetting

fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability

of the displacement process, resulting in an increase in Snw. In either pore networks,

the specific interfacial length is linearly proportional to Snw during drainage with

equal proportionality constant for all cases excluding those revealing considerable

viscous fingering. Our numerical results confirm the previous experimental finding

that the steady state specific interfacial length exhibits a linear dependence on Snw
for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is

slightly higher for the unfavorable displacement. C 2015 Author(s). All article content,

except where otherwise noted, is licensed under a Creative Commons Attribution 3.0

Unported License. [http://dx.doi.org/10.1063/1.4921611]

I. INTRODUCTION

Carbon capture and storage (CCS) is a method of reducing anthropogenic emission of green-

house gases into the atmosphere thereby mitigating global climate change. In CCS, carbon dioxide

(CO2) is captured from power plants or other large point-source emitters, purified, compressed, and

injected into subsurface formations for long-term sequestration. Deep saline aquifers are considered

as the most ideal candidate reservoirs for sequestering CO2 because they are geographically wide-

spread, have large potential capacities for storage, and are not used for water supply.1 When CO2 is

injected into deep saline aquifers, it exists in a supercritical state and displaces the formation fluid

from the pore space in a variety of possible saturation patterns, depending on the relative strength of

capillary and viscous forces, as well as large and small scale geological heterogeneities.2–4 Finger-

ing and displacement patterns at the pore scale strongly influence the CO2 storage process within the
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reservoir in terms of storage capacity, security, and ultimate fate of the injected CO2. Therefore, it is

of paramount importance to study and understand the mechanisms of immiscible fluid displacement

in realistic porous media.

Experimental studies of immiscible fluid displacement focus on using two categories of porous

media: natural media, such as rock cores and transparent network models collectively known as

micromodels. Rock cores are advantageous for characterizing individual formations, but suffer from

difficulty in monitoring fluids at the pore scale since sophisticated and unique micro-tomographic

facilities are needed to visualize the internal distribution of the fluids within the rock cores. More-

over, it is challenging to independently manipulate porosity, pore size, connectivity, and wetting

properties for natural porous media. These limitations can be overcome by micromodels, which are

two-dimensional (2D) pore network patterns etched into materials such as silicon, glass, polyester

resin, and most recently, polydimethylsiloxane (PDMS).5 Micromodels allow for visualization of

fluid distribution using cameras with or without fluorescent microscopy, and subsequent quanti-

fication of fluid saturation and interfacial area may provide mechanistic insight about physical

displacement process at the microscopic level. For example, Lenormand et al.6 performed a series

of classic displacement experiments for several fluid pairs in an oil-wet micromodel constructed of

a polymer resin, and established a phase diagram delineating parameter domains for stable displace-

ment, capillary, and viscous fingering. They also observed “crossover” behavior in intermediate

regions of their phase diagram corresponding to flow morphologies with characteristics of more

than one regime. Phase diagram behavior was later demonstrated by Zhang et al.7 in a homoge-

neous water-wet micromodel, and their experimental results showed that the exact locations of the

various region boundaries and crossover zones are dependent on the pore network. Micromodels,

however, are criticized for the lack of the complex geometry of real media, which often has multi-

scale and random characteristics that will dictate fluid and solute transport. Numerical simulations

can complement experimental studies, providing an economic and efficient pathway to explore

the influence of flow and physical parameters in various complicated porous media. However, the

numerical methods based on the continuum description are insufficient to consider the influence

of pore-scale parameters on the macroscopic bulk properties and, hence, the details of fingering

pattern in the porous media cannot be resolved.8 Statistical models, i.e., Invasion Percolation (IP),

Diffusion-Limited Aggregation (DLA), and anti-DLA, are able to describe certain “specialized”

displacement regimes, but they cannot capture transitions from one regime to another.6,9

The lattice Boltzmann method (LBM) has been developed as an attractive and promising

numerical tool for pore-scale simulation of multiphase flows in porous media.10–14 Unlike pore-

network models,6,15,16 which use a simplified representation of pore geometry and approximate

transient flow with a steady-state Poiseuille law, LBM models complex multiphase flows in domain

with realistic pore geometries. The fundamental idea of the LBM is to construct simplified kinetic

models that incorporate the essential physics of microscopic or mesoscopic processes to ensure

that the macroscopic averaged properties obey the desired macroscopic equations. LBM has several

advantages over the conventional grid-based computational fluid dynamics (CFD) methods, such

as volume-of-fluid (VOF)17,18 and level-set (LS) methods,19,20 especially in dealing with com-

plex boundaries, incorporation of microscopic interactions, flexible reproduction of interface be-

tween multiple phases, and parallelisation of the algorithm. In the LBM community, a number of

multiphase models have been proposed. These models can be classified into four types, i.e., the

color-fluid model,21–23 the interparticle-potential model,24–26 the phase-field-based model,27,28 and

the mean-field theory model.29 A detailed review of these models for pore-scale flows can be found

in Ref. 30.

In this paper, a recently improved color-fluid LB model23 is used to simulate immiscible

displacement of a wetting fluid by injecting a non-wetting fluid at a constant flow rate under a

wide range of flow conditions in two microfluidic flow cells, one with a homogeneous pore network

and the other with a randomly heterogeneous pore network. We investigate the effect of capillary

number, viscosity ratio, and media heterogeneity on displacement patterns. We also quantify the

fluid saturations and interfacial areas, and compare the simulation results with the experimental

results of Zhang et al.,7 who conducted a series of displacement experiments in a homogeneous pore

network micromodel with precisely microfabricated pore structures.
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II. MODEL DESCRIPTION

The model we are using in the LB simulations is a D2Q9 two-phase lattice Bhatnagar-Gross-

Krook (LBGK) algorithm, where we introduce the interfacial tension and phase segregation in

accordance with the method of Liu et al.23 In this model, red and blue distribution functions f R
i

and f B
i

are used to represent two different fluids. The total distribution function is defined by

f i = f R
i
+ f B

i
, which undergoes a collision step as31

f
†
i
(x, t) = f i(x, t) −

1

τ

�
f i(x, t) − f

eq

i
(x, t)

�
+ Φi(x, t), (1)

where f i(x⃗, t) is the total distribution function in the i-th velocity direction at the position x⃗ and time

t, f
eq

i
is the equilibrium distribution function of f i, f

†
i

is the post-collision distribution function, τ

is the dimensionless relaxation time, and Φi is the perturbation term. Conservation of total mass and

momentum requires

ρ =


i

f i =


i

f
eq

i
, (2)

ρu =


i

f iei =


i

f
eq

i
ei, (3)

where ρ = ρR + ρB is the total density with the subscripts “R” and “B” referring to the red and blue

fluids, respectively, u is the local fluid velocity, and ei is the lattice velocity in the i-th direction,32

ei =



(0,0)c, i = 0,

(cos[(i − 1)π/2],sin[(i − 1)π/2])c, i = 1 − 4,√
2(cos[(2i − 9)π/4],sin[(2i − 9)π/4])c, i = 5 − 8.

(4)

The equilibrium distribution function is calculated by

f
eq

i
= ρwi


1 +

3

c2
ei · u +

9

2c4
(ei · u)2 −

3

2c2
u

2


, (5)

where wi is the weight factor with w0 = 4/9, w1−4 = 1/9, and w5−8 = 1/36. In the above equations,

c = δx/δt is the lattice speed, where δx is the lattice spacing and δt is the time step.

The perturbation term contributes to the mixed interfacial regions and creates an interfacial

tension. The perturbation term reads as23,31

Φi = A|∇ρN |

wi

(ei · ∇ρN)2

|∇ρN |2
− Bi


, (6)

where A is a parameter directly related to the interface tension, σ = 4
9

Aτc4δt, and ρN is the phase

field function defined as

ρN(x, t) =
ρR(x, t) − ρB(x, t)

ρR(x, t) + ρB(x, t)
, −1 ≤ ρN ≤ 1. (7)

The generalized expression for Bi is given by Liu et al.31 and it is taken as B0 = 2c2/9, B1−4 = c2/9,

and B5−8 = c2/36 in this work.

The evaluation of ∇ρN is required to calculate the perturbation term, i.e., Eq. (6). To minimize

the discretization error, ∇ρN is evaluated by Ref. 23,

∇ρN(x, t) =
3

c2



i

wiρ
N(x + eiδt, t)ei. (8)

Then, we use the recoloring algorithm proposed by Latva-Kokko and Rothman33 to produce

the phase segregation and guarantee the immiscibility of both fluids. Following their algorithm, the
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recolored distribution functions of the red and blue fluids are

f R
i
(x, t) =

ρR

ρ
f
†
i
(x, t) + βwi

ρRρB

ρ
ei · n,

f B
i
(x, t) =

ρB

ρ
f
†
i
(x, t) − βwi

ρRρB

ρ
ei · n,

(9)

where β is the segregation parameter and is fixed at 0.734,23 and n = ∇ρN/|∇ρN | is the unit vector

normal to the interface.

After the recoloring step, the distribution functions propagate to the neighboring lattice nodes,

known as propagation or streaming step,

f k
i
(x + eiδt, t + δt) = f k

i
(x, t), k = R or B, (10)

with the post-propagation distribution functions being used to calculate the densities of both fluids

by ρk =


i f k
i

.

Through the Chapman-Enskog multiscale analysis, Eqs. (1), (9), and (10) can be reduced to

the Navier-Stokes equations in the low frequency, long wavelength limit with Eqs. (5) and (6). The

resulting equations are23

∂t ρ + ∇ · (ρu) = 0, (11)

∂t(ρu) + ∇ · (ρuu) = −∇p + ∇ · [ρν(∇u + ∇u
T)] + FS, (12)

where p = 1
3
ρc2 is the pressure, ν = 1

3
c2(τ − 1

2
)δt is the kinematic viscosity of the fluid mixture, and

FS is a volume-distributed interfacial force and is given by

FS = ∇ · [σ(I − n ⊗ n)δΣ]. (13)

Here, δΣ =
1
2
|∇ρN | is the Dirac delta function and I the second-order identity tensor.

To allow for unequal viscosities of the two fluids, we determine the viscosity of the fluid

mixture by a harmonic mean

1

ν (ρN)
=

1 + ρN

2νR
+

1 − ρN

2νB
, (14)

where νk (k = R or B) is the kinematic viscosity of fluid k. It has been shown that Eq. (14) can

ensure the continuity of viscosity flux across the interface.31

No-slip boundary conditions at solid walls are implemented by the halfway bounce-back

scheme.35 The wettability of the solid walls can be imposed by assuming that the solid wall is a

mixture of two fluids, thus having a certain value of the phase field. The perturbation term in Eq. (6)

becomes dependent on the properties of the neighboring solid lattice sites, resulting in a special case

of the wetting boundary condition. The assigned value of the phase field at sites neighboring the

wall sites can be used to modify the static contact angle of the interface.31 Similar approaches have

been widely adopted by researchers in various multiphase LB models.36–40

This two-phase LBGK model (i.e., color-fluid model) has been programmed into a compu-

tational software package in our research group and extensively validated through various test

cases including verification of Laplace law, droplet deformation and breakup in simple shear flow,

single bubble rising under buoyancy force, and the dynamic capillary intrusion.23 Recently, this

model was used to simulate liquid CO2 displacement of water in a dual-permeability pore network,

which reproduces three different displacement patterns observed in the previous micromodel exper-

iments.31 More details concerning this two-phase LBGK model can be found in Refs. 23 and 31,

which clearly indicate its capability for accurately handling immiscible fluids with variable density

and viscosity ratios, as well as fluid flows in complex porous media. Therefore, the two-phase

LBGK model is employed for pore-scale simulation of the drainage processes in microfluidic flow

cells initially saturated with a wetting fluid, focusing mainly on the interfacial phenomena.
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III. RESULTS AND DISCUSSION

According to the phase diagram proposed by Lenormand et al.,6 two-phase displacement in a

micromodel, in the absence of gravitational force, can be characterized by two dimensional num-

bers: the capillary number (Ca) and the viscosity ratio (M). The capillary number describes the

relative magnitude of viscous to capillary forces and is defined by Ca = unηn/σ cos(θ), where un

and ηn are the mean velocity and dynamic viscosity of the advancing non-wetting fluid, respec-

tively, and θ is the contact angle between the fluid-fluid interface and the pore wall. The viscosity

ratio is defined as the ratio of the advancing non-wetting fluid viscosity to the defending wetting

fluid viscosity (ηw), i.e., M = ηn/ηw. In addition, recent laboratory studies41–44 have shown the

strong influence of subcore scale heterogeneities on steady-state migration patterns, spatial distri-

butions, and fluid saturations. To gain a better understanding of pore-scale two-phase displacement

mechanisms, a series of numerical simulations are conducted to study the effect of Ca and M on

displacement stability and fluid saturation in a homogeneous and a heterogeneous pore networks,

and the obtained results are compared to indicate the effect of media heterogeneity.

In our LB simulations, the densities of both fluids are assumed to be unity, the interfacial

tension σ = 0.03 and the contact angle θ = 15◦. Unless otherwise stated, the dynamic viscosity of

the non-wetting fluid is fixed at 0.024. The inlet mean velocity and the dynamic viscosity of wetting

fluid are determined by the capillary number and the viscosity ratio, respectively. To match these

LB simulation parameters to their physical values, one needs to choose three reference quantities:

a length scale L0, a time scale T0, and a mass scale M0. In this study, L0 = 5 × 10−6 m, T0 = 3.6 ×
10−7 s, and M0 = 1.25 × 10−13 kg. A simulation parameter with dimensions [m]n1[s]n2[kg]n3 is

multiplied by [L0]
n1[T0]

n2[M0]
n3 to obtain the physical value. Following this criterion, for example,

we can obtain the physical value of density ρphy by ρphy = ρ
M0

L
3
0

= 1.25×10−13

(5×10−6)3
= 103 kg/m3, the

physical value of interfacial tension σphy by σphy = σ
M0

T
2
0

= 0.03 1.25×10−13

(3.6×10−7)2
= 0.0289 N/m, and the

physical value of non-wetting phase viscosity η
phy
n by η

phy
n = ηn

M0

L0T0
= 0.024 1.25×10−13

(5×10−6)·(3.6×10−7)
=

1.67 × 10−3 Pa s.

A. Two-phase displacement in a homogeneous pore network

First, we investigate the invasion process of a non-wetting fluid in a two-dimensional homo-

geneous porous media geometry, as shown in Fig. 1(a). The porous media geometry consists of

one inlet section and one outlet section, connected by a pore network, which contains a staggered

periodic array of uniform circular grains, 80 µm (16 lattices) in diameter, with 97 µm pore bodies,

45 µm pore throats, and a porosity of 0.68. In order to produce fingering, small perturbations are

introduced in the simulations. Specifically, the spatial location of each grain center is generated by

the perfectly arranged coordinate plus a random perturbation (which obeys a uniform distribution)

between −5 and 5 µm in both horizontal and vertical directions. Initially, the pore network is fully

saturated with the wetting fluid. The non-wetting fluid is injected continuously at a constant flow

rate at the left inlet, while a constant pressure is imposed at the right outlet. The lateral bound-

aries are assumed to be solid walls. After careful grid independence studies, the computational

domain is chosen as 1920 × 1200 lu2 (lu: lattice unit) with the pore network 1800 lattices in the

horizontal direction. It is worth noting that the present pore network can be comparable to the

one used by Zhang et al. in their micromodel experiments7 except that we have neglected the

effect of depth and simulated the pore network with smaller grains and higher porosity in order

to minimize the computing cost. In addition, it is expected that the choice of equal densities for

both fluids has negligible influence on the results, since the displacement experiments are typically

operated in a horizontally placed micromodel with small depth, where the gravity effect is largely

suppressed.

A series of simulations are performed for capillary numbers ranging from log Ca = −5 to

log Ca = −3 at two different viscosity ratios, i.e., M = 1/12.5 and M = 1. For each of the cases

under consideration, the simulation is run until saturation of the non-wetting fluid reaches the
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FIG. 1. Schematic diagram of (a) homogeneous and (b) heterogeneous microfluidic flow cells in the simulations and setup of

the boundary conditions. The black circles represent the solid grains, while the red/lighter gray and blue/darker gray regions

represent the non-wetting and wetting fluids, respectively. The size of the whole computational domain is 1920×1200 lattices

for each cell.

steady state. Fig. 2 shows the final fluid distributions in the entire homogeneous flow cell at various

capillary numbers for (a) M = 1/12.5 and (b) M = 1 when the non-wetting fluid is injected from

the left inlet. Fingering is clearly observed during the displacement of non-wetting fluid, which

is attributed to the small perturbation in position of the grains, whereas in an experiment, it may

be attributed to non-uniformity in grain size, grain position, flow channel depth (3D effects), or

wettability variability, all associated with the microfabrication technology. Three representative

displacement patterns, namely, capillary fingering, viscous fingering, and stable displacement, are

identified strongly depending on the values of capillary number and viscosity ratio. At low capillary

numbers, i.e., log Ca = −5, the pore body is almost occupied completely by the advancing fluid

before it can reach a neighboring pore, consistent with the assumption introduced by Lenormand

et al.6 in pore-network simulations. The advancing fluid flow perpendicular to the main flow direc-

tion is evident and fingers sometimes progress into new pore bodies in the backward direction,

indicating capillary fingering. In capillary fingering, the invasion of non-wetting fluid is dominated

by the capillary force, which causes the non-wetting fluid to progress preferentially from a pore

through the largest pore throat in any direction due to a lower entry pressure. For M = 1/12.5 at

high capillary numbers (log Ca > −4), multiple loosely connected or disconnected fingers mainly

progress forward toward the outlet boundary with limited or no lateral flows, and are referred to as

viscous fingers. In viscous fingering, the capillary force and pressure drop over the invading fluid
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FIG. 2. Final fluid distributions in the homogeneous microfluidic flow cell at various capillary numbers for (a) M = 1/12.5

and (b) M = 1. Note that the non-wetting and wetting fluids are shown in red/lighter gray and blue/darker gray, respectively.

is negligible, and the dominant force is due to the viscosity of the wetting fluid. The dominant

viscous force causes a significant fraction of fingers to occupy only partial pore bodies they pass

through. At moderate capillary numbers, the unstable displacement by the less viscous non-wetting

fluid shows the features of both capillary and viscous fingers. The zone where at least two types

of fingers are observed is typically named as the crossover zone. For the two-phase displacement

with M = 1, an increase in capillary number leads to the development of new flow paths that are

connected to the initial finger and, hence, the interface fronts become increasingly flat, revealing

some features associated with stable displacement. However, the displacement cannot fall into the

regime of stable displacement even at the highest capillary number, i.e., log Ca = −3, since the

viscosity induced pressure drops in both invading and defending fluids are equally important. As

anticipated, increasing the viscosity ratio from M = 1/12.5 to M = 1 can enhance stability during
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displacement, so for M = 1, the fingers keep occupying completely the pore bodies that they flow

through and the trapped blobs of wetting fluid are smaller in size. Finally, we can notice that the

trapped blobs of wetting fluid occupy considerably more than five pore bodies at low capillary

numbers; whereas, their sizes decrease with an increase in capillary number for a fixed M .

Based on the displacement patterns shown in Fig. 3, we position these simulations (rep-

resented by hollow circles) in the log M − log Ca stability phase diagram, where we also give

the boundaries of stable displacement, and capillary and viscous fingering regions established

by Lenormand et al.6 (bounded by dashed lines) and by Zhang et al.7 (bounded by solid lines).

As Ca increases, the immiscible displacement changes from capillary to viscous fingering for

M = 1/12.5 (log M = −1.1), but it changes from capillary fingering to near stable displacement

for M = 1 (log M = 0). This trend is consistent with the phase diagrams by Lenormand et al. and

Zhang et al., which were developed on the basis of a large number of drainage experiments for

several fluid pairs in an oil-wet micromodel and in a water-wet micromodel, respectively. However,

region boundaries obtained in the present pore network simulations differ from previous experi-

mental observations. For example, our simulation with the lowest capillary number at log M = −1.1

reveals considerable capillary fingering and, hence, the upper boundary of capillary fingering region

should be located between log Ca = −5 and log Ca = −4.3, suggesting that the capillary fingering

covers a region significantly different from those obtained by Lenormand et al.6 and Zhang et al.7

The differences are mainly attributed to the variations in the geometry of porous media, includ-

ing porosity, pore-throat size distribution, and the size of the pore network, which will be further

discussed in Sec. III B. Since we use an almost homogeneous, isotropic pore network, similar to

the one used by Zhang et al.,7 it is not surprising that our obtained region boundaries are closer to

Zhang et al.7 than to Lenormand et al.6

In order to quantify the displacement efficiency in the homogeneous pore network, Fig. 4 plots

the steady state saturation of the non-wetting fluid (Snw) as a function of log Ca for M = 1/12.5 and

M = 1, which are represented by the solid and hollow circles, respectively. For each fixed M , the

non-wetting fluid saturation increases with an increase in log Ca, and the rate of increase is roughly

a constant. The same approximately linear increase in non-wetting fluid saturation with log Ca was

also reported by Cottin et al.45 and Zhang et al.7 in drainage experiments, where the immiscible

FIG. 3. log M − log Ca phase diagram indicating the displacement patterns and the locations of the present numerical

simulations (represented by discrete symbols) for immiscible displacement. Note that the hollow circles and triangles

correspond to the simulations in the homogeneous and heterogeneous pore networks, respectively. The stability zones

bounded by dashed and solid lines are obtained by Lenormand et al.6 and Zhang et al.,7 respectively.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  130.159.82.28 On: Wed, 03 Jun 2015 09:20:59



052103-9 Liu, Zhang, and Valocchi Phys. Fluids 27, 052103 (2015)

FIG. 4. Non-wetting fluid saturation as a function of the capillary number (expressed as log Ca) in the homogeneous

(represented by lines with circles) and heterogeneous pore networks (represented by lines with diamonds).

two-phase displacement occurs in the form of capillary and viscous fingering. In addition, it can

be seen that an increase in M results in higher non-wetting fluid saturation for a fixed Ca. The

increased Snw is attributed to the enhanced stability of two-phase displacement, which is in accord

with our numerical observations (see Fig. 2) and the phase diagram.

In addition to the fluid saturations, we also quantify the interfacial areas between the immis-

cible fluids. The interfacial area is an important factor influencing mass and energy transfer among

phases, e.g., it can strongly influence CO2 dissolution in the formation brine and subsequent

geochemical reactions with brine and host rock in CO2 sequestration. Following the work of Zhang

et al.,7,43 we use the interfacial length instead of the interfacial area in the present 2D simulations.

This length includes not only the length of interfaces between wetting and non-wetting fluids in

the pore bodies and throats but also the length of the wetting films between the non-wetting fluid

and the grain surfaces. Fig. 5(a) shows the variation of specific interfacial length with non-wetting

fluid saturation during the displacement process, where the specific interfacial length is defined

as the ratio of the interfacial length to the pore area. For each case, the specific interfacial length

varies roughly linearly with Snw in the entire process of displacement. All data are collapsed onto a

single line except two highest Ca for M = 1/12.5, which exhibit a higher slope in the relationship

between the specific interfacial length and Snw. The higher slope is a result of viscous fingering in

which some fingers are stretched very thin and even broken into small blobs, thus having a higher

interfacial length than in capillary fingering and stable displacement. Similar to Refs. 7 and 43,

we also plot the steady state specific interfacial length (ls) as a function of Snw, which is shown

in Fig. 5(b). It is observed that ls is linearly proportional to Snw for each M , and the slope for

low M (M < 1) is slightly higher than that for high M (M ≥ 1), which is in good agreement with

previous experimental findings of Zhang et al.7

B. Two-phase displacement in a heterogeneous random pore network

Having verified that our LB simulations can reproduce the experimental observations in a

homogeneous pore network micromodel, we investigate the immiscible two-phase displacement in

a heterogeneous pore network. A schematic illustration of the computational domain and bound-

ary conditions is shown in Fig. 1(b). The heterogeneous pore network is composed of randomly

distributed circular grains with the grain diameter (d) determined by
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(a)

(b)

FIG. 5. Specific interfacial length (cm−1) as a function of the non-wetting fluid saturation (a) during the immiscible

displacement and (b) at the steady state in the homogeneous pore network. In (b), the data are fitted separately using a

linear relationship for M = 1/12.5 and M = 1 with the slopes of 354.83 and 338.59, respectively.

d(x) =



dmin, 0 ≤ x < δ,

dmin +
dmax − dmin

1 − 2δ
(x − δ), δ ≤ x ≤ 1 − δ,

dmax, 1 − δ < x ≤ 1,

(15)

where x is a uniformly distributed random number within the interval [0,1], dmax and dmin are the

maximum and minimum limited values of grain diameter, and δ is a parameter between 0 and

1, which is selected to obtain the prescribed standard deviation. In our simulations, the standard

deviation is 7.5 µm, and dmin and dmax are taken as 60 µm and 100 µm, respectively, which gives a
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mean grain diameter of 80 µm. To ensure sufficient computing accuracy and grid independent solu-

tions, we assign at least 5 lattices in the gap between two neighboring grains.31 The pore network

has the same size and porosity as the above homogeneous pore network, which allows for a direct

comparison between the two-phase displacements.

Figure 6 shows the final fluid distributions in the heterogeneous microfluidic system at various

Ca for M = 1/6 and M = 1. As Ca increases, for M = 1/6, we can clearly observe the transition

from capillary to viscous fingering, which occurs at around log Ca = −3.3; whereas for M = 1,

the displacement pattern changes from capillary fingering to near stable displacement with fingers

revealing some typical features associated with stable displacement when log Ca ≥ −3.3, such as

the invaded pore bodies fully occupied by the non-wetting fluid and relatively flat advancement

of the interface fronts. These observations are also reflected in log M − log Ca phase diagram (see

FIG. 6. Final fluid distributions in the heterogeneous microfluidic flow cell at various capillary numbers for (a) M = 1/6 and

(b) M = 1. Note that the non-wetting and wetting fluids are shown in red/lighter gray and blue/darker gray, respectively.
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hollow triangles in Fig. 3). In viscous fingering, i.e., log Ca ≥ −3 and M = 1/6, the dominant

viscous force from the wetting fluid causes some fingers to break up, so we can see some isolated

blobs of non-wetting fluid trapped in the pores. Also, these blobs decrease in size as Ca increases.

In contrast, we have not seen the breakup of fingers at log Ca = −3 and M = 1/12.5 in the homo-

geneous pore network (see Fig. 2) even though a lower viscosity ratio can lead to an increasingly

instability. This difference is attributed to the media heterogeneity, which can promote instability of

two-phase displacement. As shown in Fig. 6(b), one can observe considerable capillary fingering

(evident lateral flows and back loops) for the capillary number as high as log Ca = −4. Under the

same flow conditions (log Ca = −4 and M = 1) in the homogeneous pore network, however, the

(a)

(b)

FIG. 7. Specific interfacial length (cm−1) as a function of the non-wetting fluid saturation (a) during the immiscible

displacement and (b) at the steady state in the heterogeneous pore network. In (b), the data are fitted separately using a

linear relationship for M = 1/6 and M = 1 with the slopes of 331.25 and 320.83, respectively.
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displacement is located in the crossover zone where both capillary fingering and stable displace-

ment are observed. The different regimes also suggest that the unstable displacement is enhanced by

the media heterogeneity. Finally, the residual blobs and pools of wetting fluid decrease in size with

an increase in Ca for each constant M in the heterogeneous pore network, consistent with our find-

ings in the homogeneous pore network. But it is found that the heterogeneous pore network usually

leads to larger blobs and pools of wetting fluid left behind than its homogeneous counterpart.

Figure 4 also plots the steady state saturation of non-wetting fluid as a function of log Ca in

the heterogeneous pore network, which is compared with the results in the previous homogeneous

pore network. As observed in the homogeneous pore network, Snw exhibits an approximately linear

dependence on log Ca in the heterogeneous pore network for each M and also, Snw is higher for a

larger value of M at a fixed Ca. However, it is noticed that Snw is lower in the heterogeneous pore

network than in the homogeneous pore network, which results from the increased instability caused

by the media heterogeneity. This can reasonably explain the conventional wisdom in reservoir

engineering that heterogeneity would reduce sweep efficiency.

Fig. 7(a) presents the specific interface length as a function of Snw during the invasion of a

non-wetting fluid in the heterogeneous pore network for all cases investigated. Consistent with our

previous observations, all data points are collapsed onto a single straight line through the origin

except those indicating considerable viscous fingering, i.e., log Ca ≥ −3 and M = 1/6. It is believed

that the results will deviate from the collapsed line more significantly with a further increase in Ca

or a decrease in M , since both can help the growth of viscous fingering as per the log M − log Ca

phase diagram. In addition, the steady state specific interfacial length ls exhibits a linear depen-

dence on Snw for either unfavorable (M < 1) or favorable (M ≥ 1) displacement, i.e., ls = kSnw,

where the slope k is a fitting parameter. Based on least-square fitting, the resulting equations are

ls = 331.25Snw and ls = 320.83Snw for M = 1/6 and M = 1, respectively. Obviously, the slope for

the unfavorable displacement is slightly higher than that for the favorable displacement, consistent

with our numerical observation in the homogeneous pore network. From the fitting equations, it

is obtained that the maximum values of ls are 331.25 cm−1 and 320.8 cm−1 for M = 1/6 and

M = 1, respectively. The maximum values of ls are both close to the specific solid surface length

316.33 cm−1 (calculated as the solid surface length divided by the pore area), which occurs when

FIG. 8. Final fluid distributions in the heterogeneous microfluidic flow cell at log Ca=−5 and M = 1/25. Note that the

non-wetting and wetting fluids are shown in red/lighter gray and blue/darker gray, respectively.
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FIG. 9. Specific interfacial length (cm−1) as a function of the non-wetting fluid saturation during the immiscible displacement

at log Ca=−5 and M = 1/25.

the non-wetting fluid occupies all of the pore space, i.e., Snw = 1. The linear relationship between

specific interfacial area and non-wetting fluid saturation has also been shown experimentally in

one-dimensional column studies during drainage.46–48

As we know, it is still challenging to simulate a wide range of viscosity ratios for many ex-

isting multiphase LB models.30 To examine the range of viscosity ratios that the present model

can access, we simulate the displacement of a more viscous fluid by a less viscous one in the

heterogeneous pore network at log Ca = −5. The dynamic viscosities of both fluids are chosen as

ηn = {0.005,0.01,0.02,0.04} and ηw = {0.1,0.3,0.5} in which ηw is limited to not more than 0.5

because as η (or τ) increases, so does the Knudsen number (defined as the ratio of the mean free

path to the characteristic length scale). It is found that regardless the value of ηw, the model remains

stable for νn ≥ 0.02, but becomes unstable for νn < 0.02. Thus, the lowest viscosity ratio that the

present two-phase LBGK model can access is M = 0.02
0.5
= 1/25. Fig. 8 shows the final fluid distri-

butions in the heterogeneous microfluidic system at log Ca = −5 and M = 1/25. It is clearly seen

that the two-phase displacement exhibits evident capillary fingering. As expected, the steady state

saturation of non-wetting fluid Snw = 0.235 is much lower than that for log Ca = −5 and M = 1. In

addition, the specific interfacial length ls is linearly dependent on Snw during the displacement (see

Fig. 9), consistent with the previous observation in Fig. 7(a). To simulate lower viscosity ratios,

one of feasible approaches is to replace the present LBGK model with a multiple-relaxation-time

(MRT) model.49 It has been recently demonstrated that the color-fluid MRT model can simulate the

immiscible two-phase displacement with the viscosity ratios ranging from 1/200 to 500.50

IV. CONCLUSIONS

In this work, our recently developed color-fluid LB model23 is used for pore-scale simulation

of the drainage process in two microfluidic flow cells, one with a homogeneous pore network and

the other with a randomly heterogeneous pore network, which have the same size, porosity, and

mean grain diameter. The extent and behavior of preferential flow (i.e., fingering) is found to depend

on the capillary number (Ca), viscosity ratio (M) and media heterogeneity, and three different
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displacement patterns observed in the previous micromodel experiments are reproduced: for M ≥ 1

at low Ca, displacement occurs in the form of capillary fingering due to the dominant capillary

force, and the displacement gradually becomes stable with increasing Ca; for M < 1 at low Ca,

capillary fingering is again exhibited, but viscous fingering dominates at higher Ca because of the

lower viscosity of the displacing non-wetting fluid. In the log M − log Ca stability phase diagram,

our simulation results show that the boundaries of displacement regimes (i.e., predominantly stable

displacement, and capillary and viscous fingering) are different for the homogeneous and hetero-

geneous pore networks, and their boundaries of regimes also differ from those obtained by Zhang

et al.7 and Lenormand et al.6 due to difference in the configuration of the micromodel pore network.

This suggests that the location of each regime boundary needs to be estimated by performing

experimental or numerical studies on each specific pore network. For a fixed M , the non-wetting

fluid saturation (Snw) increases roughly linearly with log Ca, consistent with the experimental obser-

vations by Cottin et al.45 and Zhang et al.7 Snw is higher for a larger value of M since an increase

in M can enhance the stability of the displacement process. On the contrary, media heterogeneity

weakens the displacement stability, resulting in lower Snw in the heterogeneous pore network than in

the homogeneous one. During the invasion process of the non-wetting fluid in either pore networks,

the specific interfacial length is linearly proportional to Snw with an identical proportionality con-

stant for all cases except those primarily showing viscous fingering. This is because some viscous

fingers can only occupy partial pore bodies that they pass through and even break up to form

small blobs, leading to a larger interfacial length. As observed in the micromodel experiments of

Zhang et al.,7 the steady state specific interfacial length and Snw can be well correlated by a linear

relationship for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope for the

unfavorable displacement is slightly higher than that for the favorable displacement.

A recent pore-scale experimental study51 quantified the strong velocity variations in single-

and multiphase flows within a three-dimensional porous media. Although the pore space is highly

disordered and complex, it was found that the velocity magnitudes and the velocity components

both along and transverse to the imposed flow direction are exponentially distributed. In future, we

will develop a three-dimensional high-performance computing code to examine whether our LB

simulations can reasonably capture the experimental findings.
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