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a  b  s  t  r a  c t

One  of the  key aspects  relating  to the transportation  of anthropogenic  carbon dioxide (CO2)  for  climate

change  mitigation as  part  of  Carbon  Capture and  Storage (CCS)  schemes is  the  composition  of  the  CO2

stream to  be  transported. The specification  of this  stream  has  both  technical and economic  implications

and,  as  CCS  schemes  start to become  realised,  the  requirement to specify  the  CO2 stream  quality is

becoming  more important.

The aim of this work  has been  to analyse  the  effects  of the  composition  of the  CO2 stream  from  post-

combustion, pre-combustion and  oxyfuel capture processes on the  hydraulic network  design  and the

relative costs of the  network.  Several key conclusions have  been  drawn  to inform  the  process  of  specifying

the  CO2 purity and to guide  pipeline  operators  on the  specification of a CO2 stream,  for  dense  phase

pipeline  operation,  on the  basis of  hydraulic  design.

The analysis  has  shown that  impurity  additions up  to 2mol% did  not affect the  relative cost/km for  the

networks  when  compared  to a pure  CO2 equivalent  in terms  of the  pipeline  internal  diameter  and  length.

However,  the  inlet  pressure  to the  network is  increased for  all of the  compositions  studied  and  in this

respect,  levels of hydrogen in particular should  be  limited  to less than  1mol% to reduce  inlet  pressure

and  thereby compression costs.

It  has  been  demonstrated  that  direct connection  pipelines  from  source to sink are  the  most  expensive

network  options  however,  when  designing  a pipeline  network,  the  size  of  the  emitters,  the  phasing of

entry into  the  network  and  the  stability  of the network in the  event  of  interruptions  in flow needs to be

considered.

© 2014  The Authors.  Published by  Elsevier  Ltd. This is an open  access article  under  the  CC  BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Carbon Capture and Storage (CCS) is  recognised as one of a suite

of solutions required to reduce carbon dioxide (CO2) emissions

into the atmosphere and contribute towards global climate change

mitigation. In CCS schemes, CO2 is captured from power plants

or other large stationary sources and transported to  appropriate

geological sites either for Enhanced Oil Recovery (EOR) or for

storage. Unless the capture and storage sites are co-located, all CCS

schemes will involve the transportation of CO2 from the capture

plant to the storage site either via a  pipeline network or by ship

based transportation.

One of the barriers to the rapid implementation of CCS is  the

high capital cost of demonstration schemes (BBC, 2011). There is

∗ Corresponding author. Tel.: +0044 141 5485709.

E-mail address: julia.race@strath.ac.uk (J.M. Race).

therefore an urgent requirement to  reduce the costs of CCS in  order

that the implementation of large scale CCS schemes becomes a

more viable and attractive option post demonstration (Sweeney,

2012). Studies of the costs of the full CCS chain indicate that the

largest costs (whether that be in  terms of the increased cost of  elec-

tricity or the cost per tonne of captured CO2) are associated with

the capture process (Middleton and Bielicki, 2009; Yan et al., 2008;

ZEP, 2011). However, within that chain, the cost of transportation

has to be  considered and cost reductions sought where possible

(GCCSI, 2011).

The cost of the pipeline system has been shown to be primarily

influenced by capital expenditure (CAPEX) and to be approximately

proportional to  the length of the network (ZEP, 2011; Knoope,

2013). Consequently, many studies have investigated the devel-

opment of models to  provide an optimal design for a pipeline

network that minimises the present value for the capital and oper-

ating costs of the system (Brunsvold et al., 2012; Kazmierczak et al.,

2009; Kuby et al., 2010; Middleton and Bielicki, 2009; Vandeginste

http://dx.doi.org/10.1016/j.ijggc.2014.09.016
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Table 1

Composition ranges for CO2 streams (Anheden et al., 2005; IEAGHG, 2011; IPCC, 2005; Kather and Kownatzki, 2011; Oosterkamp and Ramsen, 2008).

Component Pre-combustion Post-combustion Oxyfuel

Min  Max Min  Max  Min Max

CO2 vol% 95.6 99.7 99.8 99.97 85 99.94

SOx vol% 0.001 0.01 0.007 2.5

NOx vol%  0.002 0.01 0.01 0.25

H2S  vol%  0.01 3.4

CO vol%  0.03 0.4 0.001 0.002

Ar  vol%  0.03 1.3 0.003 0.045 0.01 5.7

O2 vol%  0.03 1.3 0.003 0.03 0.01 4.7

N2 vol%  0.03 1.3 0.021 0.17 0.01 7

H2 vol%  0.002 1.7

CH4 vol% 0.035  2 0.01

Hydrocarbons vol%  0.003 0.01

HCN vol%  0.0005

NH3 vol% 0.003 0.005

CH3OH vol%  0.02

and Piessens, 2008). Middleton and Bielicki (2009) have indicated

that there are seven parameters that  should be optimised simulta-

neously in a comprehensive network model; the amount of CO2 to

be  captured; the location of the sources; the route of the pipeline;

the pipeline dimensions; the location of the sinks; the injection

volume at each sink and the distribution of the CO2 in the pipeline

network. However another key parameter that needs to  be consid-

ered is the purity of the CO2.

Preliminary studies have indicated that the purity of the CO2

has a significant impact on pipeline transport costs particu-

larly at lower flow rates and longer distances (Yan et al., 2008)

and, on this basis, it could be considered to be  insufficient to

consider the stream as pure CO2 when conducting hydraulic

calculations. This paper investigates the effect of the purity of

the CO2 on pipeline capacity and network development in  more

detail.

2. Effect Of Impurities On Pipeline Hydraulics

2.1. CO2 Purity Specifications

Anthropogenic CO2 captured from a  power plant or  any other

industrial source will contain non-CO2 components often referred

to as impurities. The amount and type of impurities that could be

present in the CO2 stream from power plant capture will primar-

ily be dependent on the capture process, the capture technology

used and the fuel source. In addition, legislative and economic con-

straints will also play a  part in determining allowable or  achievable

levels of certain impurities. A number of studies have been con-

ducted into the composition of the CO2 streams captured from

power plant (Anheden et al., 2005; IEAGHG, 2011; IPCC, 2005;

Kather and Kownatzki, 2011; Oosterkamp and Ramsen, 2008).

The results of these studies for different capture processes and

technologies are summarised in  Table 1,  which illustrates that a

large variation exists in the published literature regarding poten-

tial levels of impurities in the CO2 streams captured. An  alternative

approach to defining a  CO2 specification was taken by  de Visser et al.

(2008) in the Dynamis transport specification, which recommends

CO2 purity levels based on the requirements of the pipeline. It  is

recognised that the Dynamis specification is  not  a CO2 composition

and the use of the Dynamis study for defining CO2 compositions

must be considered with care (Race et al., 2012).

In the Dynamis study, safety and toxicity limits, infrastructure

durability and transport efficiency are  considered in the develop-

ment of the specification shown in  Table 2. The study presented

in this paper is restricted to the effects of impurities on hydraulic

behaviour, although it is highlighted that  in determining a pipeline

CO2 stream specification, the effects on all aspects of pipeline

Table 2

Pipeline specifications proposed by  the  Dynamis (de Visser et al.,  2008).

Component Dynamis Specification

CO2 vol% >95.5

H2O ppm <500

SOx ppm <100

NOx ppm <100

H2S ppm <200

CO ppm <2000

N2 vol%

Total non-condensable gases <4vol%
Ar  vol%

O2 vol%

H2 vol%

CH4 vol% Aquifer <4vol% EOR <2vol%

design and operation must be considered (Race et al., 2012). In

respect of the hydraulic behaviour it is  interesting to note that, the

Dynamis specification sets a  limit of 4vol% on the non-condensable

components of N2, O2,  H2,  CH4 and Ar in  order to minimise the

impact on pipeline capacity, capital cost and compression costs.

Yan et al. (2008) have also studied the techno-economic impact of

non-condensables at different levels (13%, 4% and 1%  by volume)

on the transportation of CO2 from oxyfuel capture. They conclude

that the limit on non-condensable components of <4vol% is  a  rea-

sonable purification limit in  terms of the cost balance of  the CCS

chain. However, they indicate that, for short distances and, where

the storage conditions permit, the level of non-condensables could

be raised to 10vol%, although levels as high as this may  require

special attention to  meet regulatory requirements (i.e. health and

safety considerations), based on the concentration of the individual

impurities present.

The individual components of the capture streams considered in

this paper are taken from IEAGHG (2011) and are presented in detail

in  Table 3.  For the network study, one pre-combustion stream and

one post combustion stream were chosen. These streams both have

a high percentage of CO2 and are considered to be representative of

achievable levels of secondary components. Two  oxyfuel composi-

tions were also chosen, one being a  relatively pure stream (oxyfuel

2) and the other containing a larger percentage of impurities (oxy-

fuel 1). The last ten years of development in  oxyfuel combustion

power plants with CO2 capture have established that the Cryo-

genic Processing Unit (CPU) of the power plant could  be designed

to  deliver CO2 with composition ranging from as low as 80% to

as high as 99.999%. It should therefore be noted that the oxyfuel

1 composition (presented in Table 1)  could represent a  possible

low purity or worst case scenario, and the oxyfuel 2 composition

could represent a possible high purity scenario. It is  recognised

that the stream compositions selected are not actual compositions

but recommended specifications. Nevertheless, in the absence of
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Table  3

Detailed composition of CO2 streams from IEAGHG (2011).

Component Pre-combustion Post-combustion Oxyfuel (1) Oxyfuel (2)

CO2 vol% 97.95 99.81 85.0 98.0

O2 vol% - 0.03 4.70 0.67

N2 vol% 0.9 0.09a 5.80 0.71

Ar  vol% 0.03 -  4.47 0.59

H2O  ppmc 600 600  100 100

NOx ppm - 20 100 100

SO2 ppm - 20b 50 50

SO3 ppm - -  20 20

CO  ppm 400 20 50 50

H2S + COS ppm 100 -  - -

H2 vol% 1 -  - -

CH4 ppm 100 -  - -

Cricondenbar bara 77.54 73.93 93.26 75.95

a Total concentration of N2 + Ar;
b Total concentration of SO2 +  SO3;
c Although the levels of water are quoted here, water is not considered in the hydraulic analysis calculations.
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Fig. 1. Phase diagram for binary combinations of CO2 and 2mol% H2 , H2S and NO2 (calculated using the Peng Robinson equation of state).

data from operational power plant capture plants, they are con-

sidered to be representative compositions for the purposes of this

study.

2.2. Effects of Impurities on CO2 Fluid Properties

The addition of impurities into the CO2 stream affects several

important parameters in  the analysis of pipeline hydraulics includ-

ing the phase behaviour, density, viscosity and compressibility of

the fluid. Prior to the presentation of the hydraulic study, it is there-

fore important to understand the influence of different impurities

on  these CO2 properties and ultimately on the design of the pipeline

network.

2.2.1. Effect of  Impurities on Phase Behaviour

To illustrate the effect of impurities on phase behaviour, con-

sider the phase diagrams of Fig. 1 for binary combinations of CO2

with 2mol% of hydrogen (H2), nitrogen dioxide (NO2) and hydrogen

sulphide (H2S). These components have been selected for illus-

tration as they represent components that could be present in

the CO2 stream (Table 1) and they also demonstrate important

behaviour in this context. All components whose critical tempera-

ture and pressure is above that of pure CO2 will open up a two-phase

region below that of pure CO2 (e.g. H2S and NO2).  Conversely,

components with critical temperatures and pressures below those

of pure CO2 will open up a  two-phase region above that of  pure

CO2.  The effect of each of the components considered on the phase

envelope is illustrated in Table 4.  Although all of the impurities

raised the critical pressure, at the levels studied, components with

a  critical temperature below that of pure CO2 lowered the criti-

cal temperature of the mixture relative to  pure CO2,  whilst those

with a  higher critical temperature than pure CO2 raised the critical

temperature of the mixture.

These effects are important as the change in  phase behaviour

limits the allowable operating region of the pipeline. CO2 is trans-

ported most efficiently by pipeline as a dense phase or  supercritical

liquid1.  However it is essential for operating efficiency, and to

prevent damage to components such as valves, pumps and com-

pressors that the fluid remains in a  single phase. Consequently,

it is  desirable to maintain the pressure in the pipeline above the

cricondenbar of the fluid. Additions of impurities with critical tem-

peratures and pressures below CO2 will  therefore require higher

1 In this  paper two  regions are defined above the critical pressure; the  “supercrit-

ical phase” which lies above the critical temperature and the “dense phase” which

lies below the critical temperature.
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Table 4

Relative critical pressures of key impurities and their effect on  the phase envelope.

Molecular Weight Critical temperature (◦C) Critical pressure (bar) Effect on phase envelope

Hydrogen 2 -240.0 13.0

Phase envelope above CO2

Nitrogen 28 -147.0 33.9

Carbon monoxide 28 -140.35 35.0

Argon 40 -122.4 48.7

Oxygen 32 -118.6 50.4

Methane 16 -82.8 46.0

Carbon dioxide 44 31.0 74.1

Hydrogen sulphide 34 100.1  89.4

Phase envelope below CO2Sulphur dioxide 64 157.7 78.8

Nitrogen dioxide 46 157.9 101.0

operating pressures to  be specified resulting in  increased costs for

compression and pumping.

2.2.2. Effect of Impurities on Density

Fig. 2  illustrates the non-linear relationship between temper-

ature, pressure and density for pure CO2. In general, the density

of CO2 decreases with increasing temperature and decreasing

pressure, however, the behaviour is  non-linear and a sharp dis-

continuity in density occurs close to the Vapour-Liquid Equilibrium

(VLE) line due to the phase change from the liquid to gaseous phase.

In this region, small changes in temperature and pressure can have

large influences on density. The addition of impurities moves the

location of the discontinuity to  higher pressures for components

with lower critical temperatures and pressures than CO2, and to

lower pressures for components with higher critical temperatures

and pressures than CO2,  as shown in  Fig. 3. This behaviour, and

the effect on CO2 pipeline transportation, has been discussed in

Seevam et al. (2007).  However, a  key conclusion that is emphasised

here is that lowering the inlet temperature will increase pipeline

capacity as it increases the density of the fluid. In addition, limiting

the amount of components with lower critical temperatures and

pressures than CO2 will also improve pipeline capacity.

2.2.3. Effect of Impurities on Viscosity

In general, the viscosity of the fluid increases with increasing

pressure and decreasing temperature. A sharp discontinuity in vis-

cosity is observed at the VLE and, in  the liquid phase, the effect

of temperature on viscosity is more dominant than in the gaseous

phase (Fig. 4). The impact of impurities on the viscosity of  CO2 is also

illustrated in  Fig. 4.  In  the gaseous phase, the viscosity of  the fluid

is  not significantly affected by the addition of impurities. However,

in  the supercritical phase, the viscosity is dramatically affected by

the addition of impurities, with an increase in viscosity over pure

CO2 observed for components with higher critical temperatures

and pressures than CO2 (e.g.NO2) and a decrease in  viscosity over

pure CO2 observed for components with lower critical tempera-

tures and pressures than CO2 (e.g. H2). Decreasing the viscosity will

reduce the resistance to  flow of the fluid in the pipeline.

3. Modelling Methodology

In this study, the effects of impurities have been studied, firstly

on a  single source to  sink pipeline to  model the effect of  individual

impurities on pipeline diameter and then on three network scenar-

ios to  study the impact of the product stream composition on the

system size and configuration. The hydraulic modelling methodol-

ogy for both of these studies is described in the following sections.

3.1. Determination of Pipeline Diameter

One of the first stages in the design of a pipeline is  to calculate

the required internal diameter for the anticipated flow rate. Sev-

eral simple models for determining the required pipeline diameter

exist, many of which form the basis of techno-economic models for

CO2 pipeline transportation (Heddle et al., 2003; Hendriks et al.,

2003; IEA, 2002, 2005a,b; McCoy and Rubin, 2007; Ogden et al.,
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2004). A review of these simple models by  Ghazi and Race (2012)

recommended that diameter calculations based on fluid mechanics

principles (rather than mass balance equations or rules-of-thumb)

should be used in techno-economic models as they require fewer

initial assumptions to be  made. Although these simple models are

adequate for the requirements of initial pipeline sizing and costing,

detailed network sizing studies require the use of more sophisti-

cated steady-state hydraulic models which account for the effects

of pressure and temperature drop along the pipeline and the con-

sequent change in  fluid properties that result.

In general, the calculation of steady state fluid flow in pipelines

requires the simultaneous solution of the equations for conserva-

tion of mass, momentum and energy. From the solution of these

equations, for any known fluid composition and given two  of the

parameters of initial pressure, final pressure or flow rate, it is possi-

ble to calculate the pressure and temperature drop along a  pipeline

length. Alternatively, as was conducted in this study, for a  given

outlet pressure, required pressure drop and flow rate, it is pos-

sible to calculate the optimum pipeline diameter. The hydraulic

modelling in this study has been conducted using the PIPESIM

steady-state multiphase flow simulator software (Schlumberger,

2010). The numerical procedure employed in  PIPESIM is  based on

the method of finite differences. The pipeline is divided into seg-

ments and the pressure and temperature gradient calculations are

performed in  the direction of flow on each segment based on the

average fluid conditions in  the segment. A value of  the unknown

parameter is  set and iteratively adjusted until the output value

matches the calculated value. Once convergence has been achieved,

the calculation moves to the next pipeline segment. Fig.  5 presents

a flow diagram for the calculations conducted by the PIPESIM soft-

ware, indicating the models that have been selected for the study.

The CO2 physical and phase properties were calculated using

the software package MultiFlash (Infochem, 2011) with the Peng-

Robinson equation of state (Peng and Robinson, 1976). This
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Fig. 5. Flow diagram indicating the calculations conducted in the hydraulic analysis.

equation of state was selected as it is  has been shown to  be suf-

ficiently accurate for the mixture compositions and the pressure

and temperature ranges explored in  this paper (Li and Yan, 2009).

Although there is little published information available on the

calculation of CO2 viscosity, numerous correlations exist for calcu-

lating the viscosity in oil and reservoir fluids. In order to determine

whether one of these models could be extended to calculate the

viscosity of dense phase CO2 mixtures, the calculations from two

viscosity models available in PIPESIM, Pedersen (Pedersen et al.,

1984) and LBC (Lohrenz et al., 1964) were compared with experi-

mental data for pure CO2 published by  Van Der Gulik (1997).  The

results are presented in Fig. 6.  On  the basis of these results the

Pedersen model was selected as it was seen to always over-predict

the experimental data and therefore would be a worst-case predic-

tion for the hydraulic calculations.

The flow equation selected for this analysis was the Beggs and

Brill correlation (Beggs and Brill, 1973) with the Moody friction

factor (Moody, 1944) as defined in Brill and Mukherjee (1999).  The

Beggs and Brill-Moody method has been demonstrated to be par-

ticularly applicable for single and multiphase fluids and has been

used for the modelling of other CO2 pipelines (Hein, 1985). This

method also has the advantage that it can accurately predict small

amounts of liquid formation.

The methodology adopted in  PIPESIM to calculate the heat trans-

fer coefficient between a  horizontal buried pipeline and the ground

surface follows the approach of Kreith and Bohn (2001) to define

Table 5

Output from emitters considered in the study AMEC (2008).

CO2 output per annum (Mt) IEA tier

Station 1 0.60 1

Station 2 1.50 0

Station 3 1.65 0

Station 4 2.03 0

Station 5 2.88 0

Station 6 2.89 0

Station 7 3.12 0

Station 8 6.20 0

Station 9 7.68  0

Station 10 22.37 0

a  conduction shape factor, S, from which the ground heat transfer

coefficient, hg, is  calculated using the equation:

hg =
ks

g

R
(1)

Where kg = ground thermal conductivity and R =  reference

length (taken to be the pipe radius).

These models are used to calculate the heat transfer from oil and

gas pipelines and it is  considered that the same methodology can

be applied to  CO2 pipelines as the materials and coatings used will

be the same.

Once the optimum internal diameters have been calculated for

each pipeline using the procedure defined above, the required

external diameter and wall thickness is calculated using the thin

wall formula for allowable hoop stress in PD8010-1 (2004):

�h =
p.Do

20.t
≤  e.a.�SMYS (2)

Where, �h= hoop stress (MPa), p = internal pressure (barg),

Do = external diameter (mm),  t = wall thickness (mm), e =  weld fac-

tor (assumed to be 1), a = design factor and �SMYS =  the Specified

Minimum Yield Stress (SMYS) in MPa. For the network scenarios

considered, it was  assumed that the pipeline would be located in

a Class 1 location as defined in  PD8010-1 (2004) and therefore a

design factor of 0.72 was  used.

In general, pipelines are  supplied in standard, discrete ranges

of external diameter and wall thickness. Although it is  recognised

that a customer can specify any external diameter and wall thick-

ness, BS EN10208-2 (2009) indicates that, where appropriate, the
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Fig. 7. Schematic representation of the Case 1  pipeline network.

external diameter and wall thickness should be within these

standard ranges. Consequently, once the required external diam-

eter and wall thickness have been determined based on the

hydraulic and stress analysis constraints, the values were increased

to select standard diameters and wall thicknesses as specified in BS

EN10208-2 (2009).

A final check was then made with respect to the velocity of

the fluid in the pipeline for the calculated flow rate and diameter.

This calculation ensures that the calculated velocity is not so slow

that it would affect the operation and maintenance of the pipeline

and neither is it so fast that it could cause erosion of the pipeline.

To check the erosional velocity the procedure outlined in API RP

14E (1991) for the calculation of erosional velocity was adopted. In

order to ensure that erosion is  not a threat to the pipeline, the actual

velocity must be less than the erosional velocity. The erosional

velocity is calculated using the following equation:

ve =
C

√
�mix

(3)

Where �e =  erosional velocity (m/s); �mix =  density of the fluid

mixture (kg/m3) and C =  is  an empirical constant as defined in

API14E (1991). The value of C in Equation 3 has been determined
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Table 6

Lengths and flow rates of pipelines for network Cases 1-3.

Pipeline Case 1 (km) Pipeline Case 2 (km) Case 3 (km)

Distance (km) Flow rate (MT/yr) Distance (km) Flow rate (MT/yr) Distance (km) Flow rate (MT/yr)

P1 53 0.54 P1 4 0.54 1 0.54

P2 43 1.35 P2 & P4 18 3.18 17 3.18

P3 70 1.49 P3 7 1.49 2 1.49

P4 43 1.83 – – –

P5 46 2.59 P5 14 2.59 16 2.59

P6 36 2.60 P6 12 2.60 14 2.60

P7 52 2.81 P7 23 2.81 26 2.81

P8 108 5.58 P8 19 5.58 10 5.58

P9 98 6.91 P9 9 6.91 98 25.70

P10 90 20.13 P10 90 45.83 90 20.13

Total  639 45.83 Total 194 45.83 274 45.83

empirically from experiments conducted in the oil and gas indus-

try and a range of values for C are provided in API RP 14E (1991)

depending on the service and erosive nature of the fluid. For solids-

free,  continuous service a  value of 122 kg/m2s  is recommended for

C (API RP 14E, 1991) and this value has been adopted for this work.

Although this value for C is considered to be  conservative in the oil

industry (Salama, 2000), it is recognised that  there is  no compara-

ble experimental database from which to determine an appropriate

value of C  for CO2 in the gaseous or dense phase.

3.2. Modelling Assumptions and Input Data

3.2.1. Fluid Conditions

As mentioned previously in  Section 2.2.1, it is essential to avoid

two-phase flow in  the pipeline network by keeping the system

pressure above the cricondenbar of the fluid for dense phase opera-

tion. Consequently, for this study, the minimum operating pressure

in the system has been taken to be 10% above the cricondenbar

calculated for the given fluid composition to provide an operat-

ing margin on the pipeline pressure and avoid the requirement for

intermediate compression. For  the study on the effect of diameter,

binary combinations of CO2 with 2mol%, 4mol% and 15mol% impu-

rities have been considered. It is  recognised that these impurity

levels are not realistic or representative of potential CO2 streams,

but they have been chosen at an exaggerated level in order that

the qualitative effect of each impurity can be observed. For the net-

work study, the compositions for each of the capture technologies

presented in Table 3 have been used and it has been assumed that

every emitter in the network is using the same capture technology

with the same composition of CO2 for that technology.

A pressure gradient of 0.2bara/km has been assumed for the net-

work. This pressure gradient is  considered appropriate based on

operating experience quoted for CO2 pipelines in the USA (Seevam

et al., 2010) and is  also in line with the pressure gradients assumed

in the work of Vandeginste and Piessens (2008). The inlet tempera-

ture of the flow into the pipeline was assumed to  be 30 ◦C. Although

it is noted that the output from the compressor can be as high as 40-

50 ◦C  (Farris, 1983), a  lower temperature has been adopted for this

study as it has been assumed that cooling would be conducted after

the final stage of  pressurisation in  order to maximise the density of

the fluid in the pipeline (as described in  Section 2.2.2).

CO2 emission data has been taken from ten power stations in

a typical regional cluster (AMEC, 2008). The emitters have been

classified according to the IEA Tier classification2 (AMEC, 2008)  and

the annual CO2 output considered from each emitter is  presented

2 The IEA Tier Classification classifies CO2 emitters by emission size: Tier 0

includes all CO2 sources emitting over 1Mt/year, Tier 1 is made up of all sources

with an output of between 50kt/year and 1Mt/year and Tier 2 includes all other

sources emitting under 50kt/year.

Table 7

Hydraulic model input assumptions.

Fluid Conditions Unit

Inlet temperature 30 ◦C

Pressure gradient 0.2 bar/km

Arrival pressure at  terminal Cricondenbar +10%

Flow  rate 90% of CO2 emissions MT/yr

Pipeline and Environmental Conditions

Pipeline roughness 0.0457 mm

Pipeline burial depth 1.2 m

Pipeline material yield strength 450 MPa

Pipeline insulation None

Pipeline thermal conductivity 60.55 W/m.K

Soil thermal conductivity 2.595 W/m.K

Ground temperature 5 ◦C

in  Table 5.  In the calculations of flow rate into the pipeline, a  90%

capture rate has been assumed from each emitter.

3.2.2. Pipeline and Environmental Conditions

All of the pipelines in  this study are plain carbon steel of

grade EN10208 L450 (BS EN10208-2, 2009). A  roughness value of

0.0457 mm  has been used as the recommended value for commer-

cial steel pipelines (Mohitpour et al., 2003). It  has been assumed

that the manufacture and construction standards and practices for

CO2 pipelines will be similar to  those used for natural gas pipelines

and therefore no insulation has been applied to  the pipelines in  the

hydraulic model and the pipes have been buried to a  depth of 1.2  m.

This figure was assumed in the calculations to  be representative of

the maximum depth of cover required by for the construction of

onshore pipelines in the UK (PD8010-1, 2004). The soil thermal

conductivity has been taken to be  2.595 W/m.K, which is typical of

a wet, sandy soil (McAllister, 2005). The soil  thermal conductivity is

considered to be  constant along the whole pipeline length, although

it is  recognised that soil types will change over the distances mod-

elled. The ground temperature has been taken to be 5 ◦C, which is

the recommended design condition for natural gas pipelines in the

UK (IGEM/TD/1, 2008).

3.3. Network Configurations

Three pipeline configurations have been developed to study the

effect of impurities on network development;

Case 1. Direct connection between the source and the onshore

terminal. This case has the largest overall length for the network at

639 km.

Case 2. A trunk line connecting Station 10 (the largest station in

the network) to the terminal with the other sources feeding into

this trunk line.  Stations 2 and 4 share a common pipeline. This case

has the shortest overall length for the network at 194 km.
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Fig. 9. Schematic representation of the Case 3  pipeline network.

Case 3. A trunk line connecting Station 9 to the terminal with

the other sources (expect for station 10) feeding into this line.

The CO2 from Station 10 runs in its own directly connected

pipeline from the source to  the terminal. In this configuration

Stations 2 and 4 share a common pipeline. Case 3 has been

designed to overcome potential operational problems in  Case

2 that could arise from having one large source (Station 10)

connected in a  pipeline network that is linking much smaller

sources.

The networks are represented diagrammatically in Figs. 7–9.  For

Cases 2 and 3, a tree type network has been modelled with a  large

trunk line as this is consistent with the findings of previous studies

(AMEC, 2008; Lone et al., 2010; Odenberger et al., 2008; Pershad

et al., 2010). Each pipeline is defined by the label  Pi,  where i is  the

number of the power station from where the pipeline originates.

The lengths of the pipelines and the total length of the network for

each case are shown in  Table 6. All of the pipeline connections are

straight connections and no attempt has been made to account for

Fig. 10. Effect of impurity level on pipeline internal diameter.
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Fig. 11. Effect of impurity type on  pipeline external diameter at  15mol% impurity level.

topography in the routeing. Each network case was  modelled for

a pure CO2 and for each of the four capture streams presented in

Table 3. The single source-to-sink pipeline that was selected was

P10.

3.4. Cost Modelling

The cost model that has been adopted to  estimate the CAPEX of

each of the pipelines and networks is  that due to Ghazi and Race

(2012). This model is  based on the IEA model as presented in IEA

(2005a,b) with the inclusion of a location factor FL. as presented in

IEA (2002).

CAPEX(MD)=FL.FT . [C1.L+C2+(C3.L−C4).] D+(C5).L − C6).D2 (4)

where, for onshore pipelines, C1 = 0.057; C2 = 1.8663; C3 = 0.00129;

C4 = 0; C5 = 0.000486; C6 = 0.000007; D =  pipeline internal diame-

ter (inches); FL = location factor (taken to  be 1.2 for the United

Fig. 12. Effect of impurity type on  pipeline inlet pressure at 2mol%, 4mol% and 15mol% impurity level.
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Fig. 13. Relative cost/km for each pipeline in Case 1.

Kingdom); FT = terrain factor (taken to be 1.1 for cultivated land);

L = pipeline length (km).

A summary of the input data and assumptions for the study are

presented in Table 7.

4. Results

4.1. Effect of Impurities on Pipeline Diameter and Inlet Pressure

The  results for the effect of impurity on pipeline internal diam-

eter, relative to  pure CO2,  are represented diagrammatically in

Fig. 10. This figure indicates that, with the addition of up to  4mol%

of N2, O2, Ar, CO, H2, H2S  and CH4, the impurity has no effect on the

calculation of the optimum diameter size i.e. the internal diameter

specified for the binary combination of CO2 with impurity is exactly

the  same as that would be specified for pure CO2.  This result con-

curs with the work of de Visser et al. (2008) and Yan et al. (2008)

who set a limit of 4vol% for non-condensables in  terms of hydraulic

efficiency. For some impurities (NO2 and SO2)  the addition of  the

impurity has reduced the diameter pipeline that would be speci-

fied over pure CO2 and the larger the level of these impurities, the

smaller the pipeline that is  required. However for the binary com-

binations of 15mol% impurity for N2,  O2, Ar,  CO, H2 and CH4, the

diameter of the pipeline must be increased by between 4-6% over

the diameter for a  pure CO2 pipeline to  accommodate the higher

level of impurities. This will obviously have a  cost implication.

A comparison of internal diameter only takes into account

the effect of impurities on pipeline capacity. However, it is also

instructive to consider the effect of impurities on external pipeline

diameter as illustrated in Fig. 11. For up  to  4mol% impurities, there
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Fig. 15. Relative cost/km for each  pipeline in Case 3.

is  no requirement to  increase the external diameter of the pipeline

over that which would be specified for pure CO2.  However, for H2

in particular, the addition of 15mol% increases the internal diam-

eter by 4.6% over pure CO2, but the external diameter is increased

by 6.2% over pure CO2.  The reason for this is that the relative

cricondenbar and therefore the inlet pressure (Pi) for the 15%H2

mixture is significantly higher than for the other binary com-

ponents (Fig. 12). Consequently, based on Equation 2,  the wall

thickness (and therefore the external diameter) needs to be

increased for the same pipeline material. This result indicates that

external rather than internal diameter should be used in cost calcu-

lations for more impure streams to take the cost of this additional

material into account.

Fig. 12 also illustrates the relative effect of the types and

amounts of different impurities on the inlet pressure and allows

the different impurities to  be ranked in  terms of their efficacy

in increasing inlet pressure. Therefore it can be concluded that

at the 2mol% level, all impurities have a similar effect on raising

the inlet pressure by 3% on average over pure CO2.  How-

ever, the addition of 15mol% H2 doubles the inlet pressure

required compared to  the 2mol% mixture, whereas the addi-

tion of 15% H2S  has very little effect compared to the 2mol%

mixture.

4.2. Effect of Impurities on Network Size and Configuration

4.2.1. Effect on Cost/km Length

In order to compare the costs for every pipeline in each case

study, the cost/km length for each pipeline carrying the four differ-

ent CO2 streams has been calculated relative to pure CO2 using the

methodology outlined in  Section 3.4.  The results are presented in

Figs. 13–15.  From this analysis it can be seen that, for the majority
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Fig. 16. Comparison of relative costs for Cases 1  to  3  using the oxyfuel 1 composition.
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Fig. 17. Relative inlet pressure for each pipeline in Case 1.

of pipelines in Cases 1 to 3, the post-combustion, pre-combustion

and oxyfuel 2 compositions have no effect on the relative cost per

km for the pipelines in  the network. However, the oxyfuel 1 com-

position, the most impure composition, can affect the relative cost

of the pipeline by up to  16% and is the most expensive compo-

sition to be transported for the majority of pipelines in  the three

cases.

One result of note from this analysis is that for P10, the main

trunk line in Case 2. In this case, shown in Fig. 14,  the pre-

combustion composition has a higher cost/km than the oxyfuel

1  composition. The reason for this is  that, although the outside

diameters are the same, the internal diameters differ, highlight-

ing again that a cost model built on external rather than internal

diameter would be more appropriate.

For the oxyfuel 1 composition, a  comparison has been made

of the cost of the three different network cases and the results

are presented in  Fig. 16.  These results confirm the work of other

researchers that direct connection pipelines from source to ter-

minal are more expensive than network options. Of the two

networked cases, the network with the two trunk lines (Case 3)

is a more expensive option overall in terms of capital cost of the

network, however, it is operationally more stable. To illustrate this

effect, the Case 2 network was  modelled under the condition that

Station 10, the largest emitter in  the network, had been shut down.

Consequently, the flow rate in  pipeline P10 was reduced by  44% and

the network became unstable as the flow velocity was too low for

the diameter of the pipeline. As a result, during times when the

flow from Station 10 was  stopped for either planned or  unplanned
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Fig. 18. Relative inlet pressure for each pipeline in Case 2.
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Fig. 19. Relative inlet pressure for each pipeline in Case 3.

outages, the whole pipeline network would be affected. However,

in the same scenario in Case 3,  the flow from Station 10 is in a sin-

gle source to terminal pipeline and therefore does not dominate

the flow in the network.

4.2.2. Effect on Relative Inlet Pressure

As mentioned previously, the cost calculations indicated above

do not take into account the inlet pressure of the pipeline, which

will affect the stress in the pipeline and consequently the wall thick-

ness requirement. Increasing inlet pressure will also affect the cost

of compression.

The relative inlet pressure (i.e. the inlet pressure for each

pipeline relative to pure CO2) has been calculated for each composi-

tion and each network case. The results are presented in  Figs. 17–19.

The results indicate that, for all cases, the oxyfuel 1 composition has

the highest relative inlet pressure. This stream is the most impure

stream, containing up to  15mol% impurities, and based on the anal-

ysis presented in Fig. 12,  the higher the level of impurities, the

higher the inlet pressure has to  be  to maintain the fluid in the dense

phase. Similarly the post-combustion stream, which contains less

than 0.2mol% impurities, has the lowest inlet pressure for all cases.

It is of particular interest to observe the results for the oxy-

fuel 1 and the pre-combustion compositions, which both contain

2mol% impurities. For Cases 1 and 3, the pre-combustion stream

results in higher inlet pressures than the oxyfuel 2 composition. In

order to account for this, comparison needs to be made between the

breakdown of impurities in  the stream in  Table 3 and the results of

Fig. 12. Although the two  compositions contain 2mol% impurities,

the pre-combustion case contains ∼1%H2 and ∼1%N2 which have

the greatest effect in increasing the inlet pressure. The oxyfuel 2

composition contains no H2 and the other major components of

O2 and Ar do not have as great an effect on inlet pressure. How-

ever, for Case 2,  where the overall pipeline length is  shorter, the

effect of these differences in composition on inlet pressure is  not

as pronounced.

5. Conclusions

As CCS projects start to  move from preliminary design to

detailed design and to eventual commercial projects, the compo-

sition of the CO2 stream will become of increasing importance in

realising cost reductions in both the capture and transport parts of

the chain. The aim of this work has been to  analyse the effects of

the composition on pipeline cost and network design for a  dense

phase pipeline network and several key conclusions can be drawn

to  inform the process of specifying the CO2 purity on the basis of

hydraulic design.

In binary combination in single pipelines, additions of  up to

4mol% of impurities do not affect the diameter and wall thickness of

pipeline that would be specified due to  the use of discrete pipeline

sizes in this analysis. In a  network situation with multiple impuri-

ties present, the composition of the “non-CO2” part of  the stream

does become important. The analysis presented in  this paper indi-

cates that impurity additions up to  2mol% did not affect the relative

cost/km for the networks in terms of the pipeline internal diameter

and length. However, the inlet pressure is  increased for all of the

compositions studied and this will affect the compression require-

ments and therefore operational cost. In this respect, it has been

shown that the levels of H2 and  N2 in particular should be limited.

On the basis of the work conducted, even levels of H2 up to 1mol%

were increasing the required inlet pressure by over 6%.

An interesting conclusion can be drawn from the relative inlet

pressure analysis for Case 2. In this case, the relative inlet pressures

for the 98% pure streams (oxyfuel 2 and pre-combustion) were

almost identical. Therefore, it has been possible to  negate the effect

of the H2 in the pre-combustion stream composition by decreasing

the lengths of the pipelines. It  is  recognised that this option might

not always be  possible due to  other constraints of routeing caused

by terrain and risk criteria but it is a  choice that  could be  considered.

Another key observation from this work relates to  the operation

of networks with multiple emitters. If a  number of emitters are to

be incorporated into a  network it is important to  consider the rela-

tive contributions of each of the emitters to  the flow rate. If there is

one large emitter in  the network and this emitter is not inputting

into the system, for whatever reason, then the whole network

could become unstable depending on the overall contribution that

this emitter makes to the flow rate. This scenario could arise due

to  planned or unplanned maintenance at the source, but could

also occur in  the initial stages of starting up  a  network. It has been

suggested that one scenario for infrastructure development could

be to oversize trunk lines in the anticipation of future additions

to  the network AMEC, 2008. However, the analysis presented
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in this paper indicates that, depending on the relative sizes of

the emitters, this scenario would only be feasible if the largest

emitters in the system were the first to input into the pipeline

system.

Although this study has concentrated on  the effect of impurities

on the hydraulic analysis of pipelines and networks, it is  reiter-

ated that, when determining a  pipeline CO2 stream specification,

the effects on all aspects of pipeline design and operation must be

considered. In particular it is  important to  recognise that  fracture

control, corrosion and cracking mechanisms, hydrate formation

and health and safety issues can all influence the acceptable lev-

els  of CO2 impurities. It  is further highlighted that the conclusions

from this work are specific to dense phase CO2 pipelines. Gaseous

phase pipelines will have different design constraints, particularly

with respect to preventing two-phase flow, where temperature is

a more important constraint than pressure. Further analysis would

be required to determine the impact of impurities on these con-

straints.
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