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Abstract

Background: Aligning similar molecular structures is an important step in the process of bio-molecular structure
and function analysis. Molecular surfaces are simple representations of molecular structure that are easily constructed
from various forms of molecular data such as 3D atomic coordinates (PDB) and Electron Microscopy (EM) data.

Methods: We present a Multi-Scale Morse-Smale Molecular-Surface Alignment tool, MS3ALIGN, which aligns
molecular surfaces based on significant protrusions on the molecular surface. The input is a pair of molecular surfaces
represented as triangle meshes. A key advantage of MS3ALIGN is computational efficiency that is achieved because it
processes only a few carefully chosen protrusions on the molecular surface. Furthermore, the alignments are partial in
nature and therefore allows for inexact surfaces to be aligned.

Results: The method is evaluated in four settings. First, we establish performance using known alignments with
varying overlap and noise values. Second, we compare the method with SurfComp, an existing surface alignment
method. We show that we are able to determine alignments reported by SurfComp, as well as report relevant
alignments not found by SurfComp. Third, we validate the ability of MS3ALIGN to determine alignments in the case of
structurally dissimilar binding sites. Fourth, we demonstrate the ability of MS3ALIGN to align iso-surfaces derived from
cryo-electron microscopy scans.

Conclusions: We have presented an algorithm that aligns Molecular Surfaces based on the topology of surface curvature.
A webserver and standalone software implementation of the algorithm available at http://vgl.serc.iisc.ernet.in/ms3align.
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Introduction
Three dimensional solved crystal structures of proteins
provide valuable insights regarding the function of the
protein as the precise position of all functionally and
structurally important residues is known. Since struc-
ture determines function, the function of an unknown
protein may be determined by comparing its structure
to structures of proteins whose functions are already
known. Tools such as MUSTANG and DALI [1, 2], which
are widely used to compare protein structures, use
three-dimensional co-ordinates of atoms in the protein
structures as inputs and report structural dissimilari-
ties in terms of an RMS distance between their aligned
coordinates.
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Proteins that function as enzymes and transporters con-
tain a pocket or the binding site in the structure that
accommodates the substrate and cargo small molecules
respectively. The arrangement of amino acid residues in
the binding site often determines the specificity of a small
molecule ligand towards a receptor protein. It is intu-
itive therefore that structurally similar ligands will bind
to pockets that are structurally similar. Therefore, pocket
and ligand alignments could potentially provide insights
into protein function.
There exists a large number of tools that determine

alignments. Common approaches for determining align-
ments include aligning residues [1, 3–5], secondary struc-
tures [6, 7], or molecular surfaces [8–12].
Surface based methods offer advantages in the study

of protein-ligand and protein-protein interactions as they
determine alignments based on the molecular surfaces at
the site of interaction.
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The tool MOLLOC [8] and the image-based method
by Merelli et al. [11] compute alignments by comparing
images of the surface from oriented points to determine
corresponding points on surfaces. Since the number of
oriented points is large, these tools are computationally
intensive and require fine tuning for efficient execu-
tion. PROBIS [10] aligns proteins/nucleic acids by align-
ing the centroids of sub-residue level functional units
(aliphatic/aromatic rings, hydrogen donor/acceptors etc)
that lie close to the molecular surface. The tool SURF-
COMP aligns small ligand surfaces using surface curva-
ture along with either electrostatic potential or lipophilic
potential on the molecular surfaces. SURFCOMP identi-
fies local maxima of these scalar fields as features and
attempts to align them across pairs of surfaces. The
tool PBSALIGN aligns protein-protein interaction surfaces
using an approach similar to SURFCOMP with a few key
differences. It defines feature points as surface points that
are closest to Cα atoms and computes a feature vector
comprising of principal curvatures and statistics of elec-
trostatic potential and hydrophobicity near each feature
point. Zhang andHebert [13] propose the use of harmonic
maps for surface matching. Their two step approach first
constructs a bijective map from a disc-like surface patch
to a planar disc. It next employs a standard image match-
ing algorithm to register two planar discs and thus aligns
the surfaces due to the bijection of the map. The method
however assumes that the patches have a disk-like shape
and depends on an initial construction of a map from
the boundary of the surface patch to the planar disc. Fur-
thermore, the method is computationally expensive as it
involves a least squares minimization for each patch.
Cosgrove et al. [14] present a surface curvature based

method similar to SURFCOMP that is applicable for small
ligands. It differs from SURFCOMP primarily in the con-
struction of surface patches to elicit landmark points.
Goldman et al. [15] describe a surface curvature based

matching method that recognizes similar patches by fit-
ting least squares quadric surfaces and comparing their
curvature values. These quadrics are located at the cen-
troid of each surface patch of the solvent excluded surface
(SES). Again, the method is restricted to small ligands
and cannot be easily scaled to large molecules. Fur-
thermore, the choice of the centroids is driven by the
computation of the SES. Exner et al. [16] present an
approach based on fuzzy sets where scalar quantities,
such as curvature and electrostatic potential, are trans-
lated to linguistic variable classes (for example, convex,
flat, or concave regions). Then, a normalized compari-
son measure is used to construct regions of similar lin-
guistic semantics. These semantically coherent regions
are coupled with artificial neural networks to automat-
ically find active sites in proteins. Baum and Hege [17]
present a SES alignment method that aligns patches

generated by an approximation of geodesic Voronoi dia-
grams. Furthermore, they incorporate semantic similar-
ity in ranking their alignments by introducing additional
points in regions of similar function (for example, a donor
or receptor region).

Summary of results
We present MS3ALIGN, a Multi-Scale, Morse-Smale,
Molecular Surface aligner. The tool MS3ALIGN begins by
computingmean curvature at all points on the surface and
then segmenting significant protrusions. Segmentation is
performed by a topological analysis of the surface mean
curvature using the Morse-Smale complex.
Correspondences between pairs of protrusions on either

surface are then established using a two-step procedure.
First, a multi-scale curvature descriptor is computed for
each protrusion followed by neighbor identification in the
descriptor space.
These correspondences are then grouped together into

maximal sets. Each maximal set is used to compute a
rigid body transformation that aligns the first surface to
the second surface. These alignments are evaluated and
ordered using a distance measure that is based on the
RMS distance between surfaces and the corresponding
area fraction.
A key benefit of MS3ALIGN is its controlled genera-

tion of landmark points based on desired feature size.
The landmarks are crucial for the efficient execution of
the subsequent alignment steps (see “Parameter selection”
section for details on tuning parameters for landmark gen-
eration). This is a primary difference between MS3ALIGN
and various other methods that employ surface curvature
as a primary geometric descriptor to extract landmark
points [9, 12, 14, 15].
Similar to the other surface geometry based meth-

ods, MS3ALIGN is applicable even in situations when
specific physico chemical properties or resolved atomic
co-ordinates are not directly available. For example, the
electrostatic potential or the resolved atomic structure
may not be available for Cryo-Electron-Microscopy data.
We describe experimental results where surfaces gen-
erated from both, atom location data in the PDB and
density maps in the Electron-Microscopy data bank, are
aligned.
Our method may be viewed as an improvement of

SURFCOMP [9], and hence we perform a detailed com-
parison with their results. We validate MS3ALIGN using
surface representations of ligands and their site of inter-
action. Specifically, we use the POCKETMATCH [18] tool
to quantify structural variation between various interac-
tion sites and compare their alignments obtained using
MS3ALIGN. In this experiment, we also demonstrate
the benefit of visual analysis where we visually validate
results.
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Background
We briefly review the necessary background relevant
for this paper. We begin by discussing the mathemati-
cal notion of curvature and algorithms to compute them
for triangular meshes. We then discuss the Morse-Smale
complex and its simplification.

Mean curvature
A regular curve is defined as a twice differentiable func-
tion l(t) : I → R

3 from the unit interval to 3D space where
the magnitude of the tangent equals one, || dldt || = 1 [19].
The curvature at a point t is defined as the magnitude of
the second differential at t, κ(t) = || d2ldt2 || (see Fig. 1a).
A family of regular curves through a point x on a sur-

face S is defined by a collection of planes that contain the
surface normal nx at the point x and the point itself (see
Fig. 1b). Each of these curves has an associated curva-
ture κ . For curves on surfaces, one associates a sign with
the curvatures given by the dot product of the surface
normal and the second differential of the regular curve.
The curves with maximum and minimum curvature (with
sign) are referred to as the principal curvatures at x and
are denoted by κ1 and κ2 respectively.
The mean curvature at a point x, H(x) is the mean of

κ1 and κ2 i.e. H(x) = (κ1+κ2)/2. Convex surfaces have posi-
tive κ1 and κ2 and therefore have positive mean curvature,
whereas concave surfaces have negative mean curvature
(see Fig. 1c and d).

Morse-Smale complexes
The Morse-Smale complex is a topological data structure
that is defined based on the gradients of a scalar func-
tion. Given a surface S and a scalar function f : S →
R, the gradient of f at a point x is defined by the par-
tial derivative with respect to the local coordinates at
x i.e. ∇f (x) = (∂ f/∂u, ∂ f/∂v). A critical point is a point
x in S whose gradient is zero. A critical point is called

non-degenerate, if the Hessian, equal to the matrix of sec-
ond order partial derivatives of f, is non-singular. The
function f is said to be a Morse function if all its critical
points are non-degenerate. The index of a critical point
is the number of negative eigenvalues of the hessian. In
2D, there exist three types of critical points namely the
maximum, saddle, and minimum. An integral line is a
curve embedded in S whose tangent aligns with the gra-
dient at every point (see Fig. 2a). Integral lines originate
and terminate at critical points. The Morse-Smale com-
plex is a partition based on the source and the destination
of the integral lines [20] (see Fig. 2b). The combinatorial
structure of the Morse-Smale complex is a graph whose
nodes correspond to critical points, and edges or arcs
exist between the nodes if there exists an integral line
that connects the corresponding critical points and their
indices differ by one (see Fig. 2b). The descending mani-
fold of a maximum consists of integral lines that converge
to it (see Fig. 2c). Similarly, the ascending manifold of a
minimum consists of integral lines that diverge from it.
To deal with noisy functions, the Morse-Smale complex
may be simplified by the process of topological simpli-
fication, which locally modifies the function to remove
saddle-minimum or saddle-maximum pairs (see Fig. 2d).
After simplification the descending manifold of a can-
celed maximum is merged with the descending manifold
of the maximum connected to the canceled saddle (see
Fig. 2e). It is often sufficient to directly obtain a sim-
plified Morse-Smale complex instead of modifying the
function in order to extract and analyze features. Order-
ing of simplification pairs is crucial in determining the
resulting structure. The theory of topological persistence
is a common choice for ordering of pairs for simplification
[21]. Persistence-directed simplification iteratively elim-
inates arcs in the combinatorial structure with smallest
absolute difference in function value and terminates when
a specified simplification threshold is achieved.

Fig. 1 a Curvature κ of a regular curve at a point is defined as the magnitude of the second differential at that point. b The principal curvatures of a
point x on a smooth surface is defined as the maximal κ1 and minimal κ2 curvature of regular curves formed by intersecting planes rotated about
the surface normal nx with the surface. Mean curvature is defined as (κ1+κ2)/2. Mean curvature is c high at convex regions d and low at concave
regions. Green arrows depict surfaces normals at respective surface points
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Fig. 2 a Three types of criticalities in a Morse function defined on a smooth surface: maxima (red spheres), saddles (green spheres), and minima
(blue spheres). An integral line originates at a minimum and terminates at a maximum. b The Morse-Smale complex is a partition of the domain into
regions whose integral lines share a common source and destination critical point. The combinatorial structure of the Morse-Smale complex is a
graph whose arcs are incident on an maximum-saddle or a saddle-minimum pair. c The descending manifold of a maximum is the region defined
by the integral lines that converge to it. d The Morse-Smale complex may be simplified by local modification of the function resulting in the
cancellation of a pair of critical points that are adjacent in the combinatorial structure. e After simplification, the descending manifold of the
maximum that is adjacent to the canceled saddle expands to include the descending manifold of the canceled maximum

Methods
In this section we describe the design of MS3ALIGN in
detail. The tool MS3ALIGN comprises of multiple stages
where the primary input is the two surfaces represented
as triangle meshes. Figure 3 depicts the various stages. In
the following sections each stage is explained in detail.

Curvature computation
The mean curvature at every vertex of the two input
surfaces P and Q is computed in the first stage.
There exist many algorithms to estimate the mean cur-

vature of triangle meshes. We use the algorithm based
on the theory of normal cycles by Cohen-Steiner et al.
[22]. We choose this approach for two reasons. First, this

algorithm guarantees linear convergence to the curvature
of a smooth surface, with a sufficiently well sampled set of
points.
Second, the definition of the curvature is based on aver-

aging the curvature tensor over a neighborhood of size Rc
on the triangle mesh. This allows for a smoother estimate
of the mean curvature where meshing artifacts are over-
come by the averaging operation. Good selection of the
neighborhood size Rc for curvature computation is crucial
to avoid isotropy issues introduced bymesh discretization.
For computing a smooth curvature estimate at each ver-
tex, we find that the neighborhood size Rc needs to span at
least two rings of vertices. The maxima of mean curvature
correspond to the protrusions on each surface patch.

Fig. 3 MS3ALIGN comprises of five stages. P and Q are input surfaces represented as triangle meshes. iMean curvature is computed for both
surfaces. ii Significant landmarks are extracted by first computing the Morse-Smale complex of the curvature field and then simplifying the
Morse-Smale complex using topological persistence. The maxima that survive simplification (red spheres) are used as landmark points.
iii Correspondences between landmark points on either surface is established by comparing the multi-scale curvature vectors. iv A graph is
constructed where each landmark correspondence is considered as a node, and edges are placed between nodes if they satisfy inequalities (1) and
(2). Each maximal clique in this graph generates a maximal correspondence set. v Each maximal correspondence set is evaluated using the measure
given by (3). Those evaluating to the smallest values are ranked as the best alignments
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Landmark extraction
In the second stage, landmark points, representing signif-
icant protrusions of both surfaces P and Q, are identified
from the maxima of the mean curvature scalar field. How-
ever, several maxima may correspond to regions with low
mean curvature. Significant protrusions are identified by
a topological analysis using the Morse-Smale complex of
the mean curvature field. Segmenting molecular surfaces
using the Morse-Smale complex has been reported earlier
[23, 24] using the Connolly function [25], which is related
to the surface curvature.
The Morse-Smale complex of the mean curvature field

is first computed [26] and then simplified by iteratively
canceling insignificant maxima using the topological can-
cellation procedure.
The significance of a maximum is determined by the

notion of topological persistence [21] where each maxi-
mum is paired with a saddle critical point. The measure of
significance of a maximum, referred to as its persistence,
is the absolute difference in mean curvature value of the
maximum and its paired saddle critical point. Thus, max-
ima are eliminated in increasing order of persistence up to
a given threshold, denoted by Ts. The threshold Ts is spec-
ified as a fraction of the average of the mean curvature at
all local maxima.

Landmark correspondences
In the third stage, correspondences between pairs of land-
mark points on either surface P and Q is established. This
is done by analysis of the curvature at multiple scales. The
mean curvature computed using a neighborhood size Rc
gives an estimate of curvature at that scale. We compute
mean curvature at multiple scales at each landmark point
p ∈ P and q ∈ Q. We use 15 uniformly sampled curvature
scales from the interval [Rc, 2Rc]. Landmark points p ∈ P
and q ∈ Q are declared as a corresponding pair (p,q) if
the absolute difference between their mean curvatures at
every scale is bounded by a threshold Tms. The threshold
Tms is specified as a fraction similar to Ts.

Maximal correspondence sets
In the fourth stage, correspondences between land-
mark points in P and Q are collected into maxi-
mal sets of correspondences. A maximal set C :=
{(p1,q1), (p2,q2), . . . , (pn,qn)} is constructed so that for
each pair of correspondences (pi,qi) and (pj,qj), the two
landmark points pi and pj in P have relative pairwise
geometric properties similar to that of the two landmark
points qi and qj in Q. We use two geometric properties
to establish relative pairwise similarity . First, we ensure
that the absolute difference between the distances of the
two landmarks on either surface is less than a thresh-
old Tmrd , referred to as the maximum relative distance
threshold. Second, we ensure that the absolute difference

in the angles between the surface normals of two land-
marks on either surface is less than π/2. In other words, for
a given maximal set C := {(p1,q1), (p2,q2), . . . , (pn,qn)},
we ensure that

|‖pi − pj‖ − ‖qi − qj‖| < Tmrd (1)

| cos−1(N(pi).N(pj)) − cos−1(N(qi).N(qj))| < π/2 (2)
for all (pi,qi), (pj,qj) ∈ C, where N(p) represents the sur-
face normal at point p. The constructed sets are maximal
in the sense that no other correspondence may be added
without violating conditions (1) and (2).
Finding maximal correspondence sets may be recast as

the problem of enumerating maximal cliques in graphs.
The nodes of the graph are correspondences between
landmark points (p,q). Edges exist between pairs of cor-
respondences (p,q) and (p′,q′) if they satisfy conditions
(1) and (2) and if p �= p′ as well as q �= q′. Maximal corre-
spondence sets are found by enumeratingmaximal cliques
from this graph.
We use the greedy pivot heuristic modification of the

Bron-Kerbosch algorithm [27] by Koch [28, 29] to enu-
merate maximal cliques in this graph. This modification
exhibits near linear complexity in the number of maximal
cliques for most graphs.
Indeed, the total number of maximal correspondence

sets may be exponential in the number of landmark
points. The number of maximal correspondence sets
depends on the tolerance for positional uncertainty of the
landmark points, captured by Tmrd, as well as the num-
ber of correspondences, captured by Tms. Choosing a very
small Tms and Tmrd causes the algorithm to demand near
exact matches in the mean curvature as well as the relative
positions of the landmarks, whereas higher values allow
larger variations.

Surface alignment
In the final stage, eachmaximal correspondence set is first
used to determine a rigid body transformation (R, t) from
P to Q via a least squares minimization [30].
Next, for each correspondence set C := {(p1,q1) ,

(p2,q2), . . . , (pn,qn)}, we compute ameasureDP,Q(C) that
quantifies the error of the transformation (R, t), given by

D′
P,Q(C) :=

√∑n
i=1 AP(pi)‖(Rpi+t)−qi‖2

AP(C)

AP(C)/AP

DP,Q(C) := min
{
D′
P,Q(C),D′

Q,P(C)
} (3)

Here, AP(pi) is the area of the descending manifold
of pi, AP(C) is the total area of all landmarks of P in
C i.e. AP(C) := ∑n

i=1 A(pi), and AP is the area of P.
Also, DP,Q(C) is a symmetric version of D′

P,Q(C), where
D′
Q,P(C) inverts the roles of P and Q in D′

P,Q(C) with the
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exception that the transformation (R, t) is again applied
only to landmarks in P.
The numerator of D′

P,Q(C) in Eq. (3) represents a coarse
approximation of the RMS distance between thematching
portions of both surfaces. The denominator is the frac-
tion of the area of descending manifolds of all landmark
points of P in C with respect to the total area of P. Due to
the denominator, correspondence sets having larger area
fractions are preferred.
Maximal correspondence sets that result in the least

values of this measure are reported along with their trans-
formations. Computing this measure is efficient even with
a large numbers of maximal correspondence sets since it
only requires landmarks and not all points on the surface.
It is possible for some spurious correspondence sets con-
sisting of a few landmarks to align nearly perfectly. Hence,
we consider only those correspondence sets so that the
area of the corresponding regions of either surface is at
least 15% of its total area.

Parameter selection
The four parameters Rc, Ts, Tms and Tmrd control the per-
formance of the MS3ALIGN algorithm. While the param-
eters Rc and Ts control the quality of the landmarks, the
parameters Tmrd and Tms control how these landmarks
are aligned. The expected size/scale of features must have
direct bearing on the choice of Rc and Tmrd because they
are distance values (specified in Å). Hence, this choice
depends on the dataset being studied. By default, we
assume Tmrd to be equal to Rc. If this results in an insuffi-
cient number of landmark alignments, then Tmrd may be
set to a higher value. Conversely, if we expect or desire
less relative movement of feature points, then it is set o
a lower value. The parameters Ts and Tms are specified
in a normalized scale of positive curvature values. Hence,
we explicitly conducted performance experiments (“Per-
formance analysis” section) to determine good choices of
these parameters. Based on these experiments, we deter-
mine that Ts = 0.1 is a good choice. By default, we
assume Tms to be equal to Ts. Again, in case there are
insufficient number of landmark alignments, Tms may be
set to a higher value. Conversely, if there are fewer or
larger number of feature points, Ts may be lowered or
raised as desired. However, changing the value drastically
will result in either oversimplification or undersimplifi-
cation, both of which results in poor quality of feature
points.
To illustrate the consequence of these choices, we

present Fig. 4. The two panels show landmarks computed
for the molecule with PDB ID 4gh7 with Rc set to 1.2
and 3.0, respectively. The columns in each panel show
the landmark points for values of Ts equal to 0.001 and
0.1. Each row shows the landmarks on the surfaces with-
out noise and with noise (RMSD 1.4 Å) added to the

atom locations. The mean-curvature computed is shown
using a color map. Comparing two panels directly, the
effect of Rc is evident in the density of the landmarks. The
choice of Rc = 1.2 is inappropriate here as significant
protrusions are not captured effectively. Raising the sim-
plification threshold toTs = 0.1 does not resolve the issue.
Furthermore, with the addition of noise, the correspond-
ing change in landmarks is hard to distinguish. In contrast,
in the right panel where Rc = 3.0, landmarks representing
significant protrusions are retained across simplification
thresholds of 0.001 and 0.1 Furthermore, it is possible to
visually establish the correspondences between the land-
marks across the noiseless and noisy versions, particularly
with Ts is set to 0.1.

Results and discussion
In this section we discuss our evaluation of MS3ALIGN.
We begin with a discussion on the molecular surfaces
used in our experiments (“Molecular surfaces” section).
In the first experiment (“Performance analysis” section),
we evaluate its performance under conditions of noise,
partial overlap, and running times using a random set of
20 proteins from the PDB [31]. In the second experiment
(“A comparison with SURFCOMP” section), we compare
MS3ALIGN with the results discussed in the evaluation of
SURFCOMP [9]. As the MOLLOC web-server [8] and the
code from [11] is unavailable, we could not compare our
results with theirs. In the third experiment (“A validation
using POCKETMATCH and PYMOL” section), we validate
the alignments of binding sites computed by MS3ALIGN
comparing them with those generated using PyMol [32].
Here, we quantify the structural variation of binding sites
using POCKETMATCH [18].
In the fourth experiment (“Aligning electron micros-

copy iso-surfaces” section), we use MS3ALIGN to compute
alignments of iso-surfaces extracted from cryo-electron
microscopy scans.

Molecular surfaces
In our experiments, we use three types of surfaces
extracted from proteins/ligands obtained from the PDB
[31] which are built upon the van der Waals molecu-
lar model. The first type is the molecular skin surface
(“Skin surface” section) [33] . The second type of sur-
face used is the ligand surface, which is representative
of the ligand interacting with the protein in a protein-
ligand interaction obtained from the PDB [31] (“Ligand
surface” section). The third kind of surface used is the
pocket surface (“Pocket surface” section). This is represen-
tative of the surface of interaction of the protein with the
ligand. Additionally, we generate partially overlapping sur-
faces by cutting skin surfaces to generate pairs of surfaces
with approximately known overlap fractions (“Partially
overlapping surfaces” section).
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Fig. 4 Comparing the influence of parameters in the generation of landmark points

Skin surface
The molecular skin surface is a mathematically robust
surface model that is similar in geometry to the solvent
excluded surface. The molecular skin surface of a protein
is computed in two steps. First, its atomic locations are
augmented with the van derWaals radii after addingmiss-
ing hydrogen atoms using the PDB2PQR tool [34]. Next,
the skin surface is extracted using the NANOSHAPER tool
[35] using the atomic locations and radii as input.

Ligand surface
The ligand surface is computed in three steps. First, the
CHIMERA [36] program is used to extract the molecular
structure of the ligand from the protein’s PDB file. Then,
together with the protein’s PDB file, the molecular struc-
ture of the ligand is used to determine atomic positions
and radii of the ligand using the PDB2PQR tool. Finally, the
ligand position and radii data is used to compute the skin
surface of the ligand using NANOSHAPER.

Pocket surface
The pocket surface is extracted as a subset of the molec-
ular skin surface of the protein. This subset is the part
of the surface that belongs to the residues (within 4.5Å)
that interact with the ligand. These residues are referred
to as the pocket residues or just the pocket. A subset of
the molecular surface is extracted so that all vertices of
the subset are within the van der Waals sphere of at least
one of the atoms of the pocket. An additional 0.5Å is
added to the van der Waals sphere to account for the
possible error introduced when extracting the skin sur-
face, because NANOSHAPER uses a structured grid with
edge length 0.5Å. This subset surfacemay be disconnected
and/or contain holes. This topological noise is repaired
using a variant of the dilation-erosion operation applied

to triangle meshes [37]. The radius for both steps is set to
1.2Å, the radius of the hydrogen atom.

Partially overlapping surfaces
In this section, we describe in detail our approach for the
generation of overlapping skin surface pairs with approxi-
mately known overlap fractions. Each skin surface is split
by a pair of planes into two surfaces such that they over-
lap with each other with an approximately known overlap
fraction (see Fig. 5). Pairs of surfaces are generated for
overlap fractions of approximately 20, 40, 60, and 80% of
each other. To do this, first, a coordinate system about the
centroid of the molecule is constructed from the princi-
pal components of the centroid subtracted positions of the
surface’s vertices [38]. The plane containing the first two
principal components is rotated about the second com-
ponent by 0, π/5, 2π/5, 3π/5 and 4π/5 radians to obtain
five planes, each of which slice the surface into two pieces.
The piece on the right of each plain is retained to gener-
ate five partial surfaces. The first partial surface overlaps
with the other four partial surface with approximately 20,
40, 60, and 80% of its area.

Performance analysis
In this experiment, we study three aspects of MS3ALIGN.
First, we study its ability to determine correct alignments
in the presence of noise. Second, we study its ability
to detect alignments in the presence of partial overlaps.
Finally, we study the runtime performance of MS3ALIGN.
We use twenty structurally different proteins from the
PDB [31] having 1500–3000 atoms.
We set the parameter Rc = 3Å. This enables landmarks

to be located on protrusions of 2–4 atoms, which is typical
of groups such as ammonium, hydroxy, and methyl that
are close to the surface. We set the parameter Tmrd = 1Å.
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Fig. 5 Pairs of surfaces which overlap with each other with an approximately known fraction of area of each other are generated by cutting the
molecular skin surface using a pair of planes. Here, the skin surface of 4j2m (orange, center) is cut by two planes into two pieces (violet on the left
and green on the right) such that 20% of the area of either overlaps with the other

Alignments are studied with varying choices of the Ts
parameter. The Tms parameter is set to be equal to the Ts
parameter.
We now study performance of MS3ALIGN in the pres-

ence of noise. Noise is introduced by adding standard
Gaussian noise of known variance to all atom locations of
the protein. The molecular skin surface of this perturbed
molecule is used as the noisy version of the surface. Mul-
tiple such noisy versions of the skin surface are generated
by adding increasing levels of noise. The level of noise is
quantified by computing the RMS distance of all atoms
from their original position to their position after adding
noise. We compute the RMS distance between the two
surfaces by mapping each vertex of the original surface to
the closest vertex in the noisy surface after alignment.

We conclude that the alignment is successful if the RMS
distance is within 2Å. The top row of Fig. 6 shows three
graphs for respective simplification threshold Ts values of
0.08, 0.10, and 0.12.
With aTs threshold of 0.1, we observe that surfaces align

with RMS distance approximately equal to the RMS dis-
tance between the noisy and noiseless surfaces up to 1Å.
We also observe that most alignments fail after the intro-
duced noise causes RMS distance between surfaces to be
more than 1Å. A primary reason for this is the choice
of the maximum relative distance threshold Tmrd = 1Å,
which specifies the amount acceptable relative movement
of the landmark points.
We next study the ability of MS3ALIGN to detect align-

ments in the presence of partial overlaps. Five partially

Fig. 6 (top-row) RMS distance between skin surfaces of various molecules after each surface is aligned with noisy versions of itself shown for
Ts = 0.08, 0.1 and 0.12 respectively. The y-axis is log-scaled beyond 2Å. (bottom-row) RMS distance between a subset of the skin surface and four
other surfaces that it partially overlaps with. The y-axis is log-scaled beyond 1Å
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Fig. 7 Stacked bar graph showing breakup of MS3ALIGN run-times for the surfaces used in the partial overlap study. The time taken for alignment
(stages iii − v) is significantly lesser than time taken for the first and second stage

overlapping surfaces are generated as subsets of the skin
surface. The first surface is generated by a cut plane that
partitions the skin surface. The remaining surfaces are
also generated by rotated cut planes such that the overlap
fractions with the first surface is approximately 20, 40, 60,
and 80% respectively. In other words, the first and second
partial surfaces intersect in approximately 20% of the area
of each other, the first and third intersect in approximately
40% of the areas of each other, and so on. Since we already
know the transformation that aligns the first partial sur-
face with the others, namely the identity transformation,
we study the RMS distance from the first partial surface

after applying the the alignment transformation deter-
mined by MS3ALIGN. The bottom row of Fig. 6 shows
three graphs for respective simplification thresholdTs val-
ues of 0.08, 0.10, and 0.12. The alignment RMS distance
of the first partial surface is mapped to the y-axis and the
overlap fractions with the remaining four partial surfaces
is mapped to the x-axis. We find that, in all cases, align-
ments were successfully determined with RMS distance
less than 1Å.
Next, we present the runtime breakup of the various

stages of MS3ALIGN in Fig. 7. We conducted our exper-
iments on a HP xw7700 workstation with an Intel(R)

Fig. 8 Alignment of 1THL with 1TMN exhibits multiple partial alignments. In all figures 1TMN is fixed (blue) and 1THL (pink) is transformed. (Top Left
and Center): The two mirrored alignments of the aromatic rings in 1THL and 1TMN are detected as the best two alignments. (Top Right and Bottom
Left): The two mirrored alignments of the benzyl ring of 1THL with the hetero-cycle of tryptophan in 1TMN are detected third and fourth best
alignments. (Bottom Center): A variant of the the alignment of the aromatic ring in 1THL with the other parts of the penta-cycle of tryptophan in
1TMN. (Bottom Right): Alignment of the tryptophan parts of both ligands
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Fig. 9 Alignments of the ligand surfaces found by MS3ALIGN and not SURFCOMP for the thermolysin inhibitor dataset. The aligning portions of the
surface are shown as opaque and the rest is shown with transparency. A stick representation of the ligands is also shown. a The best three
alignments of the 4TMN’s 0PK ligand (light pink) with 5TLN’s BAN ligand (green) aligns the two aromatic rings of 0PK with those of BAN. b The best
two results of 6TMN’s 0PJ ligand (dark blue) with the 5TLN’s BAN(green) show alignment of aromatic rings from both ligands

Fig. 10 Alignments of the 4TMN’s 0PK ligand (light pink) with: (top row) 5TMN’s 0PJ ligand (cyan). (bottom row) 6TMN’s 0PK ligand (purple). The
alignment of 0PK in 5TMN with BAN in 5TLN is shown in Fig. 9a
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Fig. 11 Alignments of the ligand surfaces found by MS3ALIGN and not SURFCOMP for the DHFR dataset. a The best two alignments MTX (green) and
WRB (purple). b The best alignment of FOL (light pink) with WRB (purple) is along the two amino groups attached to the aromatic ring in both
ligands. c Alignment between MTX (green) and TOP (cyan), where the two amino groups attached to an aromatic ring align

Xeon(R) CPU E5405 2.00 GHz dual quad-core proces-
sor and 8 GB of RAM. For efficient computation, the
tool contains OpenMP directives which can be optionally
enabled to leverage multi-core computation. We disable it
for this experiment to run the tool on a single core, thereby
enabling us to compare with other sequential methods.
Fig. 7 presents the running times for the partial overlap
experiment discussed above for a simplification thresh-
old parameter Ts value of 0.1. We note from the figure
that the alignment time is consistently under 1 s for each
set of four alignments. In comparison, SURFCOMP takes
about 75 s (± 15 s) for each comparison for their small lig-
and datasets using a 2.4 GHz Intel Xeon Processor. Baum
and Hege [17] report a runtime of 5–25 s on a 3.0 GHz

Intel Xeon processor for comparison of one ligand with
six others. Merelli et al. [11] report that their method
takes between a few seconds to about 10 min for a good
match of a pair of surfaces on an Intel Dual Core machine.
Angaran et al. report that MOLOC takes between few
seconds to minutes for medium sized binding surface
areas.

A comparison with SURFCOMP

In this experiment, we compare MS3ALIGN with the SUR-
FCOMP tool [9]. The authors of SURFCOMP validate
using the ligand surfaces from two datasets. The first
dataset consists of thermolysin inhibitor ligands of two
kinds, the first containing tryptophan and the second with
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Fig. 12 Plot of the RMS distance between ligand surfaces after alignment using MS3ALIGN and SURFCOMP. (left) Plot for the dataset of thermolysin
inhibitor ligands. The ligands are identified by the PDB they were extracted from. (right) Plot for the dataset of ligands bound to DHFR enzymes. The
ligands are identified by their abbreviation

Table 1 Comparison of the chemically relevant alignments of
SurfComp and MS3ALIGN.

Ligand pair SURFCOMP aligns MS3ALIGN aligns

1THL-1TLP Tryptophan moiety Tryptophan moiety

1THL-1TMN Tryptophan moiety Benzyl moiety

Tryptophan moiety (6th best)

1THL-3TMN Tryptophan moiety –

1TLP-1TMN Tryptophan moiety Tryptophan moiety

1TLP-3TMN Tryptophan moiety –

1TMN-3TMN Tryptophan moiety –

4TMN-5TLN – Benzyl moiety

4TMN-5TMN L-Alanine moiety L-Alanine moiety

4TMN-6TMN L-Alanine moiety L-LAanine moiety

5TLN-5TMN – Benzyl moiety

5TLN-6TMN – Benzyl moiety

5TMN-6TMN 4-methyl pentanoic 4-methyl pentanoic acid group
acid group

FOL-TOP – –

FOL-MTX Entire ligands Entire ligands

FOL-WRB Benzyl moiety C = N − C = N part of triazine and
pteridine groups along with amino
groups

TOP-MTX – C = N − C = N part of triazine and
pteridine groups along with amino
groups

TOP-WRB – C = N − C = N part of triazine and
pteridine groups along with amino
groups

MTX-WRB – C = N − C = N part of triazine and
pteridine groups along with amino
groups

The chemical structures of the ligands are presented in the Additional file 1

an aliphatic residue at the C-terminal end. The second
dataset consists of ligands bound with the Dihydrofolate
Reductase (DHFR) enzyme.
In both experiments, surfaces obtained from ligand

molecules are aligned. Hofbauer et al. consider two types
of physico-chemical properties on molecular surfaces to
determine alignments.
Since they conclude that electrostatic potential (ESP)

results in better alignments, we only compare against
these alignments. The chemical structures of the ligands
are presented in the appendix. For these experiments, the
Rc parameter is set to 1.2Å since we wish to study align-
ments at the scale of a single atom. The Ts parameter is set
to 0.06 for the first dataset and 0.1 for the second dataset.
The Tms parameter is set to 0.09 and 0.15 respectively.
The Tmrd parameter is set equal to Rc. In the follow-
ing paragraphs, we discuss the alignments determined by
MS3ALIGN for each of the datasets in detail and compare
them with SURFCOMP.
In the thermolysin dataset, SURFCOMP compares eight

thermolysin inhibitor ligands considered in two groups.
The first group consists of ligands from PDBs 1THL,
1TLP, 1TMN and 3TMN. In our experiment, we were
unable to extract the ligand structure from 3TMNbecause
of a failure in the PDB2PQR tool which is used in a pre-
processing step to compute the molecular skin surface.
Hence, we remove 3TMN from this list. The second
group consists of ligands from PDBs 4TLN, 5TLN, 5TMN,
and 6TMN. For consistency of labeling of datasets with
respect to Hofbauer et al., we use the PDB id to reference
the ligand considered.
We were able to determine the same alignments as

SURFCOMP for the first group. However, in the case
of 1THL-1TMN our sixth best alignment corresponds
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Fig. 13 The RMS distance between pockets transformed by PYMOL’s and MS3ALIGN’s alignment. The corresponding POCKETMATCH indicate overall
consensus between the different methods

to the SURFCOMP’s best alignment. For the same pair
1THL-1TMN, SURFCOMP reports an alignment of the
tryptophan moiety of both ligands. MS3ALIGN reports it
as the sixth best alignment with other meaningful align-
ments being detected as better. Figure 8 shows the other
alignments detected for the pair 1THL-1TMN. From the
visualization, we confirm the alignments of similar chem-
ical moieties (see caption of Fig. 8 for details). Also,
Hofbauer et al. state that they were not able to deter-
mine relevant alignments of the ligand in 5TLN with the
other ligands. Figure 9 show the best alignments of the
ligand in 5TLN with the ligands in 4TMN and 5TMN
using MS3ALIGN. Since the ligand 0PI (6TMN) is struc-
turally very similar to the ligand 0PJ (5TMN), the same
alignments with respect to other ligands were also found,
and thus images of these alignments are omitted. Thus,
we find that MS3ALIGN aligns relevant portions of the

surfaces of the ligand BAN in 5TLN with all the other
considered ligands. For many pairs, we determine partial
alignments of other substructures. Figure 10 presents the
additional alignments of 4TMN with the others in its
group.
In the DHFR dataset, alignments of surfaces of four

ligands interacting with DHFR are analyzed. The lig-
ands used are Folic acid (FOL), Methotrexate (MTX),
Trimethoprim (TMP), and BR-WR99210 (WRB) from
PDBs 1DHF, 1DF7, 1DG5 and 1DG7 respectively.
We note that SURFCOMP reports only two good align-

ments of FOL with MTX and WRB. We were able to
recover a similar alignment of FOL and MTX. MS3ALIGN
does not determine the same alignment reported by SURF-
COMP for the case of FOL andWRB. Figure 11b shows the
alignment determined by MS3ALIGN where the alignment
is along the C= N−C =Nmoieties with amino groups at

Fig. 14 Alignments of pockets formed by the ligands STI in 4BKJ and 3HEC (left), STI in 3K5V and 3HEC (middle), and BTN in 4GGZ and 4JNJ (right),
using MS3ALIGN (top-row) and PYMOL (bottom-row)
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Table 2 Electron Microscopy datasets used in the alignment
experiments.

EMDB ID Iso-value Imaging Imaging box
resolution (Å) Size (Å × Å × Å)

5918 2.05 21 328 × 328 × 328
5919 2.69 19 348 × 348 × 348
5920 2.27 25 328 × 328 × 328
5323 2.2 20 410 × 410 × 410
5324 1.45 20 410 × 410 × 410
5325 2.0 20 410 × 410 × 410
The iso-value refers to the density value suggested by EMData bank for
representing the molecular surface

the two and four positions from triazine and pteridine of
WRB andMTX respectively. SURFCOMP reports an align-
ment where the brominated benzyl group of WRB aligns
with the central benzyl group of FOL which is different
from the best alignment we determine.
Relevant alignments determined by MS3ALIGN for the

pairs MTX-TMP, MTX-WRB, and FOL-WRB, that were
not determined by SURFCOMP are shown in Fig. 11.
Figure 12 presents the RMS distances between the

pairs of surfaces after alignment using both MS3ALIGN
and SURFCOMP. We note here that small RMSD val-
ues (< 1.5Å) are indicative of successful alignments
whereas larger RMSD values (1.5 − 5) do not necessar-
ily indicate failure of the alignment. This is particularly
true when the reported alignment is a partial align-
ment of surfaces where a small fraction of the surface
is aligned. Table 1 tabulates and compares the aligning
portions of the ligands in both datasets using MS3ALIGN
and SURFCOMP. In conclusion, we were able to replicate

all alignments, except one, reported by Hofbauer et al.
in their evaluation of SURFCOMP. Additionally, we were
able to obtain relevant alignments of similar chemical
moieties.

A validation using POCKETMATCH and PYMOL

In this experiment, we validate alignments generated
using MS3ALIGN against those generated using PYMOL
[32]. Here, the objective is to study the alignments against
known alignments generated using PYMOL’s “super” com-
mand. This command aligns proteins using a dynamic
programming approach followed by multiple refinement
cycles that improve the fit by eliminating pairings with
high relative variability. We curate a dataset of thirty one
protein structures from the PDB [31], each interacting
with one of eight types of ligands. The dataset is cho-
sen so that the ligands represent a range of structural
variability at their site of interaction. The structural vari-
ability of the pocket is quantified using POCKETMATCH
[18]. For each binding site, POCKETMATCH generates 90
sorted lists of distances from the three dimensional coor-
dinates and chemical properties of the site. For a pair of
sites, a normalized score based on the similarity of the pair
of 90 lists is computed. Sites having a POCKETMATCH
Pmax score greater than 0.6 are statistically shown to be
structurally similar, with a score of 1 indicating identi-
cal sites. A variety of ligands ranging from small sug-
ars such as glucose to molecules containing substituted
sugars such as NDP, fatty acids such as ACD (arachi-
donic acid), vitamins such as Biotin (BTN) and Retinoic
Acid (REA) are chosen. In the Additional file 1, we

Fig. 15 Alignments of the iso-surfaces of the cryo Electron Microscopy datasets. Pairwise alignments of the first dataset is shown in the top row and
pairwise alignments of the second dataset is shown in the bottom row. Pairwise alignments between: (top-left) 5918 (skin pink) and 5919 (green),
(top-middle) 5918 (skin pink) and 5920 (cyan), (top-right) 5919 (green) and 5920 (cyan), (bottom-left) 5323 (purple) and 5324 (magenta),
(bottom-middle) 5323 (purple) and 5325 (skin pink), and (bottom-right) 5324 (magenta) and 5325 (skin pink)
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Table 3 RMS distances between pairs of iso-surfaces after
alignment from both datasets shown in Table 2

A B RMSD (Å)

5918 5919 6.69
5918 5920 7.00
5919 5920 8.32
5323 5324 5.71
5323 5325 8.74
5324 5325 10.75

provide the details pertaining to the molecules and the
ligands.
For this experiment, the binding surfaces of each lig-

and type is aligned with each other using MS3ALIGN
with Rc = 1.2Å, Ts = 0.1, Tms = 0.15, Tmrd =
1.2Å. In Fig. 13, the RMS distance between the pock-
ets transformed by PYMOL’s and MS3ALIGN’s alignment
is plotted for the set of considered pocket pairs . The
POCKETMATCH score between each pair is also shown for
comparison. When the RMS distance between the pock-
ets transformed by PYMOL’s and MS3ALIGN’s alignment
is less than 1.2Å, we conclude that both alignments are
equivalent. In Fig. 14, we visually verify the validity of
alignments of pairs where the RMS distance is between
1.2 and 5Å. We conclude that we were able to successfully
determine alignments of pocket surfaces whose POCK-
ETMATCH score is greater than 0.7 and in some cases
even 0.6.

Aligning electron microscopy iso-surfaces
In this experiment, we consider two sets of related iso-
surfaces generated from cryo electron microscopy scans
obtained from the EMDataBank [39]. The first dataset
comprises of a related set of fragment antigen binding of
HIV antibodies. The second dataset comprises of a related
set of HIV antibodies. Both datasets are available at
resolutions of approximately 20Å. Table 2 summarizes the
details of the two datasets used. An iso-surface is defined
as the set of points where the density value is equal to a
pre-specified constant. Molecular surfaces are extracted
from cryo-EM data by computing the iso-surface at a
carefully chosen iso-value.
For both datasets, we set the parameter Rc = 30Å,

Ts = 0.05, Tms = 0.1, Tmrd = 30Å, and computed align-
ments using MS3ALIGN. Figure 15 shows the respective
pairwise alignments of the iso-surfaces of both datasets.
Table 3 shows the RMS distance between pairs surfaces
from the two datasets after alignment using MS3ALIGN.
Here the RMSD is computed after alignment as the root
mean square of the closest distance from every point of
the first surface to the second surface and vice versa. Thus,
we conclude that the alignments were successful.

Conclusions
In this paper, we present a method to align molecular
surfaces by identifying and establishing correspondences
between significant protrusions on the surface. We
also present MS3ALIGN, a tool that implements this
method.
A key advantage of our method is robust segmenta-

tion of the surface into segments that can be individually
evaluated for correspondences. Furthermore, due to its
purely geometric design, it is applicable to molecular
surfaces arising from various sources such as the PDB
and Electron-Microscopy scans. This is a key advantage
over existing methods such as SURFCOMP, PBSALIGN,
and PYMOL, which rely on protein sequence data and
other derived scalar values such as the electrostatic poten-
tial, which are often not directly available/computable.
In the future, we plan to expand MS3ALIGN to align
surfaces by including other geometric properties such as
spherical harmonics and Zernike coefficients of individ-
ual segments. These global properties may be applied
to smaller segments resulting in a method for deter-
mining alignments using a blend of local and global
properties. Currently, we use only the local curvature
property. Another possible direction for future work is
an extension towards a framework that harmoniously
incorporates additional physico-chemical properties that
may be available.

Additional file

Additional file 1: Supplementary material for “MS3ALIGN: An
efficient molecular surface aligner using the topology of surface
curvature”. (PDF 629 kb)
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