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A nucleotide sequence showing extensive homology to the nifF gene, which codes for a flavodoxin involved
in nitrogen fixation in Kkebsiella pneumoniae, was localized on the plasmid pEA3 of Enterobacter agglomerans
and determined. The analysis of transcriptional fusions, as well as transcript protection assays, indicated a
novel nif gene organization, that is, the cotranscription of nifJ and niaF.

In the nitrogen-fixing Enterobacter agglomerans 333, the
arrangement of nif genes within the plasmid-borne nif gene
group is similar to that of Klebsiella pneumoniae (24).
However, in E. agglomerans the gene nifJ was found to be
located at the opposite end of the nifgene group as compared
with the location in K. pneumoniae (Fig. 1). The gene
product of nifJ is well characterized in K. pneumoniae and
was identified as an oxido-reductase involved in the electron
transport from pyruvate to a specific flavodoxin encoded by
nifF, which itself mediates the electron transfer to dinitro-
genase (9, 10, 18). In K. pneumoniae, both unlinked genes
are transcribed from two separate promoters (1, 6) with the
characteristic features of nif regulatory regions, namely the
-24, -12 consensus sequence (2), which is recognized by
the alternative or factor &-54 (for a review, see reference 13),
and the upstream activator sequence (UAS) (5), which
represents a binding site for the transcriptional activator
protein NifA (15, 17) required for efficient nif gene expres-
sion (3, 8, 22). For the induction of nifgenes, NifA binds to
the UAS and contacts the closed a54-RNA polymerase-
promoter complex by looping out the DNA (4) supported by
the integration host factor (7, 22). Recently, the nifJ pro-
moter region of E. agglomerans was also characterized as a
typical nif regulatory region with the characteristic features
mentioned above (12). In the present work, we report that
the gene nifF in E. agglomerans is located downstream of
and organized in one operon with the nifJ gene. This is the
first time, to our knowledge, that such an arrangement has
been found.
The nucleotide sequence of the E. agglomerans nifF gene,

which was identified on the basis of its homology to the
K. pneumoniae niJF gene (see below), was determined by
using the chain-termination method (21) with either recom-
binant M13mpl8 and M13mpl9 phage DNA or pUC18
plasmid DNA (Table 1). Also, the flanking regions of nifF
were sequenced (Fig. 1). Comparison of the obtained se-
quence (Fig. 2) with the complete nucleotide sequence of
the K. pneumoniae nif gene cluster (1) revealed obvious
similarities to three nifgenes of K. pneumoniae (nifQ, niJF,
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and nifJ). Thus, we conclude that nifF is located between
the genes nifQ and nifJ in E. agglomerans identified earlier
(24), as shown in Fig. 1. The position of nifF proposed earlier
in a preliminary gene map of the E. agglomerans nif gene
group (24) must therefore be revised. No nifF-specific hy-
bridization probe had been used in the previous work. This
may explain why the correct position of nifF had not been
determined. Results from recently performed Southern hy-
bridization experiments with niff-specific probes (data not
shown) clearly indicated that nifF and nifJ are adjacent
in E. agglomerans. This remarkable gene arrangement has
not been described for other nitrogen-fixing bacteria and
may reflect a primitive organization of genes coding for
presumably cis-acting proteins which later join together
in a complex. Interestingly, the genes nifF and nifJ are
oriented opposite to nifQ and to all other nif genes identi-
fied. A sequence motif which matches fairly well with the
nif promoter consensus sequence (Table 2) was found 178

TABLE 1. Bacterial strains and plasmids

Escherichia
coli strain or Genotype or phenotype Reference

plasmid

CB454 F- AlacZ lacY+ galK thi rpsL 23
recA56

JM103 A(lac-pro) thi rpsL supE endA 14
sbcB hsdR [F' traD36 proAB+
lacIq lacZAM15]

pUC18 Apr 26
pCB182 Apr promoter test plasmid 23
pCK3 Tcr nifA(Con)K. pneumoniae 11
pHP45Ql Apr Smr Spcr Q fragment carrier 19

plasmid
pMK182P1 Apr nifJpE. agglomerans-lacZ 12
pMK38SB Apr SalIWBamHI fragment This work

subcloned in pUC18a
pSD1 Apr transcriptional fusiona This work
pSD2 Apr transcriptional fusiona This work
pSD3 Apr transcriptional fusiona This work
pSD4 Apr transcriptional fusiona This work
pSD4Ql Apr Smr Spcr transcriptional This work

fusion, fQ fragment inserteda
a The construction of these plasmids is shown in Fig. 1.

3252

 on A
pril 21, 2018 by guest

http://jb.asm
.org/

D
ow

nloaded from
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291604403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jb.asm.org/


NOTES 3253

(a) H D K TY E N XU S VWZM L A 8Q f J

(b) ifQ>) nnifF | Kii //Inif75 | ,200bp

V
I I I I

Pstl HindU BamHI HindU

y
I f I

BgI9 Sau3A Sall Sau3A BamHI

(c) pMK38SB E

pSol

pSD2 C

pSD3

pSO4

pSD4L

pMK182P1

(d)

FIG. 1. (a) Organization of the nif gene group on the E. agglomerans plasmid pEA3. The open arrows indicate relative positions and
orientations of the nif genes. (b) Detail of panel a. The positions of the genes nifQ, nifF, and nifJ are indicated by open arrows above the
restriction map of the right end of the nifgene group. The positions of the nifJ promoter and of a promoterlike motif are indicated by filled
and open boxes, respectively. The nifJ UAS is represented by a circle, and the putative transcriptional terminator is represented by a triangle.
(c) The restriction fragment containing a 3.8-kb SalI-BamHI fragment with most parts of nifJ and nifF cloned into pUC18 (pMK38SB) and
the restriction fragments cloned as transcriptional fusions with lacZ into the promoter test plasmid pCB182 (pSD plasmids) are indicated by
rectangles corresponding to the map shown in panel b. The designations of the resulting plasmids are given on the left. The Hindlll or BamHI
restriction sites positioned in the nifF coding region were used to construct the fusion. The 563-bp HindIII-BgIIIfragment of pSD1, the 838-bp
fragment of pSD2, and the 3.5-kb HindIII-SalI fragment of pSD3 were obtained from plasmid pMK38SB. The insert of pSD2 was ligated into
the BamHI restriction site of pCB182. To ensure the correct orientation, the resulting plasmids were hydrolyzed with endonuclease HindIII
having an asymmetric recognition site on the insert. The 5.6-kb HindII-BamHI fragment of pSD4 was obtained from the recombinant cosmid
peaMS2-16 (24). To construct pSD4fl, the Qt fragment (hatched rectangle) was obtained as a 2.0-kb BamHI fragment of pHP45QI and ligated
into the BglII restriction site of pSD4. (d) The extents of sequencing reactions are indicated by arrows in relation to the restriction map shown
in panel b.

bp upstream of the nifF start codon in the 3' portion of
the nifJ coding region (at position 924 to 940 of the sequence
in Fig. 2). However, no UAS-like element was detected as
far as 400 bp upstream of niJF. An inverted repeat is present
at position 162 to 185 in the sequence shown in Fig. 2
downstream of nifF; this inverted repeat may work as a
transcriptional terminator of the proposed nifJF operon and
also of nifQ because of its position in the intergenic region
between nifQ and nifF and its dyad symmetry. The hairpin-
loop structure in the mRNA formed by this inverted repeat
has a free energy of -62.8 kJ/mol (25°C), as calculated by the
computer method of Zuker and Stiegler (27).
The above-mentioned motif identified at position 924 to

940 in the sequence shown in Fig. 2, which is similar to the
nif promoter consensus sequence (Table 2), was examined
for its ability to act as a functional promoter. Four fragments
of different sizes were cloned in the promoter test plasmid
pCB182 in Escherichia coli CB454 (Fig. 1). Additionally, we
inserted an Ql fragment (19), a strong transcriptional termi-

nator, into the BglII restriction site located 309 bp upstream
of the promoterlike motif in one of the fusion plasmids
(pSD4) in order to terminate transcription from the nifJ
promoter. ,-Galactosidase activities of Escherichia coli
CB454 clones containing both one of the fusion plasmids and
the nifA-expressing plasmid pCK3, which constitutively
expresses the K. pneumoniae nifA gene (11), were measured
as described earlier (12) but by using a lysis mixture consist-
ing of 1 part (vol/vol) 20 mM MnSO4, 1 part 10% sodium
dodecyl sulfate, 1 part toluene, and 5 parts P-mercaptoeth-
anol. In each case, 10 ,ul of this lysis mixture was added to
0.5 ml of the cell suspensions. The results, presented in
Table 3, clearly show that NifA-induced expression of lacZ
occurs only with the transcriptional fusions of pMK182P1
and pSD4, which both carry the nifJ promoter on the
inserted fragment, in the presence of pCK3. However, with
pSD1, pSD2 and pSD3, all lacking the nifJ promoter, as well
as with pSD4fQ, in which the fl fragment was inserted
downstream of the nifJ promoter, no lacZ expression was
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| ~R W A Z I V C R S P S C N E C C Z W H
*ff n5' ____CCaGGGCA TCGC CGTA G TG GCGCACA 3'
liii ~~~10 20 30 40 50 60

n Ur . 3' TCGCCCCGTC 5'
PM"
T C F A P D *

5' CCTG CTAAGATTCCTT 3'
70 80 100 110 120

3' GGACAAAACGGGCCTT T TG GAC GT TA 5'

5' GACCAGATAGTATGCGAAAACGC GGCTG 3'
130 140 150 160 170 180

3' CTGGTCTATCATAGTGTCACCTATGGGTGGCTGC 5'

Hindu
5' GTT TTACTGCTGGTTTA&CTTCTC 3'

190 200 210 220 230 240
3' CATT_A_T ___T_CGTTGAGCA_ QG_ 5'*L VA P K L K N

5' AGCCAGCTGTCAATACGCTCTTCTGTCAGGTCGTATTGATTTTCCTGATCCAGTGGCAGG 3'
250 260 270 280 290 300

3' TOGG _AAAGGACTAGGTQ CCGTCC 5'
L W S D I R E E T L D Y Q N E Q D L P L

5' CCGACAAACTCATTGTTTT 3'
310 320 330 340 350 360

3' GGTGTTTGAGTAACAAAAGGTGCG 5'
G V F E N N F L L A A S F S F R Y G Z R

BrmHI
5' GGCCAG 3'

370 380 390 400 410 420
3' CCGGTCQATGGCTGTTGTGT G CGCGTTACTGCTCAGTATGTCCTAGGCGTAA 5'

P W N G V V C A G R A I V L D Y L I R M

5' TTC 3'
430 440 450 460 470 480

3' _ TA_ TGG 5'
A S V F N X S Y N LQDG G FL A V T ni

5' TTACCGGTC QGAT CTTCTGCGTA CTGA 35 I
490 500 510 520 530 540

3' AATGGCCAGTCTAGTCGAAGTCTGTCGCACAACCACTTGAGGACGGTCCTCQGCATGACT 5'
X G T L D A E S L T N T F E Q W S D Y Q

5' CTGCCTGCCTCCACACQGGTAGCTQCCTCGCCCTTGGGTACCTAAQGCAGG 3'
550 560 570 580 590 600

3' GACGGACGGAGGTGTGGTCCATCGAGTGGTAGCGGGTCGCAACCGCATGGATTGTCGTCC 5'
S G A F V G P L F G D G L T P T G L L L

5' CGGAGTAACGTGGGTGGGCGCTCGGCCTGC 3'
610 620 63 6 650 660

3' !0 =AGGTC C :CAGGCCGT S'
V P Y S L F Q R T A R R V D L P A D A

5' GTCGATA.r 3'
670 680 OA0 710 720

31 AGTCTG 5'
I G D L X Q H I L X A V X R T Q G T D S

5' C CTCCTGATATATCACATGTTTATTAAAA 3'
730 740 750 760 770 780

3 TTA CTAATTTT 5'
G F FIG ITIA

5' ATGGCTAGCCCGTTTCCGAGCCATTTAACT 3'
790 800 810 820 830 840

3' CTAATCACGGTACTGCTGAGCGGC AAGAGTCCTACTCGCTCAAAAAATATCGGAA 5'
* S S A L X X Y G Z

5' CAAGTCTTTCGCGTGCATCGTCTTCGGTCTTTAACAAACTCGGCAAATTCCGG%T 3'
850 860 870 880 890 900

3' GTTCAGAAAGCGCACGTAGCGAAGCCGAAAAATTTGTCTTTGAGCCGTTTAAGGCCTA 5'
L R Z R A D D F T K K F L F E A F E P Y

5' ACAGCTTTTTCAATGACGAG TA 3'E.A
910 920 90 960

3' TGTCGAAAAAGTTACTGCTCTE TGAGOGAOGGrFrGCGGACCTTTAGGAGAA 5'
L K K L S S Y DVGALFAQFDB

5' CAGGTTCCTCTGAATCGAGAATGAAcGGATT TACGCCT CGTTCCGGGTGAT 3'
970 980 990 1000 1010 1020

3' GT GCT GCCTAAAAATGGCCGAGA GGCCCCTA 5' nIP F Z S D L I F P N K G A F K L F P H Y gfwf

5' AA 1GG030 1040310501060 1070 1080
3' TTGCQTTAATCGGGTTATAGGACGGAGCT GACCGAAGTGCGACTGACGTAG 5'

R Y N A W Y G A Z V A R R A F R Q S C G

5' T GGAA GGCGTAAGCGATAATGAGTGAAGGTC 3'

3' __ CTA11 11201130 11405'
M G I R L G H N I C A A Y A I I L S P G

5' LCGTaTGCTTTG ATTTTGTCGGCCCTTG 3'
1150 1160 1170 1180 1190 1200

3' GGCAQGGCGCCAACTACC 5'
P Y A R A 9 A I A R TQ N K D A G M A

1210 1220 1230 2 1250
3' GCTAAACTCGCTGTATGTGTATCGTATGOTGAGGTSl 5'

I Q A V Y V Y G Y S M A N M G L D

FIG. 2. Sequence of the E. agglomerans nijF gene and of the 3' portions of the genes nifQ and nifJ. Both DNA strands and the amino acid
sequences deduced from the nucleotide sequence are listed. The vertical arrows on the sides indicate the orientations of the genes nifQ, nifF,
and nifJ. Relevant restriction sites are in boldface type. A promoterlike motif is boxed, a putative transcriptional terminator is indicated by
oppositely oriented arrows, and the putative Shine-Dalgarno sequence of nifF is underlined.

 on A
pril 21, 2018 by guest

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


NOTES 3255

TABLE 2. Comparison of the possible promoter motif upstream
of nifF with the nif promoter consensus sequence

Sequence or motif Nucleotide sequence References

Consensus sequence 5'-YTGGCACRRNNNTTGCA 2, 16
Promoter motif in 5'-CTGGCAGgCGAAGTGa This work

nifJ
a Bases corresponding to conserved residues are underlined.

observed. Thus, the assumed promoter at position 924 to 940
in the sequence of Fig. 2 does not represent a functional
promoter. Moreover, the possibility that the nifJ UAS
substitutes in the activation of the assumed promoter was
ruled out, because no promoter activity was measured when
the fl fragment was inserted between the nifJ UAS and the
promoterlike motif, both present in cis in pSD4f.
We additionally used the Si nuclease mapping technique

to show that a nifJF cotranscript is present in E. agglomer-
ans wild-type cells grown under nitrogen-fixing conditions in
minimal medium free of combined nitrogen. A radioactively
end-labeled 3.8-kb SalI-BamHI fragment covering most of
the nifJ and nifF genes (corresponding to the insert of
pMK38SB in Fig. 1) was hybridized in a liquid assay with
total RNA prepared from either derepressed or repressed
cells and subsequently treated with nuclease Si (20). RNA
from E. agglomerans was prepared by using Qiagen-pack
500 anion-exchange columns according to the manufactur-
er's protocol (Diagen Inc., Dusseldorf, Federal Republic of
Germany). The protection assays were performed as re-
ported previously (25). The autoradiogram of the reaction
mixture run on a 1% agarose gel (Fig. 3) identified a
hybridization signal of 3.8 kb when RNA from derepressed
cells was used. The smear below the 3.8-kb band may be due
to the hybridization of partially degraded nifJFmRNA to the
DNA probe. No signal was observed when RNA from
repressed cells was used. The result shows that RNA no
smaller than 3.8 kb is transcribed from the nifJF genes, again
indicating that both genes form a transcriptional unit.

Nucleotide sequence accession number. This nucleotide
sequence has been submitted to GenBank and has been
assigned accession number M38221.

TABLE 3. 1-Galactosidase activities of transcriptional fusions
in Escherichia coli CB454

,B-Galactosidase
Plasmid Characteristics activity (units)a

-pCK3 +pCK3

pCB182 Promoterless lacZ <10 <10
pMK182P1 nifJPE. agglomerans4laCZ <10 3,862
pSD1 Transcriptional fusionb <10 <10
pSD2 Transcriptional fusionb <10 <10
pSD3 Transcriptional fusion' <10 <10
pSD4 Transcriptional fusionb <10 4,408
pSD4fQ Transcriptional fusion, <10 <10

fQ fragment inserted'
a The data represent the average values of four independent experiments.

Higher values than those previously published (12) were obtained with
pMK182P1, probably because of the use of a modified lysis mixture enabling
quantitative cell lysis.

b The construction of the transcriptional fusions is shown in Fig. 1.

1 2

kb

4-
3-

2-

FIG. 3. Identification of the nifJF cotranscript by the nuclease
Si protection assay. (Left) A ruler was photographed together with
the DNA length standard (kilobase ladder; Bethesda Research
Laboratories) to enable correct assignment of the corresponding
autoradiogram afterwards. (Right) Autoradiogram of the nuclease
S1 reaction mixture run on a 1% agarose gel. The arrow indicates the
position of the DNA-RNA hybrid. Lane 1, RNA from derepressed
cells used; lane 2, RNA from repressed cells used.
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