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Abstract 

This paper investigates time-optimal solar sail trajectories between Libration Point Orbits (LPOs) of differ-

ent circular restricted Sun-planet three-body systems. Key in the investigations is the search for transfers 

that require little steering effort to enable the transfers with low-control authority solar sail-like devices 

such as SpaceChips. Two transfers are considered: 1) from a Sun-Earth L2-Halo orbit to a Sun-Mars L1-

Halo orbit and 2) from a Sun-Earth L1-Halo orbit to a Sun-Mercury L2-Halo orbit. The optimal control 

problem to find these time-optimal transfers is derived, including a constraint to mimic limited steering 

capabilities, and is solved with a direct pseudospectral method for which novel first guess solutions are 

developed. For a near-term sail performance comparable to that of NASA’s Sunjammer sail, the results 

show transfers that indeed require very little steering effort: the sail acceleration vector can be bounded to a 

cone around the Sun-sail line with a half-angle of 7.5 deg. These transfers can serve a range of novel solar 

sail applications covering the entire spectrum of sail length-scales: micro-sized SpaceChips could establish 

a continuous Earth-Mars communication link, a traditional-sized sail provides opportunities for in-situ ob-

servations of Mercury and a future kilometer-sized sail could create an Earth-Mars cargo transport gateway 

for human exploration of Mars. 

Keywords: Solar sailing; Trajectory Optimisation; Heteroclinic Connections; Circular Restricted Three-

Body Problem; Libration Point Orbits. 
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1. Introduction 

Research in the field of solar sailing is flourishing, sparked by successes such as JAXA's 

IKAROS mission (Tsuda et al., 2011) and new solar sail initiatives including NASA's Sunjammer 

mission*. Its potential lies in the fact that solar sail missions are not constrained by a propellant 

mass (McInnes, 1999). By using the Sun as "propellant source", solar sails obtain their propulsive 

acceleration by reflecting photons off a highly reflective membrane. This gives solar sails a theo-

retically unlimited lifetime and enables a wealth of novel orbits and space applications, including 

displaced geostationary orbits to create additional geostationary slots for telecommunication, 

Earth observation and weather satellites (Heiligers et al., 2011, Baig and McInnes, 2010) and or-

bits displaced below the lunar south pole (Wawrzyniak and Howell, 2011) or above the Earth-

Moon L2 point (McInnes, 1993) to establish an Earth-Moon communications link.  

Instead of investigating the set of novel orbits that solar sails enable, this paper focusses on 

their transfer capabilities, in particular in the circular restricted three body problem (CR3BP). So-

lar sail transfers in the CR3BP have been investigated before, for example to fly out to periodic 

orbits around Sun-Earth Lagrange points (also referred to as Libration Point Orbits (LPOs)) 

(Heiligers et al., 2012) and to move between artificial equilibrium points in the Sun-Earth system 

(Heiligers and McInnes, 2013). However, solar sail transfers between LPOs in different Sun-

planet systems have so-far not been investigated, despite the fact that they offer great potential for 

additional novel space applications. Note that these types of interplanetary connections have been 

the topic of a limited number of papers (Pergola et al., 2009, Mingotti et al., 2011, Topputo et al., 

2005), but all considered either the use of an impulsive maneuver or solar electric propulsion to 

establish the connection, while this paper demonstrates the capabilities of solar sailing. 

For the purpose of demonstrating the concept’s feasibility, this paper investigates two particu-

lar solar sail transfers: 1) the transfer from a Sun-Earth L2-Halo orbit to a Sun-Mars L1-Halo orbit 

and 2) the transfer from a Sun-Earth L1-Halo orbit to a Sun-Mercury L2-Halo orbit. Note that, for 

brevity, the remainder of this paper will refer to these orbits as Earth-L2, Mars-L1, Earth-L1 and 

Mercury-L2 Halo orbits, respectively. For both cases the time-optimal transfer will be sought for 

by solving the accompanying optimal control problem with a direct pseudospectral method. Note 

                                                      

* L'Garde Inc., L'Garde - Sunjammer, http://www.lgarde.com/programs/space-propulsion/sunjammer, 

Accessed 8 May 2013.  
 

http://www.lgarde.com/programs/space-propulsion/sunjammer
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that, while solar sail displaced LPOs exist (Baoyin and McInnes, 2006), this work only considers 

the transfer between LPOs in the classical CR3BP. The solar sail acceleration is thus only em-

ployed to leave the initial Halo orbit and to transfer towards and wind onto the target Halo orbit.  

Another novelty introduced in this paper is the consideration of low-control authority solar 

sails that can change their attitude only to a limited extent. The reason for investigating this sce-

nario is the development of so-called SpaceChips: miniturised operational spacecraft of a few 

centimeters in size. With a high area-to-mass ratio, these devices act as solar sails and with low 

production costs and low mass they enable a range of new space applications (Colombo et al., 

2012). However, they will have limited steering capabilities. Constraints on the control authority 

of solar sails have been investigated before. For example, (Mengali and Quarta, 2014) found 

time-optimal Earth-Mars orbital rendezvous missions after fixing the cone angle. However, with 

still full control over the clock angle and relatively large (constant) cone angles, significant con-

trol authority can still be achieved. Instead, in this work the authors show that, even with ex-

tremely low-control authority, feasible and relatively quick transfers can be accomplished.  

For comparison and to highlight the different applications of the transfers, this paper will con-

sider both high-control authority traditional solar sails as well as control-limited SpaceChips. Dis-

tributing micro-sized (10-2 m), low-control authority SpaceChips along a trajectory connecting an 

Earth-L2 Halo orbit with a Mars-L1 Halo orbit establishes a continuous Earth-Mars communica-

tion link, even during Martian occultation; alternatively, a meso-sized (10-100 m), fully steerable 

solar sail can enable an interesting planetary observation platform at Mercury through the use of a 

connection between Earth-L1 and Mercury-L2; and finally, in the macro-scale (103 m), the previ-

ously mentioned Earth-Mars link allows a vital gateway for cargo transport for future human ex-

ploration on Mars.  

The structure of the paper will be as follows. First, the dynamical model will be explained: the 

classical circular restricted three body problem will be revisited and a solar sail acceleration will 

be added. To include fourth-body perturbations the ephemerides employed will be described and 

the required reference frame transformations will be discussed. Finally, the LPOs considered in 

this paper will be derived and presented. The second part of the paper will focus on the definition 

of the optimal control problem. Since the start and end points of the transfer are defined in differ-

ent CR3BPs, a two phased approach will be introduced. The required phase-linkage constraints, 

boundary constraints and path constraints will be discussed. The latter include the important con-

straint on the steering capability of the solar sail in order to mimic the low-control authority of 
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SpaceChips. Subsequently, the development of novel first guesses for the transfers under consid-

eration will be discussed. The last part of the paper will present the optimal results for both the 

Earth-to-Mars and Earth-to-Mercury transfers and the paper will end with the conclusions. 

2. Dynamical model 

2.1 Circular restricted three-body problem 

The dynamic model employed in this paper is the well-known circular restricted three-body 

problem (CR3BP), which describes the motion of an infinitely small mass, m , (here the solar 

sail) under the influence of the gravitational attraction of two much larger masses, 
1

m  and 
2

m , 

also referred to as the primaries. The gravitational influence of the small mass on the primaries is 

neglected and the primaries are assumed to move in circular orbits about their common centre-of-

mass (Battin, 1999). 

The reference frame employed is a synodic reference frame and is depicted in Figure 1a: the 

origin coincides with the barycentre of the system, the x -axis connects 
1

m  and 
2

m  and points in 

the direction of 
2

m , the z -axis is directed perpendicular to the plane in which 
1

m  and 
2

m  orbit 

and the y -axis completes the right-handed reference frame. Finally, the frame rotates at constant 

angular velocity,  , around the z -axis: ˆȦ z . 

New units are introduced in the CR3BP: the sum of the two larger masses is taken as the unit 

of mass, i.e. 
1 2

1m m  . Then, with the mass ratio  2 1 2
/m m m   , the masses of the primaries 

become 
1

1m    and 
2

m  . As unit of length,  , the distance between the primaries is select-

ed, and 1/  is chosen as unit of time,  , yielding 1  , and so one orbital period of the planet 

around the Sun is represented by 2 . Three different CR3BPs will be employed throughout this 

work: Sun-Earth, Sun-Mars and Sun-Mercury. Parameters for each of the CR3BPs are provided 

in Table 1.  

The motion of a solar sail in any of the CR3BPs is governed by the following equations of 

motion (McInnes, 1999): 

   4
2

s
V       r Ȧ r Ȧ Ȧ r a a   (1) 

with V  the gravitational potential and nearly all other definitions provided in Figure 1a. The left 

hand side of Eq. (1) describes the classical (i.e. ballistic) CR3BP, while the right hand side adds 
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two perturbing terms: the solar sail acceleration, 
s

a , and the fourth-body perturbation 
4

a , which 

will be discussed in the next two subsections.  

a) b) 

 
 

Figure 1 a) Schematic of circular restricted three-body problem. b) Definition of solar 

sail normal vector. 

 

Table 1 Circular restricted three-body problem parameters 

CR3BP       4
  

Sun-Earth 3.0034599e-6 1.4947600e9 5.0162789e6 
Mercury: 1.6601428e-7 

Mars: 3.2268266e-7 

Sun-Mars 3.2268352e-7 2.2793910e9 9.4461038e6 Earth: 3.0034679e-6 

Sun-Mercury 1.6601475e-7 5.7909100e7 1.2096630e6 Earth: 3.0034684e-6 

 

2.2 Solar sail acceleration 

An ideal solar sail model is adopted, which assumes pure specular reflection of the impinging 

photons (McInnes, 1999). The solar sail acceleration vector then acts normal to the solar sail sur-

face, i.e. in direction n̂ , and is defined as: 

  2

12

1

1ˆ ˆ ˆ ˆ
s s

a
r





  a n r n n   (2) 

The attitude of the solar sail can be expressed through two angles, the cone angle,  , and the 

clock angle,  , see Figure 1b. From Eq. (2) it is clear that the sail acceleration magnitude is pro-

  

n̂    

1̂
r  1̂

ˆ z r  

 1 1
ˆ ˆˆ r z r  

Sun 

y  

Ȧ  

2
m  

1
m  

1   

  

 

O  
r  

2
r  

1
r  

x  

z  

Sail 

ˆ
s

a n  
m  

1̂
r  

  
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portional to the solar gravitational acceleration,   2

1
1 / r , and is scaled by the sail lightness 

number,  . The lightness number can be expressed as a function of the sail area to spacecraft 

mass ratio,  , and the critical solar sail loading parameter, *   1.53 g/m2 (McInnes, 1999): 

 
*




   (3) 

A realistic near-term value for the lightness number can be derived from the expected light-

ness number of the Sunjammer mission, which is scheduled for launch post-2015. The Sunjam-

mer solar sail was designed to be 38 x 38 m2 in size with a mass estimate of about 45 kg 

(Heiligers et al., 2014). In an ideal case, this results in a lightness number of 0.0491, which for 

convenience will be round in this work to a value of    0.05. Another common parameter to 

express the performance of a solar sail is the characteristic acceleration, which is defined as the 

acceleration produced by a Sun-facing solar sail at Earth’s distance. A sail lightness number of 

0.05 then corresponds to a characteristic acceleration 
2

AU

S

c
a


  0.3 mm/s2 with 

S
  the gravi-

tational parameter of the Sun and AU  the astronomical unit.  

Finally, Eq. (2) takes into account the reduced projected solar sail area when the sail is pitched 

at a cone angle,  1

1̂
ˆcos  r n , with respect to the Sun-sail line through the term  2

1̂
ˆr n . 

2.3 Fourth-body perturbation 

As became clear in the introduction, the starting LPO and target LPO are defined in different 

CR3BPs. The first and second sections of the transfer connecting these LPOs will therefore also 

be defined in different CR3BPs. In order for the dynamics to be consistent throughout the trans-

fer, a fourth-body perturbation is included. For example, for the Earth-L2 to Mars-L1 transfer, 

Mars will be the fourth-body in the first part of the transfer, i.e. in the Sun-Earth CR3BP, while 

the Earth will be the fourth-body in the second part of the transfer, i.e. in the Sun-Mars CR3BP.  

The perturbing acceleration, 
4

a , is defined as: 

 4 4

4 4 4

4,4

1
,    

s


  
    
   

r r
a

r rr
  (4) 

with  4 4 1 2
/m m m    and 

4
m  the mass of the fourth-body, see Table 1 for values. All other var-

iables in Eq. (4) are defined in Figure 2.  
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Figure 2 Fourth-body perturbation geometry.  

 

2.4 Ephemerides 

The inclusion of the fourth-body perturbation transforms the autonomous CR3BP into a non-

autonomous problem. The actual relative position of the planets thus comes into play and is cal-

culated using the analytical ephemerides implemented in the Matlab® function uplanet.m (Dysli, 

1977) that was successfully verified against the JPL/NAIF/SPICE DE405 ephemerides. This 

function describes the ephemerides in an inertial heliocentric reference frame: the x -axis points 

towards the vernal equinox, the z -axis is perpendicular to the ecliptic plane and the y -axis com-

pletes the right-handed reference frame, see Figure 4. 

 

 Figure 3 Schematic of heliocentric inertial reference frames,  , ,x y z  and  , ,
P P P

x y z , 

and Sun-planet synodic reference frame,  , ,x y z . 
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2.5 Reference frame transformations 

Since the ephemeris of the planets are provided in an heliocentric inertial reference frame, a 

transformation is required to obtain the planet’s state vector in the Sun-planet synodic reference 

frame for use in Eq. (4).  

First, a state vector 
T

   x r r  in the heliocentric inertial reference frame is transformed to an 

intermediate, different heliocentric inertial reference frame,  , ,
P P P

x y z , where the 
P

x -axis points 

along the planet’s line of nodes, the 
P

z -axis is perpendicular to the planet’s orbital plane and the 

P
y -axis completes the right-handed reference frame, see Figure 4. The state vector in this new 

inertial reference frame 
T

P P P
   x r r  is: 

    P x z
i  x R R x   (5) 

with 
x

R  and 
z

R  rotation matrices around the x  and z axes and i  and   the inclination and 

right ascension of the ascending node of the planet’s orbital plane, respectively. Note that for the 

Earth, the two heliocentric inertial reference frames coincide. Subsequently, the state vector in the 

Sun-planet synodic reference frame,  Tx r r , can be computed using: 

 
   

    
0 0

T

z P

z P z P

u

u u

  

    

r R r

r R r Ȧ R r
  (6) 

with u  the planet’s argument of latitude. In Eq. (6) the rotation matrix 
z

R  rotates the 
P

x -axis 

onto the x -axis, translates the origin of the reference frame from the Sun to the barycenter and 

accounts for the rotational velocity of the synodic reference frame.  

A simple relationship also exists between the dimensional time 
MJD2000

t   in the heliocentric in-

ertial reference frame and the dimensionless time t  in the Sun-planet synodic reference frame. By 

defining 
MJD2000

0t t   to be 1-1-2000, 2t   corresponds to 
MJD2000

2 /t   , or equivalently: 1-

1-2001 in the Sun-Earth problem, 18-11-2001 in the Sun-Mars problem and 29-3-2000 in the 

Sun-Mercury problem. 

2.6 Lagrange Point Orbits 

As discussed, when discarding the solar sail and fourth-body perturbation accelerations in 

Eq. (1), the classical CR3BP is obtained. This problem generates five equilibrium solutions, or 

Lagrange points, by setting the time derivatives of the position vector equal to zero, i.e. 0 r r . 
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The two Lagrange points considered in this work are the collinear L1 (between 
1

m  and 
2

m ) and L2 

(behind 
2

m ) points. It is well-known that a range of periodic orbits can be found around these 

Lagrange points. Here the family of Halo orbits is considered, which can be generated following 

(Howell, 1983). Four particular Halo orbits are selected, one around Earth-L1, one around Earth-

L2, one around Mars-L1 and one around Mercury-L2. While the first three are northern Halo or-

bits, the Halo orbit around Mercury-L2 is a southern Halo orbit. The projections onto the ecliptic 

and out-of-ecliptic plane for each of the Halo orbits are given in Figure 4, while Table 2 gives 

further details. Note that the Halo orbits in Figure 4 can be generated by simply forward integrat-

ing the initial conditions  0 0 0

T
x r r  provided in Table 2 in Eq. (1) with 

4s
 a a 0 . 

Table 2 Details of Halo orbits with 
0

r  and 
0

r  the initial position and velocity vector and 

LPO
P  the orbital period. Note that all variables are made dimensionless with respect to the 

respective CR3BP. 

Halo orbit 
0 0

T

  r r  LPO
P  

Earth-L2  1.0068 0 0.0035683 0 0.014705 0
T

   3.0741 

Mars-L1  0.99477 0 0.0016975 0 0.004996 0
T

  3.0602 

Earth-L1  0.9892 0 0.0048992 0 0.011603 0
T

   3.0388 

Mars-L2  1.0025 0 0.0014694 0 0.0059461 0
T

  3.0555 
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a) b) 

  

c) d) 

  

Figure 4 Projections of Halo orbits around: a) Northern Halo at Earth-L2 b) Northern 
Halo at Mars-L1 c) Northern Halo at Earth-L1 and d) Southern Halo at Mercury-L2. 

 

3. Optimisation problem 

With the initial and target LPOs defined, the problem now becomes to find optimal solar sail 

transfers between these LPOs. In particular between Earth-L2 and Mars-L1
 and between Earth-L1 

and Mercury-L2 

In general, an optimal control problem can be defined as finding a state history   xn
t x  and 

a control history   un
t u  with 

0
,

f
t t t     the independent variable, that minimises a cost func-

tion, J . In this work, the cost function is the time of flight: 

 0f
J t t    (7) 
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where the subscripts 0  and f  indicate the initial and final conditions, respectively.  

The state history consists of the Cartesian position and velocity components in the Sun-planet 

synodic reference frame of Figure 1: 

  Tx y z x y zx   (8) 

where the time dependency due to the fourth-body perturbation is omitted from the notation for 

brevity and appropriate bounds on these Cartesian position and velocity components are selected 

for each of the cases considered.  

The control history consists of the Cartesian components of the normal vector to the solar sail 

(or equivalently the unit solar sail acceleration vector): 

    1 1 1 1 1 1
TT T

x y z
n n n       u   (9) 

Finally, the independent variable is the dimensionless time, t . Bounds on the initial and final 

time are imposed such that a 2020-2025 launch window and a 2020-2027 arrival window are en-

sured. In dimensionless time, these windows translate into: 

 
0,

     40 50 Sun-Earth system

 21.2 28.8 Sun-Mars system

 166.1 224.2 Sun-Mercury system

f

f

t

t

t

 
 
 

 

 

 

  (10) 

3.1 Two-phase approach 

As indicated before, due to the fact that the initial and target LPOs are defined in different 

CR3BPs, the initial and final parts of the transfer will also have to be defined in different 

CR3BPs. The transfer is therefore split into two phases, where the first phase (hereafter referred 

to through the subscript 
1

p ) is defined in the Sun-Earth CR3BP with either Mars of Mercury as 

fourth-body, while the second phase (referred to through the subscript 
2

p ) is defined in the Sun-

Mars/Mercury CR3BP with Earth as fourth-body, see also Figure 5.  

Clearly, a smooth linkage between the two phases has to exist, i.e. a smooth linkage between 

the final conditions of the first phase and the initial conditions of the second phase. Therefore, 

constraints are enforced that guarantee continuity across the linkage in terms of position, velocity, 

time and sail attitude. Since two different CR3BPs are linked, the relative orientation of the syn-

odic reference frames at the time of the linkage needs to be considered. Therefore, the reverse of 

the transformation described in Eqs. (5)-(6) is used to transform the final state vector of the first 
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phase, 
1,f p

x , and the initial state vector of the second phase, 
20, p

x , to the heliocentric inertial ref-

erence frame. In this reference frame, the two state vectors can be equated to ensure a continuous 

link between the two phases: 

 
1 2, 0,f p p
x x   (11) 

A similar transformation is performed to obtain a continuous link on the sail attitude such that 

the following constraint can be enforced: 

 
1 2, 0,f p p
u u   (12) 

Finally, the dimensionless time is converted to dimensional time 
MJD2000

t  to also guarantee a 

continuous link in terms of time:  

 
1 2MJD2000, , MJD2000,0,

ˆ
f p p

t t   (13) 

From Eqs. (11)-(13) it is clear that, in total, 10 linkage constraints are enforced.  

 

 

Figure 5 Illustration of two-phase approach for the Earth-L2 to Mars-L1 transfer and 
definition of static optimisation parameters 

1
  and 

2
 . 

 

 

 

Phase 1: Sun-Earth CR3BP Phase 2: Sun-Mars CR3BP 

Halo at Earth-L2 Halo at Mars-L1 

1

  

2

  

x

  

x

  

y

  

y

  

z

  
z

  
10, p

x

  

1,f p
x

  

2,f p
x

  

20, p
x

  

1 2, 0,f p p
x x
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3.2 Boundary constraints 

To ensure that the trajectory departs from the Earth L2/L1 LPO and winds onto the Mars-L1 or 

Mercury-L2 LPO, a set of boundary constraints are imposed: the state vector at the start of 

phase 1, 
10, p

x , should coincide with the Earth L2/L1 LPO and the state vector at the end of 

phase 2, 
2,f p

x , should coincide with the Mars-L1 or Mercury-L2 LPO. The values of two static 

optimisation parameters, 
1

  and 
2

  , are optimised simultaneously with the rest of the optimal 

control problem to find the best departure and arrival conditions on these LPOs. These static pa-

rameters define a sampling of the LPOs and are defined as 
11 ,

0
LPO p

P   and 
22 ,

0
LPO p

P  , see 

also Figure 5 and Table 2 for values. The boundary constraints thus become: 

  
1 10, , 1p LPO p

x x   (14) 

  
2 2, , 2f p LPO p

x x  (15) 

The actual values for  
1, 1LPO p
x  and  

2, 2LPO p
x  are computed through an interpolation of 

large state matrices that provide the position and velocity vectors along the LPOs on a 100-grid 

point mesh in 
1

  or 
2

 , i.e. for a discrete number of locations along each of the LPOs.  

Note that no boundary constraints are imposed on the final conditions of the first phase and 

the initial conditions of the second phase. The choice for the location and time of the linkage as 

defined in Eqs. (11) and (13) are thus completely free and optimisable. 

Finally, also note that the departure and arrival orbits do not incorporate a solar sail accelera-

tion. The sail therefore has to be ‘switch on’ or deployed upon departure from the Earth L2/L1 

Halo orbit and ‘switched off’ or ejected upon arrival at the Mars-L1 or Mercury-L2 Halo orbit. For 

low-control authority solar sails such as SpaceChips deployment or ejection may not be possible 

and an attitude change will be required to ensure that the SpaceChips are positioned edgewise to 

the Sun when orbiting the ballistic Halo orbits. In future work, this control effort may be traded 

off against the time of flight to find alternative optimal values for 
1

  and 
2

 .   

3.3 Path constraints 

A set of path constraints are enforced on the control vector that will hold throughout the entire 

trajectory, i.e. in both phases 1 and 2. First, a path constraint is introduced to ensure that the norm 

of the control vector is unity: 

 1u   (16) 
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A second path constraint makes sure that the control vector always points away from the Sun. 

This has to be taken into account because a solar sail cannot generate an acceleration component 

in the direction of the Sun (McInnes, 1999): 

 
1̂

ˆ 0 r n   (17) 

A final path constraint is defined to introduce limitations on the control authority of the solar 

sail as discussed in the introduction of this paper. This is done by defining two more static opti-

misation parameters, 1

2
0

ref
    and 0 2

ref
    that describe a constant cone and clock angle 

to define an optimal solar sail reference attitude, 
ref

n̂ , see Figure 1b for the definition of the cone 

and clock angles. To limit the control authority of the solar sail, the solar sail acceleration unit 

vector, n̂ , is now allowed to move within a cone around 
ref

n̂  with a half-cone angle  , see Fig-

ure 6. The value for   is an input parameter of the optimal control problem. The associated 

path constraint then becomes: 

  1

ref
ˆ ˆcos    n n   (18) 

 

Figure 6 Illustration of solar sail limited control authority.  

 

3.4 Optimal control solver 

The optimal control problem defined in the previous sections is solved with a direct pseudo-

spectral method, which discretises the time interval into a finite number of collocation points and 

uses Legendre or Chebyshev polynomials to approximate and interpolate the time dependent var-

iables at the collocation points. This way, the infinite dimensional optimal control problem is 

transformed into a finite dimension non-linear programming (NLP) problem. Pseudospectral 

methods have gained increasing interest for solving optimal control problems because the charac-

teristics of the orthogonal polynomials are very well suited to the mathematical operations re-

y  

Planet 

O  

1
r  

x  

z  

Sun 

ref
n̂  

n̂  

  

1̂
r  
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quired to solve the optimal control problem: functions can be very accurately approximated, de-

rivatives of the state functions at the nodes are computed by matrix multiplication only and any 

integral associated with the problem is approximated using well-known Gauss quadrature rules. 

This, together with the fact that pseudospectral methods have a rapid rate of convergence (i.e. 

convergence to a very accurate solution with few number of nodes), is the reason for using pseu-

dospectral methods in this work.  

Here, a particular implementation of a direct pseudospectral method is chosen: PSOPT, see 

(Becerra, 2010). PSOPT is an open source tool developed by Victor M. Becerra of the University 

of Reading and is written in C++ and is interfaced to IPOPT (Interior Point OPTimizer) (Wächter 

and Biegler, 2006) to solve the NLP problem. PSOPT can deal with all optimal control problem 

elements defined above: multi-phase problems, phase linkage constraints, boundary constraints, 

path constraints, static optimisation parameters and bounds on state variables, control variables 

and time.  

4. First guess transfers 

In order to initialise the optimisation, PSOPT requires a first guess. Here, first guesses for 

each of the transfer cases are generated using the concept of "patched restricted three-body prob-

lems approximation" (Mingotti et al., 2011, Mingotti et al., 2014). Important to note is the fact 

that these first guesses assume a constant attitude of the sail with respect to the Sun-sail line. 

They are sub-optimal in the sense that minor discontinuities exist in position and velocities at the 

linkage between the two three-body systems and no fourth body perturbations are considered .The 

next subsections give a detailed mathematical overview of the patched restricted three-body prob-

lems approximation and the resulting first guesses that are transferred into PSOPT to generate 

optimal transfers in Section 5. 

4.1 Definition of solar sail dedicated sets 

Let 
0

x  be a vector representing a generic initial state,  0 0 0 0 0 0 0
, , , , ,x y z x y zx ; then let the 

flow of the dynamical system be    0 0,
, ;t t 

u
x

 
be at time t  starting from  0 0

, tx  and consider-

ing the control law, based on the exploitation of solar radiation pressure,     0
ˆ, , ,

s f
a t t t t     u n  

. With this notation, it is possible to define the generic point of a solar sail trajectory through 

      0 0,
, ;t t t 

u
x x   (19) 
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where  , u  is the control vector assuming that the solar sail remains at a fixed attitude with 

respect to the Sun-sail line, i.e. with constant cone angle   and constant clock angle  , see Fig-

ure 1b. 

Let  P   and  Q   be two surfaces of section perpendicular to the  ,x y  plane: the first one 

is perpendicular to the x axis and is located at a distance   (along the x axis) from the rotating 

frame origin, while the second one forms an angle   with the x axis. 

The solar sail orbit, for chosen values of   and  , is 

         0 0 0, ,
, , , , ; | 0

Q P
t t t            

u u
x x   (20) 

where the dependence on the initial state 
0

x  is kept. In Eq. (20),   is the duration of the solar sail 

contribution, whereas 
P

t and Q
t  are the time at which the orbit intersects  P   (for the first time) 

and  Q  , respectively. Assuming the orbit crosses section  P   before  Q  , i.e. P Q
t t , the 

solar sail is active (i.e. n̂  is not orthogonal to 
1̂

r  ) only in the ,
P Q

t t t     time interval. 

The solar sail dedicated set is a collection of solar sail orbits (all computed with the same 

guidance law  , u ) till they reach the surface  Q  : 

        
0

0, ,
, , , , ,S          




u u

x

x   (21) 

According to the definition in Eq. (21), the solar sail dedicated set is made up by orbits that 

reach  Q   at different times, although all orbits have the same solar sail constant attitude. The 

cut, in the phase space, of the solar sail dedicate set with the surface  Q   is named 

   ,
, ,S     

u
. 

The solar sail dedicated set in Eq . (21) is associated to a generic domain of admissible initial 

conditions  ; it will be shown in the following how   can be defined for solar sail departure and 

arrival sets, from and to selected periodic orbits, respectively. Thanks to the definition 

of    ,
, ,S     

u
, the solar sail acceleration can be incorporated in a three-body frame using the 

same methodology developed for the invariant manifolds. More specifically, invariant manifolds 

and solar sail trajectories are replaced by dedicated sets which are manipulated to find connection 

points on suitable surfaces of section. The idea is to reproduce the role acted by invariant mani-

folds. 
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4.2 Solar sail departure sets 

The initial state of the transfers, 
0

x , can be any point that belongs to the selected LPOs of Fig-

ure 4a  and c, slightly perturbed along the direction of the unstable eigenvector of the periodic 

orbit monodromy matrix. Therefore, the initial point is the generic departing point 

    0 0
,0;

D D D

O O O u
     x x x v   (22) 

and is found by flowing the initial nominal point D

O
x  for a time D D

O O
P  , 

O
P  being the initial orbit 

period and adding the small perturbation 6
1.0 10    along the unstable eigenvector 

s
v  (the   

ambiguity is solved by choosing   to generate the exterior branch of the L2-region manifold for 

the Earth-L2 to Mars-L1 transfer and   to generate the interior branch of the L1-region manifold 

for the Earth-L1 to Mercury-L1 transfer). The subscript  
O

  stands for the specific departure LPO 

selected. 

The domain of admissible initial states is then written as follows 

   0
| 0,

D D D D

O O O
P       x   (23) 

and the periodic orbit solar sail departure set, for some 90
D

   deg, 0
D

  , is given by the for-

ward integration 

        
0

0, ,
, , , , ,

D D D D
D

O

D D D D D D
D          




u u

x

x   (24) 

The superscript  O
  stands for the specific departure LPO selected. 

When the cone angle 90
D

   deg, no solar sail acceleration acts ( 0
D

  ) and the classic un-

stable manifolds of the relative LPOs are found as    90,
0, ,

D

O

D D
W   

0
, directly following from Eq. 

(24). The cut, in the phase space, of the periodic orbit solar sail departure set with the surface 

 D D
Q   is named    ,

, ,
D D

O

D D D
D     

u
, while the cut of the set describing the classic unstable 

manifold trajectories is named    90,
0, ,

D

O

D D
W   

0
. 

4.3 Solar sail arrival sets 

Very similar to the solar sail departure sets, the solar sail arrival sets can be derived: the final 

state of the transfers, f
x , can be any point that belongs to the selected LPOs Figure 4b and d, 
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slightly perturbed along the direction of the stable eigenvector of the periodic orbit monodromy 

matrix. Therefore, the final point is the generic insertion point 

    ,0;
A A A

f f O O O s
     x x x v   (25) 

and is found by flowing the initial nominal point A

O
x  for a time A A

O O
P  , A

O
P  being the final orbit 

period and adding the small perturbation 6
1.0 10    along the stable eigenvector 

s
v  (in this 

case, the   ambiguity is solved by choosing   to generate the exterior branch of the L2-region 

manifold for the Earth-L1 to Mercury-L2 transfer and   to generate the interior branch of the L1-

region manifold for the Earth-L2 to Mars-L1 transfer). The subscript  
O

  stands for the specific 

arrival LPO selected. 

The domain of admissible final states is then written as follows 

   | 0,
A A A A

f O O O
P       x   (26) 

and the periodic orbit solar sail arrival set, for some 90
A

   deg, 0
A

  , is given by the back-

ward integration  

        , ,
, , , , ,

A A A A
A

f

O

A A A f A A A
A          



 
u u

x

x   (27) 

The superscript  O
  stands for the specific arrival LPO selected. 

Similarly as for the departure sets, when the cone angle 90
A

   deg, no solar sail acceleration 

acts ( 0
A

  ) and the classic stable manifolds of the relative LPOs are found as 

   90,
0, ,

A

O

A A
W   

0
, directly following from Eq. (27). The cut, in the phase space, of the periodic 

orbit solar sail arrival set with the surface  A A
Q   is named    ,

, ,
A A

O

A A A
A      

u
, while the cut of 

the set describing the classic stable manifold trajectories is named    90,
0, ,

A

O

A A
W    

0
. 

4.4 First guess design technique 

The key idea to generate the first guess solutions is to replace invariant manifolds with solar 

sail dedicated sets, and to manipulate the latter in the same way manifolds are used to design 

space transfers (Mingotti et al., 2011, Mingotti et al., 2014). With the inclusion of the solar sail 

acceleration and keeping the attitude of the solar sail constant - throughout the complete transfer - 

with respect to the Sun-sail line, intersections between restricted three-body models can be found 
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on suitable Poincaré sections, also for the Earth-L2 to Mars-L1 and the Earth-L1 to Mercury-L2 

transfers. Therefore, the propellant-free feature of solar sails is combined with the exploitation of 

the n-body problems' intrinsic dynamics with a view of generating efficient trajectories. In detail, 

the technique to build first guesses, with the introduction of a few design variables, is split into 

the following basic phases. 

i. The initial state of the transfer, as defined in Eq. (22), is propagated forward until it inter-

sects a suitable Poincaré surface of section  D D
Q  , after crossing a previous section 

 D D
P  ; as already described, the solar sail control is allowed (i.e. the sail is active) only 

between these two surfaces. If the trajectory is purely ballistic, it moves along the unstable 

manifold of the selected LPO, i.e. on    90,
0, ,

D

O

D D
W   

0
, otherwise, if solar radiation pres-

sure is actively exploited, it moves along the solar sail periodic orbit departure set 

   ,
, ,

D D

O

D D D
D     

u
. 

ii. The final state of the transfer, as defined in Eq. (25),  is propagated backward until it inter-

sects a suitable Poincaré surface of section  A A
Q  , after crossing a previous section 

 A A
P  ; as per phase (i), the solar sail control is allowed (i.e. the sail is active) only be-

tween these two surfaces. If the trajectory is purely ballistic, it moves along the stable 

manifold of the selected LPO, i.e. on    90,
0, ,

A

O

A A
W   

0
, otherwise, if solar radiation pres-

sure is actively exploited, it moves along the solar sail periodic orbit arrival set 

   ,
, ,

A A

O

A A A
A     

u
. 

iii. As mentioned in Section 3.1, the dynamical systems under consideration are different for 

the two legs of the transfers. Therefore, a proper operator T  is introduced in order to map 

states of the arrival dynamical models (Sun-Mars, Sun-Mercury) into the departure one 

(Sun-Earth). As no fourth body perturbations are considered, the dynamical models are 

mutually independent and the departure Poincaré section  D D
Q   and the arrival one 

 A A
Q   (after the proper transformation) can therefore be arbitrarily superimposed. After 

this, on the same Sun-Earth suitable Poincaré section  Q  , the transit point between the 

solar sail departure set (phase (i)) and the arrival one (phase (ii)) is searched for, by wisely 

tuning the introduced design variables. Finally, being interested in generating first guesses 

for interplanetary transfers, once the geometry of the transfer is defined by patching to-
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gether the two applicable restricted three-body systems, the launch epoch that enables the 

transfer - in the real ephemeris model - is found by means of a systematic search. 

4.5 Earth-L2 to Mars-L1 transit point 

The procedure described in the previous section is applied to the Earth-L2 to Mars-L1 mission 

scenario, in order to design a sample feasible first guess solution, as a function of the correspond-

ing design variables reported in Table 3.  

Figure 7 and Figure 9a and b show the cuts of the unstable manifold trajectories of the Sun-

Earth model, namely    2NH-L

90,
0, ,

D
D D

W   
0

, and of the solar sail departure dedicated set 

   2NH-L

,
, ,

D D
D D D

D     
u

, for the initial northern Halo orbit around Earth-L2, on suitable Poincaré sec-

tions. Moreover, on the same suitable Poincaré  sections, Figure 9a and b present the cuts of the 

stable manifold trajectories of the Sun-Mars model    1NH-L

90,
0, ,

A
A A

W    
0

 and of the solar sail arri-

val dedicated set    1NH-L

,
, ,

A A
A A A

A      
u

, for the final northern Halo orbit around Mars-L1. The cuts 

are shown on the  ,
r

r v   and  ,
t

r v  sections, with 
r

v  and 
t

v  the radial and traverse velocities, 

respectively. 

For reasonable transfer times, the ballistic manifold structure of the Sun-Earth and the Sun-

Mars models do not intersect, while the solar sail dedicated sets allow a transit point 

        2 2 1

1

NH-L NH-L NH-L

NH-L , ,
, , , ,

D D A A
D D D A A A

T D A           
u u

  (28) 

In the generation process of the first guess solution (which will be optimised in Section 5 us-

ing more sophisticated models), small discontinuities (in the out-of-plane components) can be 

tolerated when looking for the transit point. 

4.6 Earth-L1 to Mercury-L2 transit point 

Using the same procedure described in the previous section, a feasible first guess solution can 

be obtained for the Earth-L1 to Mercury-L2 transfer, as a function of the corresponding design 

variables reported in Table 3.  

Figure 8 and Figure 9c and d represent the cuts of the unstable manifold trajectories of the 

Sun-Earth model,    1NH-L

90,
0, ,

D
D D

W   
0

 and of the solar sail departure dedicated set 

   1NH-L

,
, ,

D D
D D D

D     
u

, for the initial northern Halo orbit around L1, on suitable Poincaré sections. 

Furthermore, on the same suitable Poincaré sections, Figure 9c and d show the cuts of the stable 
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manifold trajectories of the Sun-Mercury model    2SH-L

90,
0, ,

A
A A

W    
0

 and of the solar sail arrival 

dedicated set    2SH-L

,
, ,

A A
A A A

A      
u

, for the final southern Halo orbit around L2.  

As expected, the pure ballistic manifolds of the Sun-Earth and the Sun-Mercury models do not 

intersect, while the solar sail dedicated sets allow a transit point 

        1 ` 2

2

NH-L NH-L NH-L

SH-L , ,
, , , ,

D D A A
D D D A A A

T D A           
u u

  (29) 

 

Table 3 Values of the design variables for the generation of first guess transfers 

Case 
D

O
   , deg  , deg D

  
D

  A

O
  A

  
A

  

Earth-L2 to  

Mars-L1 
2.3055 62.50 90 1.0170 -147.5 2.9378 0.9925 -45.0 

Earth-L1 to  

Mercury-L2 
1.7929 -52.75 90 0.9830 -32.5 0.0306 1.0060 -42.5 
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a) b) 

  
c) d) 

  

Figure 7 Earth-L2 to Mars-L1 first guess transfer. a, b) Departure conditions and design 

variables. c, d) Arrival conditions and design variables. 
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a) b) 

  
c) d) 

  

Figure 8 Earth-L1 to Mercury-L2 first guess transfers. a, b) Departure conditions and de-
sign variables. c, d) Arrival conditions and design variables.  
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a) b) 

  
c) d) 

  

Figure 9 Phase space on suitable Sun-Earth Poincaré sections to design the first guess 
transfers. a, b) Earth-L2 to Mars-L1 scenario. c, d) Earth-L1 to Mercury-L2 scenario. 

 

5. Results – Earth-L2 to Mars-L1 transfer 

Using the first guess designed in the previous section, a range of results for the Earth-L2 to 

Mars-L1 transfer are presented in this section. First, the results for a fully controllable sail are 

provided, where the constraint in Eq. (18) is omitted. This will provide the absolute minimum 

time of flight achievable. Subsequently, the constraint in Eq. (18) is introduced and a continuation 

is started where the results for a larger value for   are used as a first guess to obtain the results 

for a smaller value for  . All results consist of 40 collocation points in both phases, i.e. 80 col-

location points in total.  
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Table 4 Earth-L2 to Mars-L1 optimal solar sail transfer results 

Description ref
 , deg 

ref
 , deg Departure date Arrival date Time of flight, days 

First guess n/a n/a 11/11/2020 11/09/2026 2130 

  inactive n/a n/a 01/02/2022 01/08/2024 912 

  20 deg 34.0 117.3 05/02/2022 06/08/2024 914 

  15 deg 36.3 109.9 11/02/2022 23/08/2024 924 

  12.5 deg 35.5 111.3 06/02/2022 27/08/2024 932 

  10 deg 33.8 116.8 24/01/2022 05/09/2024 955 

  7.5 deg 35.3 121.3 21/01/2022 03/11/2024 1017 

 

a) b) 

 

Figure 10 Earth-L2 to Mars-L1 optimal solar sail transfer results: influence of solar sail 

controllability,  . a) Optimal sail reference cone angle and time of flight. c) Departure 

and arrival dates. 

 

The main results are summarised in Table 4 for both the first guess, the fully controllable solar 

sail (i.e.   is inactive) as well as for a range of values for  . Figure 10 presents these results 

in graphical form to highlight some trends. The smaller the value for  , the more limited the 

controllability of the sail is. The table clearly demonstrates the effect of this limited controllabil-

ity as the time of flight increases from 912 days for a fully controllable sail to 1017 days for a 

very limited steering capability of    7.5 deg. Despite this increase of 11.5 percent, it is re-

markable that the transfer can be executed and all constraints can be satisfied with such limited 
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control capabilities. Note that the significant reduction in the time of flight between the first guess 

and the fully controllable sail can be attributed to the fact that the first guess considered coasting 

arcs at the start and end of the transfer while the time-optimal results presented here assume the 

use of the solar sail from the Earth-L1 Halo orbit all the way up to the Mars-L2 Halo orbit. Also 

note that, compared to previous work by the authors (Heiligers et al., 2014), which considered a 

simple circular, ecliptic ephemeris for the planets and could therefore produce an optimal transfer 

for    5.0, the time of flight has increased by 1-2 percent and the achievable minimum value 

for   has increased as well. This demonstrates the influence of the true ephemeris (in particular 

the out-of-ecliptic motion) of the planets.  

Details of one particular transfer, i.e. for   10 deg are provided in Figure 11. The optimal 

reference solar sail attitude is indicated with grey arrows in plots a-c, while plot d shows the vari-

ation of the cone angle around this optimal reference attitude. The detail in Figure 11b shows 

where the transfer leaves the Earth-L2 Halo and where it winds onto the Mars-L1 Halo. The corre-

sponding values for the optimisation parameters 
1

  and 
2

  are: 
1
   3.0741 and 

2
   1.5765, 

which closely correspond to the intersections of the Halo orbits with the ecliptic plane. Very simi-

lar values for 
1

  and 
2

  are observed for other, small values for  . Finally, in Figure 11e the 

solar sail acceleration magnitude is provided, which shows an expected decrease when the dis-

tance from the Sun becomes larger.  

Comparison of the results with results in existing literature is difficult as the literature only 

considers solar sail orbital rendezvous missions to Mars (Circi, 2004, Mengali and Quarta, 2009, 

Mengali and Quarta, 2014). In addition, different models are often used for the dynamics, the so-

lar sail acceleration and/or the ephemerides. For example, (Mengali and Quarta, 2009) considered 

a time-free orbital rendezvous with Mars in a heliocentric two-body model and with circular, 

ecliptic ephemerides for Earth and Mars. Furthermore, an ideal solar sail model with 
c

a  1 mm/s2 

(i.e. 0.169  ) is considered to obtain a minimum time of flight transfer of 408 days with an av-

erage cone angle of 44.94 deg for a fully controllable solar sail. Solving the problem considered 

in this work for a fully controllable solar sail and for 0.169  , a minimum time of flight of 384 

days is obtained with an average cone angle of 40.6 deg. The shorter time of flight can be at-

tributed to the shorter distance between the start and end of the transfer (i.e. from Halo to Halo 

rather than from Earth to Mars) as well as the exploitation of the three-body dynamics. 
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a) b) 

  

c) d) 

  

e)  

 

Figure 11 Earth-L2 to Mars-L1 solar sail transfer: details for   10 deg. a) Transfer 

phases with sail acceleration direction (color) and optimal 
ref

n̂ -direction (grey). b) Detail of 

plot a). c) Transfer in heliocentric inertial reference frame. d) Cone angle. e) Solar sail ac-
celeration magnitude.  
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Limitations on the steering capabilities of the solar sail as introduced in this paper are only 

considered by (Mengali and Quarta, 2014). The authors fix the cone angle of the solar sail and 

allow only the clock angle to vary. Note that the cone angle restricts the solar sail acceleration 

vector to a cone around the Sun-sail line and the clock angle determines the location of the sail 

acceleration vector on this cone, see also Figure 6a. In this case, due to differences in the assumed 

models (e.g. optical solar sail force model), the minimum time of flight for a fully controllable 

sail with 
c

a  1 mm/s2 ( 0.169  ) is 381 days. The authors then find that a constant cone angle of 

43 deg minimises the penalty on the time of flight, which becomes 405 days. It is clear that a con-

stant cone angle of 43 deg and a clock angle variation between   and   still provides much 

more control capabilities to the sail than the restrictions imposed in this work: for 0.169   and 

  7.5 deg the time of flight increases from 384 days to 518 days. Interestingly, this is a much 

larger percentage increase (35 percent) than for a sail performance of    0.05 as considered in 

Table 4 and Figure 10 (only 11.5 percent). It therefore seems that, the better the sail performance, 

the larger the negative impact on the trajectory performance when limitations on the sail steering 

capabilities are introduced.  

6. Results – Earth-L1 to Mercury-L2 transfer 

The optimal results for the Earth-L1 to Mercury-L2 transfer are presented in a similar way as 

for the Earth-L2 to Mars-L1 transfer: Table 5 provides departure and arrival dates and time of 

flight for the first guess, the fully controllable solar sail and for different values for  . It also 

contains the optimal reference attitude of the solar sail, through 
ref

  and 
ref

  . Figure 12 provides 

similar information in graphical form, while Figure 13  shows details of the transfer with    

20.0 deg. 

Very similar conclusions as for the Earth-Mars transfer can be drawn for the Earth-Mercury 

transfer: the smaller the value for  , the larger the time of flight and in this case also the small-

er the value for 
ref

 . Considering the penalty on the time of flight for decreasing  , for a fully 

controllable solar sail the time of flight is 808 days, which increases to 936 days for    

7.5 deg, which is an increase of 15.8 percent. Again, compared to previous work by the authors 

where a circular, elliptic ephemeris was assumed, the time of flights have increased by 6 percent 

(full control) and 22.5 percent (   7.5 deg). Furthermore, while the circular, elliptic ephemeris 

allowed values for   down to 2.5 deg, the current results show a minimum value for   of 7.5 
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deg. With the inclination of Mercury much greater than for Mars such results were expected and 

again clearly show the influence of the true ephemeris of the planets.  

 

Table 5 Earth-L1 to Mercury-L2 solar sail transfer results 

Description ref
 , deg 

ref
 , deg Departure date Arrival date Time of flight, days 

First guess n/a n/a 02/10/2020 30/03/2024 1269.4 

  inactive n/a n/a 04/09/2021 21/11/2023 808 

  20 deg -32.5 86.6 01/09/2021 19/11/2023 809 

  15 deg -32.0 86.9 20/08/2021 16/11/2023 817 

  12.5 deg 

deg 

-29.6 86.9 26/07/2021 14/11/2023 841 

  10 deg -23.4 102.7 22/06/2021 21/12/2023 913 

  7.5 deg -22.9 103.7 04/06/2021 28/12/2023 936 
 

a) b) 

 

Figure 12 Earth-L1 to Mercury-L2 optimal solar sail transfer results: influence of solar 
sail controllability,  . a) Optimal sail reference cone angle and time of flight. b) Depar-

ture and arrival dates. 
 

A comparison with existing results in the literature is again difficult due to differences in dy-

namical and solar sail models and ephemerides. However, (Quarta and Mengali, 2008) do provide 

a minimum time of flight for the fully controllable sail between co-planar circular Earth and Mer-

cury orbits. However, an optical sail model and an orbital rendezvous rather than a transfer be-

tween LPOs of different CR3BP is considered. The result by (Quarta and Mengali, 2008) for a 

characteristic sail acceleration of 0.3 mm/s2 is 2.4 years or approximately 875 days, which is 

comparable to a transfer with   10-12.5 deg in Table 5.  
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a) b) 

  

c) d) 

  

e)  

 

Figure 13 Earth-L1 to Mercury-L2 optimal solar sail transfer: details for    20 deg. a) 

Transfer phases with sail acceleration direction (color) and optimal 
ref

n̂ -direction (grey). b) 

Detail of plot a). c) Transfer in heliocentric inertial reference frame. d) Cone angle. e) Solar 

sail acceleration magnitude.  
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Conclusions 

In this paper, optimal solar sail trajectories between Libration Point Orbits (LPOs) of different 

restricted Sun-planet three-body systems have been investigated. Two transfers have been consid-

ered in particular: 1) from a Sun-Earth L2-Halo orbit to a Sun-Mars L1-Halo orbit and 2) from a 

Sun-Earth L1-Halo orbit to a Sun-Mercury L2-Halo orbit. In addition, the paper has focused on 

finding transfers that are achievable both with fully controllable solar sails as well as with low-

control authority solar sails (mimicking the capabilities of SpaceChips). In all cases, the objective 

has been to minimise the time of flight. To that end, the optimal control problem has been derived 

and solved with a particular implementation of a direct pseudospectral method, PSOPT. A two-

phase approach has been adopted in order to model the start of the transfer in one Sun-planet 

CR3BP and the end of the transfer in another Sun-planet CR3BP (including fourth-body perturba-

tions). These phases are linked in terms of state, control and time in inertial space considering the 

true ephemerides of the planets involved. The case of low-control authority solar sails is modeled 

by defining a cone of half-angle   around a to-be optimised sail reference attitude. The results 

show that, for a sail performance comparable to that of NASA’s Sunjammer sail, the Earth-Mars 

and Earth-Mercury transfers can be performed with little steering effort as   can be as small as 

7.5 deg. Compared to a fully controllable solar sail, the penalty on the time of flight is modest: for 

the Earth-Mars transfer, the transfer times are 912 days (full control) and 1017 days (   7.5 

deg), while for the Earth-Mercury transfer, the transfer times are 808 days (full control) and 

936 days (   7.5 deg), all within a 2020-2025 launch window and 2020-2027 arrival window. 

By demonstrating the feasibility of these two particular transfers, the results of this point design 

approach can serve as a basis for the examination of entire families of solutions between a range 

of LPOs in different Sun-planet systems.  
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