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Nutrition is critical to immune defence

and resistance to pathogens, with conse-

quences that affect the health, welfare,

and reproductive success of individual

organisms [1,2], and also has profound

ecological and evolutionary implications

[3–5]. In humans, under-nutrition, nota-

bly of protein, is a major contributor to

morbidity and mortality due to infectious

diseases, particularly in the developing

world [1]. Likewise, over-nutrition and its

associated metabolic disorders may im-

pair immune function, disrupt the rela-

tionship with symbiotic and commensal

microbiota, and increase susceptibility to

infectious disease [6]. Despite the un-

doubted importance of nutrition to im-

mune defence, the challenge remains to

capture the complexity of this relation-

ship. There are three main aspects to this

complexity: (i) nutrition is a complex

multi-dimensional problem for hosts,

pathogens, and commensals; (ii) host

immunity is a complex, multi-dimensional

trait; and (iii) nutrition and immunity

interact via multiple direct and indirect

pathways, including involvement of the

host’s microbiota.

Nutrition Is a Multi-Dimensional
Problem for Hosts, Pathogens,
and Commensal Organisms

Although widely used, the terms ‘‘over-

nutrition’’ and ‘‘under-nutrition’’ are rare-

ly defined in studies, and often the key

nutritional variables have not been iden-

tified. Many studies consider foods as

uniform commodities and manipulate the

amount available without considering the

food’s nutritional composition or having a

quantitative understanding of the animal’s

nutrient requirements (see for instance

[7,8]). Other studies focus on a single

dietary attribute (typically its calorie con-

tent) or nutritional component (e.g., the

amount of protein or nitrogen in the diet),

and experimentally manipulate this whilst

maintaining other dietary components at a

constant level, thus confounding changes

in the focal nutrient/attribute with chang-

es in the ratio of nutrients in the diet [9–

11]. Although these studies have had their

successes, we believe that this single

currency approach provides only a limited

understanding of the nutritional con-

straints on pathogen defence (see also

[2]). The Geometric Framework (GF)

[12–14] was specifically developed to

capture these multi-dimensional aspects

of nutrition and offers promise for the

study of nutritional immunology, allowing

quantitative predictions that can be statis-

tically tested. The GF identifies nutritional

optima (intake and growth targets) in

multi-dimensional nutritional space and

thus provides a rigorous definition and

quantification of ‘‘under’’- and ‘‘over’’-

nutrition, as well as a mean of associating

immune responses, host performance,

responses of host microbial communities,

and pathogen growth rates with particular

nutritional states.

The importance of considering the

simultaneous and interactive effects of

multiple nutrients when studying immune

function has been illustrated by a number

of studies on insects and rodents [15–18].

For example, Peck et al. [18] found that

mice survived better on diets containing a

higher ratio of protein (P) to carbohydrate

(C) following inoculation with Salmonella

typhimurium. Similarly, the ability of cater-

pillars to resist viral and bacterial infection

increased as dietary P:C rose, and infected

insects selected a higher protein diet,

indicating a form of nutritional self-

medication [15–17].

Hosts are not the only organisms facing

the complexity of nutrition. Parasites and

pathogens rely on the host for provision of

resources and may not share the same

nutritional requirements, setting up the

potential for resource competition and

manipulation between the different parties

[18–20]. The complexity of the nutritional

interactions between hosts and pathogens

is made substantially greater by the fact

that animals play host not only to invading

pathogens, but also to entire communities

of commensal and symbiotic microorgan-

isms that receive their nutrition from the

host and in turn contribute essential

nutrients and play a role in immune

defence [21–24]. Gut microbiota have

been shown to have profound and unan-

ticipated effects on immune defence and

inflammatory responses [23,25–27], and

in mammals, disturbances of the gut

microbiota have been implicated in dis-

eases such as obesity, type 1 diabetes, and

various cancers [21,23,28]. Furthermore,

diet has a strong effect on the gut

microbiota [29–32], both by serving as a

vector for microorganisms and by affecting

the physical, chemical, and structural

properties of the gut [33–37].

The Immune System Has
Multiple Components That
React Differently to Nutrients

Immune loci are the most gene-dense

regions of the genome in vertebrates (e.g.,

[38]), and even in insects, which lack an

adaptive immune response and rely solely

on the innate immune system, there are

abundant components to the immune

response, each designed to meet particular

types of immune challenge [39]. It has

recently been discovered using GF designs

that immune components respond differ-

ently to host nutritional state. Cotter et al.

[40] restricted control and immune-chal-

lenged caterpillars to one of 20 diets
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varying in both the quantity and ratio of P

and C. Statistical analysis of response

surfaces (Figure 1) showed that immune

traits are differentially affected by macro-

nutrient intake and that no diet can

simultaneously optimize all components

of the immune system (see below). Varia-

tion in these different traits has been

shown to be repeatable and heritable

[41,42] and linked to functional immune

outcomes [43,44]. This raises the intrigu-

ing prospect that an animal might adjust

its food selection to support immune

components that best resist a given

infection and perhaps also support a

healthy microbial community.

A Framework to Address the
Complexity of Nutritional
Immunology

When the above mentioned complexi-

ties are considered, it becomes clear that

an understanding of nutritional immunol-

ogy must take account of a web of

Figure 2. The network of interactions between nutrition and immunity. Diet affects host nutritional state and immune status, both of which
interact with microbial symbionts, commensals, and pathogens to affect the fitness of all partners. Because nutrient feedbacks modulate host feeding
behaviour, the potential exists for the host to adjust its diet to optimise its microbial interactions and increase resistance to infection. Alternatively,
parasites and pathogens might subvert host feeding behaviour to their nutritional advantage.
doi:10.1371/journal.ppat.1002223.g002

Figure1. Response landscapes for three immune traits in caterpillars fed one of 20 diets differing in the ratios and amounts of
protein and carbohydrate. Adapted after Cotter et al. [40].
doi:10.1371/journal.ppat.1002223.g001
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interactions between components. These

include the nutritional quality of the diet,

host feeding behaviour, host nutritional

state, the growth of pathogen populations,

the host-associated microbial community,

multiple measures of host immune func-

tion and, ultimately, evolutionary consid-

erations such as host and microbial fitness

and selection processes (Figure 2).

When exploring this network of inter-

actions, the first step (primary manipula-

tion) is to define the effects of nutrition on

the network. The recent study of Lee et al.

[45] on Drosophila offers an example of

how GF designs might be used in such an

analysis of nutritional immunology. In that

study, systematically varying the protein

and carbohydrate content allowed vari-

ables including host lifespan and lifetime

egg production to be mapped as response

surfaces onto nutrient intake arrays, there-

by parsing the consequences of nutritional

state on these key life-history traits and

providing a baseline for detailed physio-

logical and molecular analysis. Using the

same technique, Cotter et al. [40] (see

above) mapped several immune traits onto

P-C intake arrays (Figure 1), providing

evidence that immune components re-

sponded in a nutrient-specific manner.

Whether these different responses were

driven by differing nutritional demands of

the various immune traits, direct effects of

nutrition on patterns of immune gene

expression, or an indirect effect of changes

to microbial communities in the gut or

elsewhere in the body, remains to be

discovered.

A more complete study of nutritional

immunology would require including re-

sponse surfaces for gut and body microbial

communities, as well as a more detailed

assessment of immune pathways, e.g.,

IMD and Toll antimicrobial peptide

pathways. Having quantified the effects

of diet composition, the responses of the

network to perturbations could then be

measured. This could be done by inocu-

lating hosts with pathogens that challenge

different components of the innate im-

mune system; by using host strains defi-

cient in different components of the

immune response; using RNAi to knock-

down particular immune genes; or by

manipulating the commensal microbiota

through antibiotic treatment. Finally, hosts

could be offered the opportunity to express

nutritional self-medication in experimental

designs in which they are offered a choice

of nutritionally complementary foods [45].

Studying the individual components of this

complex interaction will allow us to

formulate null models against which

specific hypotheses can be formulated

and tested.

Considering the complex nature of

nutritional immunology, we argue that a

description of the network of interactions

that define the relationships between

nutrition, immune function, infection,

and microbiota is essential to provide a

more comprehensive and robust under-

standing of the key determinants of the

outcome of host–pathogen interactions.

The GF provides a powerful organising

framework for achieving such a synthesis.
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