
An Evaluation of 2D SLAM Techniques Available
in Robot Operating System

João Machado Santos, David Portugal and Rui P. Rocha

Abstract— In this work, a study of several laser-based 2D
Simultaneous Localization and Mapping (SLAM) techniques
available in Robot Operating System (ROS) is conducted. All
the approaches have been evaluated and compared in 2D
simulations and real world experiments. In order to draw
conclusions on the performance of the tested techniques, the
experimental results were collected under the same conditions
and a generalized performance metric based on the k-nearest
neighbors concept was applied. Moreover, the CPU load of each
technique is examined.

This work provides insight on the weaknesses and strengths
of each solution. Such analysis is fundamental to decide which
solution to adopt according to the properties of the intended
final application.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is one of

the most widely researched topics in Robotics. It is useful for

building and updating maps within unknown environments,

while the robot keeps the information about its location.
Proprioceptive sensors are subject to cumulative errors

when estimating the mobile robot’s motion, the high di-

mensionality of the environment that is being mapped, the

problem of determining whether sensor measurements taken

at different points in time correspond to the same object in

the world, and the fact that the world changes over time,

represent the biggest challenges in SLAM [1].
The Robot Operating System (ROS) is the most popular

robotics framework nowadays. It provides a set of tools,

libraries and drivers in order to help develop robot applica-

tions with hardware abstraction [2]. ROS enables researchers

to quickly and easily perform simulations and real world

experiments.
All five SLAM techniques analyzed in this work are

available in ROS and have been tested in 2D simulations

through Stage and on a custom Arduino-based Robot [3]. The

research presented in this article is a first step for our ultimate

goal, which is to propose a SLAM technique for Urban

Search and Rescue (USAR) scenarios, whose environment

often contain smoke and dust particles. Therefore, it is

necessary to study the most popular and commonly used

approaches and this work will serve as guidance to our later

technique, as well as to researchers interested in SLAM and

in ROS, in general.

This work has been supported by the CHOPIN research project
(PTDC/EEA-CRO/119000/2010), by a PhD grant (SFRH/BD/64426/2009)
and by the Institute of Systems and Robotics (project Est-
C/EEI/UI0048/2011), all of them funded by the Portuguese science
agency “Fundação para a Ciência e a Tecnologia”. J.M. Santos, D. Portugal
and R.P. Rocha are with the Institute of Systems and Robotics, Univ. of
Coimbra, Pólo II, 3030-290 Coimbra, Portugal, email: {jsantos, davidbsp,
rprocha}@isr.uc.pt.

II. RELATED WORK

Presently, all recognized algorithms for robot mapping

have a common feature: they rely in probabilities. The

advantage of applying probabilities is the robustness to

measurement noise and the ability to formally represent

uncertainty in the measurement and estimation process. Most

of the probabilistic models used to solve the problem of

mapping rely on Bayes rule [1].

Kalman filters (KF) are one of the most popular imple-

mentations of Bayes filters [1]. The KF has two distinct

phases: Prediction and Update. The prediction phase esti-

mates the state space (prior) from a previous iteration, while

in the update phase the estimated state is combined with

observations provided by sensors. The result from the update

phase is called posterior. Arising from the prior development

of the KF, the Extended Kalman Filter (EKF) solves the

problem of nonlinearity in the robot pose model. A set of

tests on convergence properties and inconsistency issues of

the EKF-based solution to the nonlinear 2D SLAM problem

is conducted in [4].

Particle filters (PF) are another application of Bayes filters.

The posterior probability is represented by a set of weighted

particles and each particle is given an importance factor.

It assumes that the next state depends only on the current

one, i.e., Markov assumption [5]. PFs have the advantage

of representing uncertainty through multi-modal distributions

and dealing with non-Gaussian noise. Montemerlo et al. [6]

proposed a new approach called FastSLAM. It makes use

of a modified PF to estimate the posterior. Afterwards, each

particle possesses K Kalman filters that estimate the K land-

mark locations. It was shown that the computational effort to

execute this algorithm is lower than EFK approaches. Also,

the approach deals with large number of landmarks even with

small sets of particles and the results remain appropriate.

Also, an approach based on PF is proposed in [7]. This work

is discussed in more detail in Section III-B.

Equally important are graph-based SLAM algorithms, as

they cover some weaknesses of PFs and EKFs techniques [9].

In these SLAM algorithms, the data extracted is used to build

a graph. The graph is composed by nodes and arcs. Each arc

in the graph represents a constraint between successive poses,

which can be a motion event or a measurement event. In

order to obtain a map, all the constraints are linearized and

a sparse matrix is obtained, representing the sparse graph.

This type of algorithms were first presented by Lu and Milios

[8]. In their work, pose constraints were retrieved by the scan

matching process. However, due to the optimization process

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/29175747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


used, the applicability of the algorithm in large scenarios is

impracticable. Thrun et al. [9] presented the GraphSLAM

algorithm, which is based on [8], and evaluated its behavior

in large-scale urban environments. This has been possible

due to a reduction process, which removes map variables

from the optimization process. In addition, Carlone et al.
[10] also developed a graph-based SLAM approach, which

is discussed in Section III-E.

In the last few years, the number of SLAM approaches

has increased and the need to compare different approaches

grew significantly. Visually inspection of the resulting maps

does not allow a correct comparison. So, the need to precisely

evaluate the results asks for a more accurate method - a quan-

titative scale. For instance, in [12], a metric for comparing

SLAM algorithms was developed, wherein the result is not

evaluated using a reference, but rather by considering the

poses of the robot during data acquisition. This fact allows

comparison between algorithms with different outputs. Also,

the proposed method is independent on the sensor configu-

ration of the mobile robot, but it requires manual editing of

the dataset before being applied.

All recognized SLAM evaluation methods rely on standard

datasets available to the community. However, these are not

compatible with ROS framework yet. Conversely, in this

work, a study of the main laser-based 2D SLAM algorithms

that are available in ROS is presented. All the tested tech-

niques use occupancy grids as the final output, which are

analyzed using a metric for map similarities. The focus is

put on the map quality instead of the pose estimation errors,

since the mapping output is highly affected by localization

issues. The main goal is to provide an overview of the

strengths and weaknesses of all five algorithms implemented

in ROS and also to provide a simple, yet accurate quantitative

comparison, thus defining general guidelines for ROS users

to select the algorithm that best fits their requirements.

III. 2D SLAM ALGORITHMS

In this section, a brief description of five SLAM tech-

niques is conducted, namely: HectorSLAM, Gmapping, Kar-

toSLAM, CoreSLAM and LagoSLAM.

A. HectorSLAM

HectorSLAM1 combines a 2D SLAM system based on

robust scan matching and 3D navigation technique using an

inertial sensing system [11].

The authors have focused on the estimation of the robot

movement in real-time, making use of the high update

rate and the low distance measurement noise from modern

LIDARs. The odometric information is not used, which gives

the possibility to implement this approach in aerial robots

like, a Quadrotor UAV or in ground robots operating in

uneven terrains. On the other hand, it might have prob-

lems when only low rate scans are available and it does

not leverage when odometry estimates are fairly accurate.

The 2D pose estimation is based on optimization of the

1http://www.ros.org/wiki/hector_slam

alignment of beam endpoints with the map obtained so

far. The endpoints are projected in the actual map and

the occupancy probabilities are estimated. Scan matching is

solved using a Gaussian-Newton equation, which finds the

rigid transformation that best fits the laser beams with the

map. In addition, a multi-resolution map representation is

used, to avoid getting stuck in local minima. Finally, the 3D

state estimation for the navigation filter is based on EKF.

However, this is only needed when an Inertial Measurement

Unit (IMU) is present, such as in the case of aerial robots.

Thus, it will not be used in this work.

B. Gmapping

Gmapping2 is a laser-based SLAM algorithm as described

by [7]. Furthermore, it is the most widely used SLAM pack-

age in robots worldwide. This algorithm has been proposed

by Grisetti et al. and is a Rao-Blackwellized PF SLAM ap-

proach. The PF family of algorithms usually requires a high

number of particles to obtain good results, which increases

its computational complexity. Also, the depletion problem3

associated with the PF resampling process decreases the

algorithm accuracy. This happens because the importance

weights of particles may become insignificant. Hence, this

means that there is a small probability that correct hypothesis

can be eliminated.

An adaptive resampling technique has been developed

in [7], which minimizes the particle depletion problem,

since this process is only performed when is needed. The

authors also proposed a way to compute an accurate dis-

tribution by taking into account not only the movement of

the robotic platform, but also the most recent observations.

This decreases the uncertainty about the robot’s pose in the

prediction step of the PF. As a consequence, the number of

particles required is decreased since the uncertainty is lower,

due to the scan matching process. In our experiments, the

number of particles used by Gmapping was 30.

C. KartoSLAM

KartoSLAM4 is a graph-based SLAM approach developed

by SRI International’s Karto Robotics, which has been

extended for ROS by using a highly-optimized and non-

iterative Cholesky matrix decomposition for sparse linear

systems as its solver [13]. A graph-based SLAM algorithm

represents the map by means of graphs. In this case, each

node represents a pose of the robot along its trajectory

and a set of sensor measurements. These are connected

by arcs which represent the motion between successive

poses. For each new node, the map is computed by finding

the spatial configuration of the nodes which are consistent

with constraints from the arcs. In the KartoSLAM version

available for ROS, the Sparse Pose Adjustment (SPA) is

responsible for both scan matching and loop-closure proce-

dures [14]. The higher the number of landmarks, the more

2http://www.ros.org/wiki/gmapping
3The particle depletion problem consists in the elimination of a large

number of particles from the sample set during the resampling stage.
4http://www.ros.org/wiki/karto



amount of memory is required. However, graph-based SLAM

algorithms are usually more efficient than other approaches

when maintaining a map of a large-scale environments. In

the particular case of KartoSLAM, it is extremely efficient,

since it only maintains a pose graph.

D. CoreSLAM

CoreSLAM5 is a ROS wrapper for the original 200-

lines-of-code tinySLAM algorithm, which was created with

the purpose of being simple and easy to understand with

minimum loss of performance [15]. The algorithm is divided

in two different steps: distance calculation and update of the

map. In the first step, for each incoming scan, it calculates

the distance based on a very simple PF algorithm. The PF

matches each scan from the LRF with the map and each

particle of the filter represents a possible pose of the robot

and has an associated weight, which depends on previous

iterations. After the selection of the best hypotheses, the

particles with lower weight are eliminated and new particles

are generated. In the update step, the lines corresponding

to the received scans are drawn in the map. However,

of drawing a single point when an obstacle is detected,

tinySLAM draws an adjustable set of points surrounding the

obstacle.

E. LagoSLAM

The basis of graph-based SLAM algorithms is the mini-

mization of a nonlinear non-convex cost function [10]. More

precisely, at each iteration, a local convex approximation

of the initial problem is solved in order to update the

graph configuration. The process is repeated until a local

minimum of the cost function is reached. However, this

optimization process is highly dependent on an initial guess

to converge. Carlone et al. [10] developed a new approach

called LagoSLAM6 (Linear Approximation for Graph Op-

timization), in which the optimization process requires no

initial guess. In addition, the technique can be used with

any standard optimizer. In fact, the algorithm available in

ROS has the possibility to choose between three different

optimizers: Tree-based netwORk Optimizer (TORO)7, g2o

[16] and LAGO [10]. In the experiments conducted, the

LAGO optimizer was used. Assuming that the relative po-

sition and orientation are independent for each node in the

graph, the authors solve a system of equations equivalent to

the non-convex cost function. To this end, a set of procedures

based on graph theory were presented to obtain a first order

approximation of the non-linear system, by means of a linear

orientation and a linear position estimation.

IV. RESULTS & DISCUSSION

All five SLAM techniques described were tested using 2D

simulations and real world experiments. Simulations were

performed in Stage8, which is a realistic 2D robot simulator

5http://www.ros.org/wiki/coreslam
6https://github.com/rrg-polito/rrg-polito-ros-pkg
7http://www.openslam.org/toro.html
8http://www.ros.org/wiki/stage

(a) MRL Arena (4.57×4.04m) (b) 1r5map (12.24×11.67m)

Fig. 1: Maps used in the simulation experiments.

TABLE I: Error estimation for each algorithm in the MRL

Arena (Simulation Experiments).

Simulation Experiments

HectorSLAM Gmapping KartoSLAM CoreSLAM LagoSLAM

0.4563 0.4200 0.5509 11.8393 1.4646

integrated in ROS. Additionally, tests were also conducted

with a physical robot in a real world scenario, so as to

study the behavior of these SLAM packages in the ab-

sence of perfect simulated conditions. Despite having perfect

conditions in Stage simulations, like noise free odometric

and range sensing information, SLAM algorithms assume

measurement uncertainty, which may not lead to perfect

results. In all experiments, the robot was teleoperated. Note

that the abstraction layer provided by ROS allows to use

the same code for both simulation and real experiments.

HectorSLAM requires a LRF with high update rates. The

update rate of the Hokuyo URG-04LX-UG01 LRF used in

the experiments is 10 Hz and Stage uses a similar maximum

update rate. In order to deal with this, the robot was driven

with low angular and linear speed. In the tests that were

conducted, the output of each approach, described previously,

was the respective generated 2D occupancy grid map.

To evaluate the quality of the maps obtained, an analysis

of the error between the generated map and the ground truth

was conducted. A performance metric based on the k-nearest

neighbor concept was used. To that end, the best fit alignment

between the ground truth and the map obtained is computed

(see Fig. 2), using intensity-based image registration tools.

The process works as follows: the resulting map of each

algorithm is binarized. The binarized map only contains

boundaries and obstacles of the scenario. Afterwards, the

binarized map is aligned narrowly with the respective ground

truth using a set of Matlab functions available in the Image

Processing Toolbox. Since both ground truth map and the

generated map are aligned, the distance from each occupied

cell of the ground truth map to the nearest cell in the resulting

map is determined using knnsearch, which computes the k-

nearest neighbor cells (in this case k = 1). The sum of all

distances obtained is then divided by the number of occupied

cells in the ground truth map. This error metric provides a

normalized measure of distance (in terms of cells), which

can be applied in any generic occupancy grid, as long as the

ground truth map is available.



(a) HectorSLAM (b) Gmapping (c) KartoSLAM (d) CoreSLAM (e) LagoSLAM

Fig. 2: Maps obtained through simulation in the MRL arena environment. Red represents the ground truth and blue represents

the final map.

A. Simulation Tests

Stage simulations were performed using two different

maps: the MRL Arena and the 1r5map, which are shown in

Fig. 1. Special focus is given to the former since the MRL

arena is used in both simulation and real world experiments.

The 1r5map enables the analysis of the behavior of the

SLAM techniques in a larger scenario and with less features

per square foot (cf. Fig. 1b). This is particularly important

to analyze the dependency on landmarks of each approach.

In the simulation experiments, the model of the range

sensor was defined just like the sensor used in real world

experiments: the Hokuyo URG-04LX-UG01, which has a

maximum range of about 5.6 meters. Teleoperation was

executed using the keyboard9. All the sensing and actuator

data from the robot (LFR, odometry, velocity commands,

etc.) was recorded previously and then played back for each

algorithm. Thus, all SLAM packages were tested under the

same exact conditions. This was only possible due to the

rosbag tool10.

For each algorithm, the resolution of the final map was set

to 0.01 meters/pixel. In order to mitigate the low scanning

rate, the number of sub-maps used in HectorSLAM was

defined as 5. Since, each sub-map has half resolution of its

precedent sub-map, the scan matching process is more accu-

rate, i.e., the scan matching performance is higher in lower

resolution maps. In all experiments, the default parameters

were used. For example, as mentioned before, the number

of particle for the Gmapping algorithm was 30.

Analyzing the simulations results in the MRL arena, and

according to Table I and Fig. 2, Gmapping and HectorSLAM

generated the map with lowest and similar error. On the other

hand, KartoSLAM presented a slightly greater error, while

the results of CoreSLAM presented the highest error value.

Gmapping is an extremely optimized PF algorithm with an

improved resampling process, and this justifies the quality

of the resulting map. Also, the scan matching process of

HectorSLAM showed its efficiency. Nevertheless, it must be

noted that the low speed commands given to the robot, in

order to compensate the rate update from the LFR, have

9http://www.ros.org/wiki/teleop_twist_keyboard
10http://www.ros.org/wiki/rosbag

TABLE II: Error estimation for each algorithm in the

1r5map.

Simulation Experiments

HectorSLAM Gmapping KartoSLAM CoreSLAM LagoSLAM

7.4581 5.3670 5.4380 171.5218 9.3041

some influence in the results. Since both KartoSLAM and

LagoSLAM are graph-based SLAM approaches, comparing

the error between them is interesting. Both mapped success-

fully the arena. However, LagoSLAM obtained the greatest

error (excluding CoreSLAM). which can be explained by the

impressive performance of the SPA solver method that Kar-

toSLAM employs. Nevertheless, the quality of the resulting

map obtained with LagoSLAM is still appropriate.

In order to compare all the SLAM approaches in a

different scenario, a series of simulations using 1r5map

were also conducted. These results are shown in Table II

Fig. 3. The 1r5map is a relatively large map with a low

number of distinctive landmarks. In this case, HectorSLAM

obtained a higher error value than Gmapping. One of the

reasons is the fact that HectorSLAM relies largely in scan

matching between successive measurements. The full po-

tential of HectorSLAM could not be observed due to the

properties of the sensor used in these simulation experiments.

Beyond that, due to the reduced number of landmarks, the

error grows continuously, since the scan matching process

is not fed with enough information. Additionally, since it

is not using odometry information, a few issues arise when

traversing long corridors with fixed width. As a consequence,

the inferior result obtained with HectorSLAM in this test

are not surprising. Once again, the Gmapping algorithm

presents exceptional results, which reveal the accuracy of PF

approaches. KartoSLAM revealed the robustness of graph-

based SLAM approaches, since it obtained the second lowest

error value. Once again, LagoSLAM obtained an higher

error value than KartoSLAM and CoreSLAM was the worst

performing algorithm. Since the error values are obtained via

the euclidean distance between points in the ground truth

and the nearest point in the map, the errors obtained in the

1r5map map are greater than in the other experiments due to

the larger dimensions of the map, this is particularly visible

in the case of CoreSLAM.



(a) HectorSLAM (b) Gmapping (c) KartoSLAM (d) CoreSLAM (e) LagoSLAM

Fig. 3: Occupancy Grid Maps obtained through simulation in the 1r5map environment.

(a) HectorSLAM (b) Gmapping (c) KartoSLAM (d) CoreSLAM (e) LagoSLAM

Fig. 4: Performance Analysis in the real world. Red represents the ground truth and blue represents the final map.

TABLE III: Error estimation for each algorithm in the MRL

Arena (Real World Experiments).

Real World Experiments

HectorSLAM Gmapping KartoSLAM CoreSLAM LagoSLAM

1.1972 2.1716 1.0318 14.75333 3.0264
0.5094 0.6945 0.3742 7.9463 0.8181
1.0656 1.6354 0.9080 7.5824 2.5236

B. Real World Tests

In the real world experiments, three runs with different

trajectories and initial positions were performed using a

Stingbot11 robot [3], equipped with an Hokuyo URG-04LX-

UG01 and an Asus eeePC 1025C, running Ubuntu 11.10

and ROS Fuerte. Once again, all the data was previously

recorded and subsequently played back for each algorithm.

Tests were conducted at the real-world MRL arena. The

algorithm parameters used in the simulation experiments

were again adopted.

Fig. 4 shows that all five techniques were able to map the

scenario successfully. The error obtained for each algorithm

is shown in Table III. As can be seen, in general all

techniques led to worse results than in simulation. This slight

performance hit is due to the existence of estimation errors in

the robot position and noise on the laser scanning data, while

mapping the real world MRL arena. An analysis of the error

can give a more accurate information about the performance

of the algorithms.

Despite the differences between virtual and real world

environments, the results extracted from both setups follow

11http://www.ros.org/wiki/mrl_robots

some general trends, in particular for HectorSLAM, Gmap-

ping and LagoSLAM. According to the authors of [15],

CoreSLAM can have great performance in several disparate

environments; however this claim is not backed up by the

results extracted from our experiments.

In the KartoSLAM algorithm, the error obtained in the

real world experiments was not much larger than the error

in simulations. In fact, generally KartoSLAM was the best

performing technique in the real world, being less affected

by noise than the other methods. This can be explained,

not only due to the performance of the SPA solver used in

KartoSLAM, but also because it is a full SLAM approach,

i.e. the map is obtained using the entire path and map and

not only the most recent map and pose. The lower results of

CoreSLAM in all experiments showed that its loop closure

procedure rarely converges. This is clear in the video that

shows a real world experiment and all the detailled results12.

Beyond the error analysis conducted, an evaluation of the

computational load using each technique was carried out.

A comparison of the CPU load in a Laptop equipped with

an Intel Core i7-3630QM and 8Gb of RAM running each

algorithm is presented in Fig. 5 and Table IV.

Looking closely at the results, LagoSLAM presented the

highest percentages of CPU usage. Moreover, the values

obtained are quite distant from the other four algorithms.

This can be explained by the process developed to achieve

the minimum cost function for the given graph configuration,

as referred in Section III-E. The resources needed by the

12Available at: http://goo.gl/IMTKmt



0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

%
 C

P
U

 L
oa

d

Time (s)

 

 
KartoSLAM
CoreSLAM
HectorSLAM
Gmapping
LagoSLAM

Fig. 5: Evolution of the CPU load of each SLAM method

using a real world dataset.

TABLE IV: CPU Load (%) of the 2D SLAM approaches:

mean (x̄), median (x̃) and standard deviation (σ ) values.

HectorSLAM Gmapping KartoSLAM CoreSLAM LagoSLAM

x̄ 6.1107 7.0873 5.4077 5.5213 21.0839
x̃ 5.9250 5.5800 5.3000 5.4400 21.2250
σ 1.993 4.4287 1.3018 1.6311 2.1684

other four approaches during the experiments are similar, as

seen in Table IV. This CPU analysis reveals that all five

algorithms analyzed are quite efficient in terms of resources

required and can be adopted online, during field experiments,

to map generic 2D scenarios.

C. Discussion

According with our experiments, some ideas can be

retained. On one hand HectorSLAM relies only in scan

matching and it does not make use of odometry, which could

be an advantage or disadvantage depending on the robot and

the environment’s characteristics. On the other hand, ideally

it should be tested with specific hardware such as a high rate

LFR.

Gmapping showed its robustness in all experiments, since

in every experiment the error and CPU load always remained

low. It combines both scan matching and odometry in order

to minimize the number of particles.

Both KartoSLAM and LagoSLAM are graph-based SLAM

approaches, but their results were distinctively different.

KartoSLAM provided accurate maps with lower CPU load,

while LagoSLAM generated maps with higher error and

CPU load. The reasons behind such discrepancies are related

with the distinct processes of graph configuration and graph

optimization of the two techniques.

Lastly, CoreSLAM achieved the less impressive results

and it is possible to denote a lack of convergence in its

loop closure mechanism. CoreSLAM uses a simple PF which

requires more particles, but has a lower computation power

associated to each particle. According to [15], CoreSLAM

uses a very simple PF to match LFR readings with the

map, which could lead to an erroneous position estimation.

Additionally, the focus of the original work was to provide a

simple SLAM technique with the ability to navigate within

long corridors without losing its location, and not the loop

closing system.

V. CONCLUSIONS

In this work, five representative 2D SLAM algorithms

available in ROS were tested through simulations and in

real world experiments. A discussion of the weaknesses

and strengths of each solution has been done. An accurate

overview of each of the 2D SLAM techniques available for

ROS was provided to shed light on the choice of an approach

according to one’s requirements.

In future work, we intend to develop a 2D SLAM tech-

nique in ROS for low visibility indoor scenarios, e.g., due to

smoke. This new technique will possibly adapt Gmapping or

KartoSLAM, due to the observed performance in this article,

and extend them with more sensing input information beyond

LRFs; e.g., sonars, IMUs and/or a dust sensor.

REFERENCES

[1] S. Thrun., W. Burgard, D. Fox., Probabilistic Robotics, MIT Press,
2005.

[2] M. Quigley et al., ROS: an open-source Robot Operating System. In
IEEE International Conference on Robotics and Automation(ICRA),
Workshop on Open Source Software, 2009.

[3] A. Araújo, D. Portugal, M. Couceiro and R. P. Rocha. Integrating
Arduino-based Educational Mobile Robots in ROS, In Int. Conf. on
Autonomous Robot Systems, Lisbon, Portugal, April 25-29, 2013.

[4] S. Huang, G. Dissanayake. Convergence and Consistency Analysis for
Extended Kalman Filter Based SLAM, In IEEE Trans. on Robotics,
2(5), Oct. 2007.

[5] S. Thrun, D. Fox, W. Bugard, F. Dellaert, Robust Monte Carlo
Localization for Mobile Robots, In Artificial Inteligence, 128, 2001.

[6] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, FastSLAM: A
Factored Solution to the Simultaneous Localization and Mapping
Problem, In AAAI National Conference on Artificial Intelligence, 2002.

[7] G. Grisetti, C. Stachniss, W. Burgard. Improved Techniques for
Grid Mapping With Rao-Blackwellized Particle Filters, In Trans. on
Robotics , 23(1), Feb. 2007.

[8] F. Lu, E. Milios, Globally Consistent Range Scan Alignment for
Environment Mapping, In Autonomous Robots, 1997.

[9] S. Thrun, M. Montemerlo. The GraphSLAM Algorithm With Appli-
cations to Large-Scale Mapping of Urban Structures, In Proc. of the
Int. Journal on Robotics Research, 2005.

[10] L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona. A linear
approximation for graph-based simultaneous localization and mapping,
In Proc. of the Int. Conf. Robotics: Science and Systems, 2011.

[11] S. Kohlbrecher, J. Meyer, O. Von Stryk, U. Klingauf. A Flexible and
Scalable SLAM System with Full 3D Motion Estimation, In the Int.
Symp. on Safety, Security and Rescue Robotics (SSRR), Nov. 2011.

[12] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti,
C. Stachniss, A. Kleiner. On Measuring the Accuracy of SLAM
Algorithms, Autonomous Robots, 27(4), Nov. 2009.

[13] R. Vincent, B. Limketkai, M. Eriksen. Comparison of indoor robot
localization techniques in the absence of GPS, In Proc. of SPIE:
Detection and Sensing of Mines, Explosive Objects, and Obscured
Targets XV of Defense, Security, and Sensing Symposium, April 2010.

[14] K. Konolige, G. Grisetti, R. Kümmerle, B. Limketkai, R. Vincent,
Efficient Sparse Pose Adjustment for 2D Mapping, In Proc. of Int.
Conf. on Intelligent Robots and Systems (IROS), Oct. 2010.

[15] B. Steux, O. El Hamzaoui. tinySLAM: A SLAM algorithm in less than
200 lines C-language program, In Proc. of the Int. Conf. on Control
Automation Robotics & Vision (ICARCV), Dec. 2010.

[16] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgard: g2o:
A General Framework for Graph Optimization, IEEE International
Conference on Robotics and Automation (ICRA), 2011.


