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Abstract. DC magnetization, neutron depolarization and neutron diffraction (with both polar-
ized and unpolarized neutrons) measurements have been reported for the Co1:4�xZnxGe0:4Fe1:2O4

spinels withx = 0:5, 0.6 and 0.7. Neutron depolarization and neutron diffraction measurements
confirm the presence of a long range ferrimagnetic ordering of the local canted spins in these ferrite
samples. The observed features of low field magnetization have been explained under the framework
of thermally activated domain wall movement of ferrimagnetic arrangement of local canted spins.
An important role of magnetic anisotropy (due to the presence of Co2+ ions) in establishing the
magnetic ordering and domain kinetics in these ferrites has been observed.
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1. Introduction

The magnetic structures of the spinel ferrites depend upon the types of magnetic ions
residing on the tetrahedral(A) and octahedral(B) sites and the relative strengths of
the inter-(JAB) and intra-sublattice interactions(JAA; JBB). Generally all the three ex-
change interactions, vizJAA; JBB andJAB are negative. Further, when all the metal ions
(cations) are magnetic, usually the inter-sublattice interactionJAB is the strongest with
jJAB j >> jJBB j > jJAAj. Thus,JAB renders the undiluted spinel as ferrimagnetic with
A-site moments aligned antiparallel to theB-site moments keeping theAA andBB bonds
unsatisfied. Selective magnetic dilution ofA andB sites accentuates the competition be-
tween the various exchange interactions resulting in a wide spectrum of magnetic ordering
ranging from ferrimagnetism, antiferromagnetism, local canted spin (LCS) to semi-spin
glass (SSG), spin glass (SG) etc. [1]. A quantitative phase diagram was proposed by Vil-
lain [2] that predicts ferrimagnetic, SSG and SG ground states as the magnetic dilution
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progresses. The presence of some selective magnetic ions such as Co2+ in ferrite sys-
tems introduces an additional factor, i.e. uniaxial anisotropy [3] which may complicate the
magnetic phase diagram [4].

Recent low-field and high-field magnetization, ac susceptibility and Mossbauer mea-
surements [5, 6] down to 90 K on Co1:4�xZnxGe0:4Fe1:2O4 with x = 0:4, 0.5, 0.6 claimed
to have seen the signatures of local spin canting behavior with the absence of long range
ferrimagnetic ordering. Since neutrons can give unambiguous answers to the question of
the presence or absence of long range magnetic ordering, we have studied three composi-
tions (x = 0.5, 0.6 and 0.7) in the Co1:4�xZnxGe0:4Fe1:2O4 series. We have supplemented
our neutron diffraction studies with dc magnetization and neutron depolarization measure-
ments.

2. Experimental details

The polycrystalline samples of the spinel series Co1:4�xZnxGe0:4Fe1:2O4 with x = 0.5,
0.6 and 0.7 were prepared by the usual double sintering ceramic method. The starting ma-
terials were analytical reagent grade Fe2O3 (Thomas Baker), CoO (Thomas Baker), ZnO
(E Merk) and GeO2 (E Merk). The oxides (Fe2O3, CoO, ZnO, GeO2) were mixed in stoi-
chiometric proportions and pre-sintered at 990ÆC for 12 h. In the final sintering process the
material was held at 1050ÆC for 12 h and slowly cooled to room temperature (2ÆC/min).
All three samples were characterized by x-ray diffraction at room temperature. The theo-
retical stoichiometries of all three samples were confirmed by Rietveld refinement of room
temperature (300 K) neutron diffraction patterns of all the three samples with site occu-
pancies as varied parameters in the refinement process. The compositional homogeneity
of the samples was also ascertained by energy-dispersive X-ray mapping of some regions
of all the three samples.

The zero-field-cooled (ZFC) and field-cooled (FC) dc magnetization measurements were
carried out on thex = 0.6 and 0.7 samples using a quantum design SQUID magnetometer
(model MPMS) using the same procedure as described in our earlier paper [4]. The ZFC
and FC measurements were carried out over the temperature range 5–300 K and with fields
30 Oe and 10 Oe for thex = 0.6 and 0.7 samples, respectively.

The one-dimensional (1D) neutron-depolarization measurements on thex = 0:6 and
0.7 samples were carried out using the neutron-polarization analysis spectrometer (PAS)
at Dhruva reactor, Trombay (l = 1:201Å). The incident neutron beam polarization
is 0.9883(1). The detailed description of the spectrometer has been given in earlier
papers [7,8]. The temperature of sample was varied between 11 and 300 K in a closed-
cycle helium refrigerator and controlled to better than 0.1 K. The ZFC and FC neutron-
depolarization measurements (with the same field values as applied for the ZFC and FC
magnetization measurements) were carried out using the same procedure [9] as used for
the present ZFC and FC magnetization measurements. In neutron depolarization experi-
ments the amount of depolarization depends on the mean domain sizeÆ, domain magnetic
inductionB, neutron wavelength� and the average number of domainsN along the path
of neutrons (N = d=Æ, whered is the effective sample thickness) [8]. The samples studied
here are of arbitrary effective thickness. Hence no quantitative comparison between the
transmitted neutron beam polarizationP values of different samples can be made. How-
ever, the recorded data would be good enough to find the nature of magnetic ordering.
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The unpolarized neutron diffraction patterns for all the three samples were recorded at
300 K and 11 K over the angular range of 10–70Æ. The temperature dependence of (111)
Bragg peak intensity measurements forx = 0.5 sample using unpolarized neutrons and for
x = 0.6 and 0.7 samples using polarized neutrons, were carried out over the temperature
range 11–300 K. The flipping ratio (R) measurements of (220), (222) and (111) Bragg
reflections forx = 0.6 and 0.7 samples were carried out at 11 K.

All measurements were carried out on compacted powdered samples. Compacting en-
sures that rotation of the crystallites does not take place.

3. Experimental results and data analysis

3.1 DC magnetization measurements

Figures 1 and 2 show the temperature dependence of the ZFC and FC magnetization for
x = 0:6 and 0.7 samples, respectively. The ZFC and FC curves bifurcate at about 300 K
for both the samples withx = 0:6 andx = 0:7 (figures 1 and 2). The ZFC curves show
broad maxima at about 110 K and 120 K for thex = 0:6 and 0.7 samples, respectively. It is
to be noted that the ZFC magnetization curves (figures 1 and 2) show asymmetric behavior.
The FC magnetization continuously increases for both thex = 0:6 and 0.7 samples with
the lowering of temperature until about 100 K; thereafter it decreases substantially for the
x = 0:6 sample and marginally decreases for thex = 0:7 sample.

3.2 Neutron diffraction measurements

The Bragg reflection intensity formulae used for both unpolarized neutrons and polarized
neutrons are taken from ref. [10]. In case of unpolarized neutrons, the Bragg reflection

Figure 1. ZFC and FC magnetization as a function of temperature for thex = 0:6

sample with 30 Oe applied field.
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Figure 2. ZFC and FC magnetization as a function of temperature for thex = 0:7

sample with 10 Oe applied field.

intensity in absence of an external magnetic field is given by the formula

I0hkl = constant j L(N2 + 2=3M2) exp(�2W ) (1)

for a cubic polycrystalline ferrimagnet with both chemical and magnetic long range or-
dering, wherej is the multiplicity of the plane(hkl), L is the Lorentz factor,N andM
the nuclear and magnetic structure amplitudes and exp(�2W ) is the Debye–Waller fac-
tor. For polarized neutrons with polarization parallel (+) and antiparallel(�) relative to
the magnetization of the sample, on the other hand, the Bragg intensities are given by the
formulae

I+
hkl

= constant j L(N2 +M2 + 2PDNM) exp(�2W ) (2)

and

I�
hkl

= constant j L(N2 +M2 � 2PD(2f � 1)NM) exp(�2W ): (3)

The cross terms in the parenthesis arise from the coherence between the nuclear and mag-
netic scattering processes in the case of polarized neutrons. HereP is the incident beam
polarization,D is the polarization transmission through the sample, andf is the neu-
tron polarization reversal efficiency of the RF flipper. It is evident that polarized neutron
diffraction essentially measures the interference between nuclear scattering and magnetic
scattering and therefore is very sensitive to the presence of very small ordered magnetic
moments in the lattice.

The unpolarized neutron diffraction data for all the three samples taken at 300 K (para-
magnetic region), were analysed using the Rietveld refinement technique [11]. It is ob-
served that Zn-ions have a very strongA-site preference. The analysis reveals that the
A-site magnetic ion concentration(cA) for x = 0.5, 0.6 and 0.7 compositions are 0.19(1),
0.17(1) and 0.14(1), respectively which are well below the site percolation threshold [12]
cP = 0.429. For each composition the remaining magnetic ions occupy theB-sites.
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Figure 3. The temperature dependence of (111) Bragg peak intensity (for unpolarized
neutrons) for thex = 0:5 ferrite.

The unpolarized neutron diffraction study forx = 0:5 ferrite also revealed that the
intensities of (111), (220) and (222) inner Bragg reflections increase significantly with
lowering of temperature, indicating strong magnetic contributions to these reflections. No
broadening of the half widths of these Bragg reflections were observed with enhancement
of their intensities, indicating that the ordered moments have long range correlations. As
an illustration, the temperature dependence of the (111) Bragg peak intensity is shown in
figure 3. From this figure the Neel temperature was estimated to be around 255 K. The
unpolarized neutron diffraction patterns forx = 0.6 and 0.7 showed no observable increase
in the intensities of inner Bragg reflections as one lowers the temperature down to 11 K.
As stated earlier, in such situations one takes recourse to polarized neutrons which are very
sensitive probes capable of measuring very small magnetic contributions to the nuclear
Bragg peaks quite accurately. The peak intensitiesI+ andI� of the inner Bragg reflections
for the two states of neutron polarization were measured as a function of temperature for
thex = 0.6 and 0.7 compositions. It may be remarked thatI + will be equal toI� in the
absence of an ordered moment contribution to the Bragg intensity. Figures 4 and 5 show
theI+ variation of the (111) Bragg peak as a function of temperature. From figure 4 the
Neel temperature is estimated to be around 255 K forx = 0.6. From figure 5 it is difficult
to estimate the Neel temperature for thex = 0.7 sample. The temperature dependence of
Bragg peak intensity for thex = 0.7 sample (figure 5) is very much different from the
usual behaviour as seen for the other two samples (figures 3 and 4). The half widths of
the relevant inner Bragg reflections remain unchanged throughout the temperature range
explored.

The ordered site moments forx = 0.5 were obtained from the unpolarized neutron
diffraction data, taken at 11 K (TN � 255 K). TheA-site magnetic moment is calcu-
lated by selecting (220) reflection (whose magnetic contributions depends only onA-site
magnetic moment) andB-site by (222) reflection (whose magnetic contributions depends
only onB-site magnetic moment). The magnetic contributions to the Bragg intensity of
the (111) and (400) reflections come from bothA andB site moments. Reflections like
(111) or (400) were used to cross check the correctness of the site-moment values obtained.
On the other hand, the ordered site moments forx = 0.6 and 0.7 were obtained from the
polarized neutron diffraction data taken at 11 K (well below the Neel temperature), by us-
ing the flipping ratio method [13]. The polarization ratio or flipping ratio,R, is the ratio
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Figure 4. The temperature dependence of (111) Bragg peak intensity (I
+) for the

x = 0:6 ferrite.

Figure 5. The temperature dependence of (111) Bragg peak intensity (I
+) for the

x = 0:7 ferrite. The broken line is drawn to guide the eye.

of the intensities for a particular reflection for two incident neutron spin states (given by
equations (2) and (3)), and is as follows

Rhkl =
I+
hkl

I�
hkl

=
N2 +M2 + 2PDNM

N2 +M2 � 2PD(2f � 1)NM
=

1 + 
2 + 2PD


1 + 
2 � 2PD(2f � 1)


where
 = M=N: (4)

This equation (4) can be used to get
 and henceM . TheA-site andB-site moments
are calculated from the flipping ratio measurements of (220) and (222) reflections, re-
spectively. These values were cross checked by calculating the expected flipping ra-
tio for the (111) reflection and comparing it with the observed one. The agreement
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Table 1. Tetrahedral and octahedral site moments of Co1:4�xZnxGe0:4Fe1:2O4

ferrites obtained from neutron diffraction studies.

Site moment (�B ) at 11 K

x A-site B-site

Expt. Free ion Expt. Free ion

0.5 0.64(5) 0.65(2) 2.54(5) 4.02(2)
0.6 0.12(6) 0.59(2) 0.04(6) 3.90(2)
0.7 0.42(6) 0.48(2) 0.14(6) 3.81(2)

between these values was quite satisfactory. The measured site moments at 11 K and
theoretical free-ion spin only site moments for all the three samples are summarized in
table 1. It is evident from table 1, that theA-site moments are closer to their theoretical
free-ion values (except forx = 0.6 composition), suggesting thatA-site moments are highly
collinear forx = 0.5 and 0.7 samples. On the other hand, for all the three samplesB-site
moments are much smaller than their free-ion values, indicating that theB-site moments
are highly non-collinear.

In the spinel structure, if the magnetic moments are all ordered collinearly (Neel order-
ing) then one expects the ordered site moments deduced from the normal Bragg reflections
such as (111), (220), (222) to be close to the estimated free-ion moments since, in such
a situation, the moments of the magnetic ions will be fully aligned along the longitudinal
direction (i.e. along the axis of broken symmetry). On the other hand, if the magnetic
ordering is noncollinear, the ordered site moments deduced from the normal Bragg re-
flections will correspond only to the longitudinal components since the transverse compo-
nents do not contribute to the intensities of these Bragg reflections. Spatial ordering of the
transverse magnetic components gives rise to the (200) Bragg reflection which is purely
magnetic. The site moments listed in table 1 derived from the Bragg reflections there-
fore correspond to the longitudinal components of the ordered moment. The complete
absence of the (200) magnetic Bragg reflection for all the three compositions indicates that
the transverse components, which are quite large in magnitude, are spatially completely
disordered.

3.3 Neutron depolarization measurements

The temperature dependence of zero field cooled (ZFC) and field cooled (FC) transmitted
neutron beam polarizationP for x = 0.6 with a field of 30 Oe and forx = 0.7 with a field
of 10 Oe are depicted in figures 6 and 7, respectively. The procedure of obtainingP values
from the measured flipping ratios for the transmitted polarized beam is described elsewhere
[9]. For thex = 0.6 sample, both ZFC transmitted polarization and FC transmitted polariza-
tion show a continuous decrease right from 300 K and attain a constant value below about
100 K. The deviation between the ZFC and FC depolarization starts below about 260 K
and the deviation increases with decreasing temperature. From figure 6, it is evident that,
in the FC case a higher depolarization is observed than in the ZFC case, which contradicts
the normal situation, where one would expect more depolarization in the ZFC case than in
the FC case. Thex = 0.7 sample also shows (figure 7) a continuous decrease in both ZFC
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Figure 6. ZFC and FC transmitted beam polarizationP as a function of temperature
measured in a 30 Oe field for thex = 0:6 ferrite.

Figure 7. ZFC and FC transmitted beam polarizationP versus temperature measured
in a 10 Oe field for thex = 0:7 ferrite.

and FC transmitted polarization right from 300 K and attain a constant value below 50 K.
A deviation between the ZFC and FC depolarization starts below about 220 K. It is also
seen that, a higher depolarization is observed for the ZFC case than the corresponding FC
case, as expected.

4. Discussion

Figure 1 shows that the broad peak in the ZFC and FC magnetization curves occurs at the
same temperature where a broad peak in the�ac curve [5] was observed. A strong irre-
versibility between the ZFC and FC magnetization occurs for all the three samples (figures
1 and 2 and also see ref. [5]). Such characteristic behaviors in� ac and ZFC–FC magneti-
zation have been observed in spin-glass or spin-glass like materials [14,15]. However, for
systems where long-range order is involved, such features can arise from domains, domain
walls and also from disorder. In LCS systems such characteristic behaviors have been in-
terpreted in terms of kinetic freezing of magnetic domains [1,4,9]. In order to identify the
nature which the present materials possess some further clues are needed. Microscopic
neutron diffraction results provide help.
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For all three samples the presence of long-range ferrimagnetic ordering is confirmed
from the presence of magnetic Bragg contributions to the fundamental inner reflections
over all temperatures below the Neel temperatureTN (figures 3–5). It is seen in table 1
that theB-site moments are much smaller than their theoretical free-ion moment values
for all the three samples, indicating that theB-site moments are highly non-collinear. For
x = 0:6 sample, theA-site moment is also highly non-collinear. As (200) Bragg peak
was not observed at low temperature diffraction patterns for any one of the samples, the
possibility of any uniform canting relative to the average magnetization (Yafet–Kittel-type
structure [16]) is ruled out. In brief, neutron diffraction study confirms local (random)
canting of spins with ferrimagnetic long-range ordering of longitudinal spin components.

The neutron depolarization study on bothx = 0.6 and 0.7 samples shows the existence
of magnetic domains and is consistent with the neutron diffraction results, namely a long-
range ferrimagnetic ordering of longitudinal spin components. It is interesting to note
that the depolarization persists at temperatures well above theTN value obtained from the
neutron diffraction measurements. This could be explained due to formation of smaller
domains/clusters at temperatures aboveTN. TheTN values estimated from the neutron
diffraction measurements correspond to the onset of true long range ferrimagnetic ordering
of spins. However, the depolarization study do indicate the presence of smaller domains
at temperatures higher thanTN obtained from the diffraction measurements. We therefore,
do not see the expected trend between theTN value obtained from neutron diffraction
experiments and magnetic dilutionx. For both the samples, a continuous drop of both ZFC
and FC transmitted neutron beam polarizationP right from 300 K down to about 100 K
for x = 0.6 and about 50 K forx = 0.7 sample (below whichP attains respective constant
values) indicates no breakdown of ferrimagnetic-like domain structures. The observed
irreversibility between the ZFC and FC depolarization curves clearly shows that the domain
mobility strongly depends upon the cooling process of the samples.

Hence, the presence of ferrimagnetic domains are confirmed from both mesoscopic neu-
tron depolarization and microscopic neutron diffraction studies. The above discussion
shows that the characteristic behaviours observed in low field magnetization (figures 1
and 2) do not result from a breakdown of ferrimagnetic correlation or a transition to any
spin glass-like phase but can be related to magnetic domain effects [9]. From our ZFC–
FC magnetization and depolarization studies it is apparent that the growth and/or kinetic
freezing mechanisms of magnetic domains depend on the exact cooling conditions (i.e.
ZFC or FC) and also on the composition. In a normal situation, when the sample is cooled
in the absence of a field (ZFC case), the domains are more random and as a result the effec-
tive depolarizing internal field (the transverse field seen by the incident polarized neutron
beam) is high which causes more depolarization in the ZFC case than in the FC case [9].
This is the situation for thex = 0.7 sample. In the samples which we have studied here,
Co2+ can introduce uniaxial anisotropy [3] and in such a situation very large domains can
be maintained in the FC case as compared to the ZFC case [4,9]. Hence, the observed
higher depolarization in the FC case as compared to the ZFC case for the Co2+ rich x =
0.6 sample as compared tox = 0.7 sample can be related to the effect of the presence of
a higher uniaxial anisotropy. It is observed that the bifurcation temperatures between the
FC and ZFC data curves are different for the two types of measurements namely, neutron
depolarization and low field dc magnetization. Here it is to be recalled that the neutron
depolarization is a mesoscopic probe with a typical probing length scale of 100Å to a few
thousand angstroms. On the other hand, magnetization study probes sample on a macro-
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scopic length scale. Therefore, the bifurcation arising from magnetic domain effects need
not be identical in two length scales of measurements. Moreover, it has been observed
that the FC–ZFC branching is strongly field dependent in this type of ferrite systems [4].
Hence, any small variation in applied field values in two different measurements can cause
a significant change of branching temperature.

The site ordered longitudinal moments observed from neutron diffraction studies at 11 K
(table 1) for thex = 0:6 sample is less as compared to the other two samples. This
indicates that forx = 0:6 sample canting angle is large for both the sites. It has already
been discussed that our neutron diffraction study confirms local (random) canting of spins
with ferrimagnetic long-range ordering of longitudinal spin components (LCS structure).
The amount and nature of canting depends upon the distribution of magnetic atoms inA
andB-sites and the relative strength ofJAA, JBB andJAB interactions. Moreover, a
possible presence of random uniaxial anisotropy due to the Co2+ ions in these systems
may complicate the nature of ordering [3,4,9]. However, at present we do not have any
clear explanation as to why the canting angle is large for the sample withx = 0:6.

The domain wall pinning does take place in these ferrites and can be clearly seen in
figures 1–2 and 6–7. The peaking of�ac observed by earlier workers [5] and our ZFC
magnetization and FC magnetization can be explained in the following way. At lower
temperature, a higher value of magnetization is expected in the ferrimagnetically ordered
state due to ordering of spins within the domains, and the magnetic hardness also shows
a higher value because of domain-wall pinning. These two have opposite effects on the
temperature dependence of magnetization and shows up as a peak in the� ac and low field
dc magnetization curves.

5. Summary and conclusion

We have performed magnetic studies in different length scales such as macroscopic (low
field magnetization), mesoscopic (low field neutron depolarization) and microscopic (po-
larized and unpolarized neutron diffraction) on Co1:4�xZnxGe0:4Fe1:2O4 spinels with
x = 0:5, 0.6 and 0.7. Our neutron depolarization and neutron diffraction measurements
clearly establish the presence of long range ferrimagnetic ordering of local (random) canted
spins in all the three samples. The observed temperature-dependent features of low field
ZFC and FC magnetization have been explained, with the help of neutron depolarization
and neutron diffraction data, in terms of the thermally activated domain wall movement in
a LCS arrangement. The Co2+ ions in these ferrite systems introduce uniaxial anisotropy.
The effect of such an anisotropy on the magnetic ordering has been brought out.
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