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Phosphorylation of nucleoporin Tpr governs its differential
localization and is required for its mitotic function
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ABSTRACT

A major constituent of the nuclear basket region of the nuclear pore

complex (NPC), nucleoporin Tpr, plays roles in regulating multiple

important processes. We have previously established that Tpr is

phosphorylated in both a MAP-kinase-dependent and MAP-kinase-

independent manner, and that Tpr acts as both a substrate and as a

scaffold for ERK2 (also known as MAPK1). Here, we report the

identification of S2059 and S2094 as the major novel ERK-

independent phosphorylation sites and T1677, S2020, S2023 and

S2034 as additional ERK-independent phosphorylation sites found

in the Tpr protein in vivo. Our results suggest that protein

kinase A phosphorylates the S2094 residue and that the site is

hyperphosphorylated during mitosis. Furthermore, we find that

Tpr is phosphorylated at the S2059 residue by CDK1 and the

phosphorylated form distinctly localizes with chromatin during

telophase. Abrogation of S2059 phosphorylation abolishes the

interaction of Tpr with Mad1, thus compromising the localization

of both Mad1 and Mad2 proteins, resulting in cell cycle defects.

The identification of novel phosphorylation sites on Tpr and the

observations presented in this study allow better understanding of

Tpr functions.
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Localization

INTRODUCTION
Nucleoporins are vital components of the nuclear envelope that

mediate several crucial cellular processes, such as the transport of

macromolecules, progression of the cell cycle, gene expression

and chromatin organization. Over the past decade, the

phosphorylation of nucleoporins has been shown to serve as a

means to transduce cellular signals for the regulation of crucial

functions such as nucleocytoplasmic transport and cell cycle

progression (Kosako and Imamoto, 2010; Makhnevych et al.,

2003; Schneider and Grosschedl, 2007; Yoon et al., 2008). Many

cellular kinases, namely CDK1, ERK2 (also known as MAPK1)

and protein kinases A and C have been reported to phosphorylate

nucleoporins (Cai et al., 2002; De Souza et al., 2004; Eblen et al.,

2003; Kosako et al., 2009; Lusk et al., 2007; Macaulay et al.,

1995; Miller et al., 1999; Mühlhäusser and Kutay, 2007;

Onischenko et al., 2005; Wu et al., 1995). Phosphorylation of

the FG-repeat-containing nucleoporins (FG-Nups) Nup153 and

Nup214 has been shown to disrupt their interaction with importin-

b, thus inhibiting the import of nuclear proteins (Kosako et al.,

2009).

In addition, nucleoporins have been shown to be extensively

phosphorylated during mitosis both in vitro and in vivo

(Blethrow et al., 2008; Bodoor et al., 1999; Favreau et al.,

1996; Glavy et al., 2007; Macaulay et al., 1995; Mansfeld et al.,

2006; Nousiainen et al., 2006). Mitotic phosphorylation of

Nup50 and other FG-Nups has been shown to be crucial for the

organization of spindle microtubules and chromosomes (Clarke

and Bachant, 2008; Harel and Forbes, 2004; Hetzer et al., 2002;

Tahara et al., 2008). Although these studies provide evidence that

phosphorylation of nucleoporins is likely to modulate several

physiological functions, the spatio-temporal regulation of these

phosphorylation events and their influence on nuclear transport

and/or regulation of mitotic functions have not yet been

deciphered.

Nucleoporin Tpr, which is associated with the nuclear basket

region, was initially thought to function as a scaffolding

element, regulating intranuclear and nucleocytoplasmic

transport at the nuclear phase of the nuclear pore complex

(NPC) (Fontoura et al., 2001; Frosst et al., 2002; Shibata et al.,

2002; Zimowska and Paddy, 2002). However, in the recent

past, Tpr has been shown to play crucial roles in modulating

other diverse cellular functions. Tpr associates with Mad1,

Mad2 and the members of the dynein complex during mitosis,

and these interactions have been found to be crucial for

mediating the proper segregation of chromosomes during

anaphase (Lee et al., 2008; Lince-Faria et al., 2009; Nakano

et al., 2010). Tpr has also been shown to be required for

establishing heterochromatin exclusion zones (HEZs) (Krull

et al., 2010). Although Tpr has a limited role in modulating

nucleocytoplamic transport of processed mRNA and proteins, it

has been shown to regulate constitutive transport element

(CTE)-dependent unspliced RNA export (Coyle et al., 2011;

Rajanala and Nandicoori, 2012). Depletion of Tpr also results

in enhanced p53 accumulation in the cell nucleus, resulting in a

senescence-like phenotype and facilitating autophagy (David-

Watine, 2011; Funasaka et al., 2012). Recently, Tpr was shown

to be required for maintaining the homeostasis of Mad proteins

and for the normal spindle assembly checkpoint response

(Schweizer et al., 2013). We undertook the present study with

the aim of investigating the phosphorylation status of the Tpr

protein and the significance of specific Tpr phosphorylation

events during cell cycle progression. We demonstrate that

the phosphorylation of Tpr is crucial for the regulation of

differential localization of the protein and for normal Tpr

function during mitosis.
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RESULTS
Tpr is phosphorylated at residues S2059 and S2094 in vivo
Tpr has previously been shown to be phosphorylated by the MAP
kinase ERK2 (Eblen et al., 2003). Phosphorylated Tpr acts as
both a substrate and a scaffold for ERK2 at the NPC, allowing
ERK2 to phosphorylate proteins that interact with Tpr (Vomastek

et al., 2008). Previously, we have shown that phosphopeptide
maps obtained for the metabolically labeled full-length and
carboxy-terminal fragment of Tpr were identical (Vomastek

et al., 2008), which suggested that both ERK2-dependent
and ERK2-independent phosphorylation sites are present in the
carboxy-terminal 800 amino acids. Because the sites of ERK2-

mediated phosphorylation were already mapped, we set out
to identify the ERK2-independent phosphorylation sites in Tpr.
Accordingly, the carboxy-terminal fragment of Tpr protein

(TprC) and TprC-M4, wherein all ERK2 target sites have been
mutated to alanine (Fig. 1A), were metabolically labeled.
Autoradiography showed a prominent band at the position of
Tpr (Fig. 1B), indicating robust phosphorylation. Whereas

ERK2-mediated phosphorylation disappeared in tryptic
phosphopeptide maps of TprC-M4 (Fig. 1C, dotted circle), we

observed the presence of three spots resulting from ERK-
independent phosphorylation in both maps (Fig. 1C; indicated

by arrows). The phospho-amino-acid analysis revealed that the
ERK-independent phosphorylation events mainly affected
serine residues (Fig. 1D). In order to narrow down the target
phosphorylation regions, we created a series of nested deletions

from both ends of TprC-M4 (supplementary material Fig. S1A).
All of these fragments were metabolically labeled, and five out of
the six proteins so created had the same phosphopeptide map as

TprC-M4. However, in the case of TprC-DC3, all three spots
corresponding to ERK-independent phosphorylation disappeared
(supplementary material Fig. S1B, missing spots are indicated).

Thus, major ERK-independent phosphorylation events are likely
to occur within the 117-amino-acid stretch between residues 2029
and 2146 of Tpr. Based on the phospho-amino-acid analysis

(Fig. 1C) and computational analysis of the 117-amino acid
stretch using Scansite (Obenauer et al., 2003), we analyzed
the likely phosphorylation of specific serine residues in three
putative target tryptic peptides. Although the peptide map for the

combinatorial triple mutant TprC-M4-(S2046, 2047, 2049A)
was similar to that of the wild-type peptide, peptide maps of

Fig. 1. Nucleoporin Tpr is phosphorylated in

vivo at residues S2059 and S2094.
(A) Schematic representation of the TprC and
TprC-M4 constructs. (B) COS-1 cells transfected
with constructs encoding FLAG–TprC or FLAG–
TprC-M4 were metabolically labeled, and FLAG-
tagged proteins were immunoprecipitated,
resolved and autoradiographed. (C) In-vivo-
labeled TprC and TprC-M4 were digested with
trypsin, and the resulting phosphopeptides were
mapped by 2D thin-layer chromatography (TLC).
Arrows indicate the labeled phosphopeptides
that were persistent in the in vivo map of TprC-
M4. Dotted circles indicate ERK2-mediated
phosphorylation, which is lost from TprC-M4.
(D) Phospho-amino-acid analysis of the labeled
TprC-M4 protein. The dotted circles show the
migration of phosphorylated threonine (pThr) and
phosphorylated tyrosine (pTyr) amino acid
standards detected by ninhydrin staining.
(E) Metabolically labeled TprC-M4-
(S2046,2047,2049A), TprC-M4-(S2059A) and
TprC-M4-(S2094A) proteins were digested with
trypsin and were mapped by 2D-TLC. White
arrows and dotted circles indicate the
disappearance of labeled phosphopeptide spots
that are indicated with black arrows for TrpC-M4.
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TprC-M4-(S2059A) and TprC-M4-(S2094A) showed the absence
of specific radiolabeled spots (Fig. 1E, dotted circles). These

results clearly demonstrate that Tpr is phosphorylated at the
residues S2059 and S2094 in vivo.

Minor phosphorylation of Tpr at T1677, S2020, S2023 and
S2034 residues
In order to determine the stoichiometry of phosphorylation on
S2059 and S2094 residues, we resorted to high-resolution mass

spectrometry analysis of immunoprecipitated FLAG–TprC-M4.
Liquid chromatography-mass spectrometry (LC-MS) analyses
showed the presence of two phosphopeptides with precursor

mass-to-charge ratio (m/z) of 815.746 and 856.01, corresponding
to the mass of triply charged tryptic phosphopeptides
from residues 1657–1680 and 2016–2041, respectively. Tandem

mass spectrometry (MS/MS) analysis of these two precursors
unambiguously identified T1677 and S2034 to be the target
phosphorylation sites (Fig. 2A,C). In addition, analysis also
showed the presence of a triply charged precursor (m/z 882.67)

corresponding to dually phosphorylated tryptic peptide from
residues 2016–2041, and a quadruply charged precursor (m/z
781.86) corresponding to the singly phosphorylated semi-tryptic

peptide from residues 2092–2118. MS/MS analysis identified
S2020 and S2023 on dually phosphorylated peptide, and S2094
on semi-tryptic peptide, to be the target sites of phosphorylation

(Fig. 2B,D). However, we could not detect any precursor
phosphopeptide containing the major site of phosphorylation,
S2059. The quantity of a peptide in a high-resolution mass

spectrometry analysis can be determined by calculating the sum
of its isotopic peak area at the MS1 level. To determine the
stoichiometry of phosphorylation, we utilized the Precursor Ions
Area Detector Node to determine the area of peaks corresponding

to phosphopeptides and their unphosphorylated counterparts.
Based on this analysis, phosphorylation of T1677, S2020, S2023
and S2034 residues ranges from ,0.6% to 2.7% (Fig. 2G), thus

demonstrating that these are minor phosphorylation sites on
Tpr. By contrast, phosphorylation on S2094 is relatively more
abundant, with 9% of protein being phosphorylated at this residue

(Fig. 2G). Because the tryptic peptide containing the S2059 site
could not be detected by mass spectrometry, we resorted to two-
dimensional (2D) gel electrophoresis to determine the abundance
of S2059 phosphorylation. A shift in protein migration towards

the acidic end of the immobilized pH gradient (IPG) strip might
sometimes occur owing to the negatively charged phosphate
group. Western blot analysis detected two spots of Tpr for TprC-

M4 and TprC-M4-S2094A (Fig. 2F, indicated by arrow), but
only one spot for TprC-M4-S2059A (missing spot indicated by
circle), suggesting that S2059 is a phosphorylation site. The spot

intensities, as calculated by using ImageJ software, indicated that
,10% of TprC protein was phosphorylated at the S2059 residue.
Analysis of the Tpr primary sequence using Scansite at low

stringency predicted multiple kinases capable of phosphorylating
the above sites (Fig. 2G). Taken together, using peptide
maps, high resolution mass spectrometry and 2D gels, we have
identified S2059 and S2094 to be the major ERK-independent

phosphorylation sites and T1677, S2020, S2023 and S2034 to be
minor ERK-independent phosphorylation sites on Tpr (Fig. 2E).

Phosphospecific antibodies specifically recognize
phosphorylation on S2059 and S2094
To examine the role of S2059 and S2094 phosphorylation in Tpr

functions, we raised phosphospecific antibodies. The specificity

and sensitivity of Tpr-pS2059 and pS2094 antibodies were
checked by probing either His–TprC that was purified from

bacteria or cell lysates that were isolated from COS-1 cells
expressing FLAG-tagged TprC, TprC-S2059A and TprC-S2094A
(Fig. 3A,B). Although both His–TprC purified from bacteria
and FLAG–TprC proteins expressed in COS-1 cells could be

efficiently detected by antibodies against Tpr, anti-Tpr-pS2059
and anti-Tpr-pS2094 antibodies could only detect FLAG–TprC
that was expressed in COS-1 cells (Fig. 3A,B). The inability of

antibodies against Tpr-p2059 and Tpr-pS2094 to detect His–TprC
expressed in bacteria and either FLAG-tagged S2059A or
S2094A mutants, respectively, demonstrates the ability of these

antibodies to specifically detect phosphorylated Tpr (Fig. 3A,B).
Western blot analysis of cell lysates from COS-1 cells transfected
with full-length FLAG–Tpr-Si (a construct encoding an siRNA-

resistant version of Tpr; Rajanala and Nandicoori, 2012),
or FLAG–Tpr-Si-2059A or FLAG–Tpr-Si-S2094A mutants,
revealed that antibodies against Tpr-pS2059 and Tpr-pS2094
have the ability to specifically detect full-length phosphorylated

Tpr proteins (Fig. 3C,D). We then analyzed the ability of
these antibodies to detect the phosphorylated Tpr protein by
immunofluorescence microscopy. Although we observed

classical nucleoporin-rim staining using antibodies against Tpr
and Tpr-pS2059 (Fig. 3E), only ,40% cells showed clear rim
staining when probed with antibody against Tpr-pS2094

(Fig. 3E). In the remaining cell population, we reproducibly
observed diminished rim staining, suggesting that Tpr
phosphorylated on S2094 either shows altered localization or

is degraded (Fig. 3E). In addition to classical rim staining,
anti-Tpr-pS2059 antibodies could also detect Tpr in the
nucleoplasmic fraction (Fig. 3E). In order to determine
the ability of phosphospecific antibodies to specifically detect

the phosphorylation of endogenous Tpr, western blots were
performed with the cell lysates prepared from HeLa cells
transfected with non-specific (NS)-siRNA or Tpr-specific

siRNA. Lysates from Tpr-siRNA-transfected HeLa cells showed
a significant reduction in Tpr protein levels and, concomitantly, in
the levels of Tpr phosphorylated at S2059 and S2094 (Fig. 3F). To

establish whether the immunofluorescence staining obtained by
using the phosphospecific antibodies is specific for the Tpr protein,
HeLa cells were transfected with Tpr-siRNA and the cells were
stained with antibodies against Tpr, Tpr-pS2059 and Tpr-pS2094.

We observed diminished rim staining in Tpr-depleted cells when
using the anti-Tpr antibody. A corresponding decrease could also
be seen with the antibodies against Tpr-pS2059 and Tpr-pS2094

(Fig. 3G), thus reaffirming the specificity of the antibodies.

PKA and CDK1 phosphorylate Tpr at the S2094 and S2059
residues, respectively
Analysis of the primary amino acid sequence of Tpr using Scansite
at high stringency suggested that S2094 might be a target for

protein kinase A (PKA). To test this, kinase assays were
performed by incubating immunoprecipitated PKA or HA–ERK2
with immunoprecipitated FLAG–TprC, TprC-S2059A or TprC-
S2094A. In agreement with the previous data (Vomastek et al.,

2008), we detected strong phosphorylation of TprC by ERK2
(Fig. 4A, left panel). Although we observed robust phosphorylation
of TprC and TprC-S2059A by PKA, phosphorylation of the TprC-

S2094A mutant by PKA was almost negligible, indicating that
S2094 is indeed a PKA target in vitro (Fig. 4A, right panel).
Peptide-map analysis of ERK2-mediated Tpr phosphorylation

showed tryptic peptide spots at previously identified positions
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Fig. 2. Identification of phosphorylation sites by mass spectrometry. (A–D) LC-MS/MS data showing electron transfer dissociation (ETD)-induced fragmentation
mass spectra identifying four phosphopeptides in Tpr. pTand pS indicates the site of phosphorylation. (A) MS/MS spectrum of precursorm/z 815.74695 (+3) and MH+

2445.22629 Da, of the semi-tryptic phosphopeptide GIASTSDPPTANIKPTPVVS(pT)PSK. The unambiguous location of the intact phosphate group on T1677 was
determinedby the presence of the ‘C’ and ‘Z’ ion series containingC22, C23 andZ4–7, Z9, Z12–15, Z18 and Z20–22. (B)MS/MSspectrum of precursorm/z 882.67010 (+3) and
MH+2645.99576 Da,of thephosphopeptideAAD(pS)QN(pS)GEGNTGAAESSFSQEVSR.The locationof the intact phosphategroupswasconfirmedby theobservation
of the ‘C’ and ‘Z’ ion series containing C4, C6–11, C13–19, C24 and Z19 and Z21–23. (C) MS/MS spectrum of precursorm/z 856.01892 (+3) and MH+ 2566.04221 Da, of
phosphopeptide AADSQNSGEGNTGAAES(pS)FSQEVSR. The location of S2034was evident by the observation of the ion series containing C18–22, C24 and Z8–12 and
Z14–23. (D) MS/MS spectrum of precursorm/z 781.86627 (+4) and MH+ 3124.44326 Da, of semi-tryptic phosphopeptide RQ(pS)VGRGLQLTPGIGGMQQHFFDDEDR.
Thepresenceof aphosphategroupatS2094 is confirmedby theappearanceof the ion series containingC3–5,C7,C9–10,C14–15,C17–26 andZ25–26. (E)Aschematic outline
indicating all the phosphorylation sites on Tpr. The S1185 residue was identified to be a target for PLK1 (Santamaria et al., 2011) (F) FLAG-tagged wild-type and mutant
TprC-M4 proteins were resolved on 13-cm pH 3.5–5.6 non-linear gradient IPG strips for 25,000 Vh. IPG strips were resolved in the second dimension by SDS-PAGE on
10% gels, transferred to nitrocellulose membrane and subjected to western blotting with mouse anti-FLAG antibodies. The arrows show the spot corresponding to Tpr
phosphorylated at S2059; the dotted circle shows the disappearance of this spot in the phospho-mutant TprC-M4-S2059A. (G)Compilation of all the data for the identified
sites. The stoichiometry of phosphorylation for sites identified by mass spectrometry were determined as described in Materials and Methods. To determine the
stoichiometry of phosphorylated S2059 species, we used ImageJ quantification (Schneider et al., 2012) of the 2D gels presented in F. Probable kinase prediction was
performed using Scansite software and the search was performed at low stringency (Obenauer et al., 2003). Phosphorylated amino acids are shown in red.
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(Fig. 4B, dotted ellipse). Analysis of PKA-mediated Tpr
phosphorylation showed only one tryptic peptide spot, spot 3,
corresponding to S2094. To establish whether S2094 is a bona fide

in vivo target of PKA, HeLa cells were transfected with either NS-
siRNA or PKA-specific siRNA, and cell lysates were probed with
the phosphospecific antibodies. As expected, the phosphorylation of

Fig. 3. Characterization of phosphospecific antibodies of Tpr. (A,B) COS-1 cells were transfected with 2 mg each of pCDNA3-FLAG construct or constructs
encoding FLAG–TprC, FLAG–TprC-S2059A or FLAG–TprC-S2094A. The lysates obtained at 36 h after transfection were loaded alongside the purified bacterial
TprC protein. The samples were resolved and transferred onto nitrocellulose membrane, and the blot was probed with anti-FLAG, anti-ERK, rabbit
polyclonal anti-Tpr (Frosst et al., 2002) anti-Tpr-pS2059 and anti-Tpr-pS2059 antibodies. (C,D) COS-1 cells were transfected with 2 mg each of pCDNA3-FLAG
construct or constructs encoding FLAG–Tpr-Si, FLAG–Tpr-Si-S2059A or FLAG–Tpr-Si-S2094A. The lysates were then analyzed with anti-FLAG, anti-ERK, anti-
Tpr-pS2059 and anti-Tpr-pS2059 antibodies. (E) Immunofluorescence analysis of HeLa cells stained with anti-Tpr (red), anti-Tpr-pS2059 (green) and
anti-Tpr-pS2094 (green) antibodies. Arrowheads show the nucleolar localization of Tpr-pS2094. Scale bars: 10 mm (left panels), 20 mm (right panels). (F) HeLa
cells were transfected with non-specific siRNA (NS-siRNA) or Tpr-specific siRNA (Tpr-siRNA). At 48 h post-transfection, the cell lysates were probed with
mouse monoclonal anti-Tpr (Abcam), anti-b-actin, anti-Tpr-pS2059 and anti-Tpr-pS2094 antibodies. (G) Immunofluorescence analysis of HeLa cells transfected
with Tpr-specific siRNA and stained with anti-Tpr-pS2059 (green) or anti-Tpr-pS2094 (green) and anti-Tpr (red) antibodies. Scale bars: 10 mm.
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CREB, a known substrate of PKA, decreased upon PKA depletion
(Fig. 4C). In agreement with the data presented in Fig. 4A,B,

depletion of PKA resulted in decreased phosphorylation of the
S2094 residue (Fig. 4C), thus verifying that the specific
phosphorylation of Tpr on S2094 is dependent on PKA in vivo.

In order to identify the kinase phosphorylating the S2059

residue, we treated HeLa cells with inhibitors of different kinases,
namely GSK3b, Polo-like kinase (PLK), p38, Aurora and CDK1.
As evident from western blot analysis, the addition of inhibitors

against GSK3b, PLK, p38 and Aurora kinases did not alter the
phosphorylation status of S2059 (Fig. 4D). However, in the
presence of CDK1 inhibitor (RO336), we observed a substantial

decrease in the levels of S2059 phosphorylation (Fig. 4D). To
validate these results, we performed in vitro kinase assays
using purified His–TprC, His–TprC-S2059A and His–TprC-

S2094A with CDK1–cyclinB. The results presented in Fig. 4E
demonstrate that the complex was active, as was apparent from
robust phosphorylation of universal substrate myelin basic protein

(MBP). However, although the CDK1–cyclinB complex efficiently
phosphorylated TprC and TprC-S2094A, the phosphorylation of

TprC-S2059A was insignificant (Fig. 4E). Taken together, these
data provide evidence that the phosphorylation of Tpr on S2059 is
dependent on CDK1.

We have previously shown that although Tpr has a limited role

in protein transport through the NPC, it specifically regulates the
export of intron-containing RNA (Rajanala and Nandicoori,
2012). The role of Tpr in the export of unspliced RNA

was investigated using well-characterized reporter constructs
containing the coding sequences of human immunodeficiency
virus (HIV) Gag/Pol proteins within an intron, followed by a CTE

(Coyle et al., 2003). The levels of Gag protein in the cytoplasm,
as quantified by enzyme-linked immunosorbent assay (ELISA)
for p24, represents the extent of processed Gag protein (p24), a

measure of export of intron-containing RNA. We sought to
determine the impact of the phosphorylation of Tpr S2059 or
S2094 residues on its role in modulating the export of unspliced

Fig. 4. PKA and CDK1 phosphorylate Tpr at residues S2094 and S2059, respectively. (A) COS-1 cells were transfected with 8 mg each of constructs
encoding wild-type FLAG–TprC, FLAG–TprC-S2059A, FLAG–TprC-S2094A, HA–ERK2 and CMV-PKA. The lysates of cell obtained at 36 h post-transfection
were immunoprecipitated with anti-FLAG, anti-HA or anti-PKA antibodies. The immunoprecipitated FLAG–TprC or CMV-PKA were mixed either with
immunoprecipitated HA–ERK2 or with FLAG–TprC, FLAG–TprC-S2059A or FLAG–TprC-S2094A samples, respectively, and kinase reactions were performed
in the presence of [c-32P]-ATP at 30˚C for 10 min. (B) TprC phosphorylated in vitro by either ERK2 or PKA was digested with trypsin, and the resulting
phosphopeptides were mapped by 2D-TLC. A comparative peptide map of the in-vivo-labeled TprC protein is also shown. Arrowheads show the ERK-
independent tryptic phosphopeptides; dotted circles show ERK-mediated phosphorylation. (C) COS-1 cells were transfected with either NS-siRNA (NS-Si) or
PKA-specific siRNA (PKA-Si) and, 96 h post-transfection, cell lysates were probed with anti-PKA, anti-b-actin, anti-CREB-pS133, anti-Tpr and anti-Tpr-pS2094
antibodies. (D) HeLa cells were treated with inhibitors against GSK3b (Inhibitor VIII; 10 mM), PLK (BI2536; 100 nM), p38 (SB203580; 20 mM), Aurora kinase
(MLN8237; 500 nM) and CDK1 (RO3306; 10 mM) for 2 h. Cells were lysed in 26SDS sample buffer and the lysates were then probed with anti-Tpr, anti-Tpr-
pS2059 and anti-b-actin antibodies. (E) Wild-type His–TprC and the phospho-mutants His–TprC-S2059A and His–TprC-S2094A were purified from E.coli. The
proteins were incubated with CDK1–cyclinB complex and kinase reactions were carried out in the presence of [c-32P]-ATP at 30˚C for 10 min. The
autoradiogram is shown, along with Coomassie Blue staining to visualize protein loading.
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RNAs. In agreement with our previous data, depletion of Tpr
resulted in elevated CTE-mediated export, which is indicated by

elevated p24 levels in the cytosol (supplementary material Fig.
S2A,B). As expected, restoration of Tpr protein levels by co-
transfecting cells with siRNA-resistant Tpr-Si resulted in a
significant reduction in p24 levels. The rescue of the phenotype

observed with Tpr-Si-S2059A and Tpr-Si-S2094A mutants
was similar to that observed with transfection of Tpr-Si
(supplementary material Fig. 2A,B), suggesting that the

phosphorylation of Tpr does not have any impact on the known
transport function of Tpr.

Tpr protein levels and its phosphorylation are regulated
during cell cycle
Several studies reported that nucleoporins are extensively

phosphorylated during mitosis, and this mitotic-specific
hyperphosphorylation has been demonstrated both in vitro and
in vivo (Blethrow et al., 2008; Bodoor et al., 1999; Favreau et al.,
1996; Glavy et al., 2007; Macaulay et al., 1995; Mansfeld et al.,

2006; Nousiainen et al., 2006). We therefore sought to investigate
the phosphorylation status of Tpr during the cell cycle and,
specifically, during mitosis. To this end, HeLa cells were arrested

at prometaphase by using nocodazole treatment, and mitotic cells
obtained by ‘shake off’ were released from the nocodazole block
into drug-free medium. Flow cytometry analysis confirmed the

mitotic arrest at 0 h and the subsequent synchronized release of
the cells into the G1 and S phases of cell cycle (Fig. 5A). Western
blot analysis (Fig. 5B) suggested that the levels of Tpr are higher

during mitosis than during interphase. The phosphorylation at
S2059 correlated with Tpr expression levels, suggesting that the
ratio of S2059-phosphorylated Tpr to total Tpr is not altered
during cell cycle progression (Fig. 5B). By contrast, S2094

phosphorylation was considerably higher in mitotic cells and in
the early stages of G1 (Fig. 5A,B).

The fact that we could observe the staining of all cells with an

anti-Tpr-pS2059 antibody (Fig. 3E) and that the levels of
S2059 phosphorylation are similar in the asynchronous and
synchronised cell populations (Fig. 5B), clearly demonstrates

that this represents a constitutive phosphorylation event on Tpr
protein. Interestingly, when we immunostained the cells
with antibody against Tpr-pS2094 to score for the cell-cycle-
dependent phosphorylation at S2094 residue, we observed that

certain cells exhibited distinctive nucleolar staining (Fig. 3E).
In order to further confirm our findings, we performed
immunofluorescence analysis with antibodies against Tpr-

pS2094 and fibrillarin (nucleolus marker). The results suggested
that, at certain stages of cell cycle, Tpr that is phosphorylated on
S2094 localizes to the nucleolar compartment (Fig. 5C). In

order to confirm the mitosis-specific hyperphosphorylation of
the S2094 residue and to check the localization of S2094-
phosphorylated Tpr during mitosis, immunofluorescence analysis

of HeLa cells at different stages of mitosis was performed using
antibodies against phosphorylated S2094. Upon microscopic
examination of Tpr localization using antibodies against Tpr
and Tpr-pS2094, we found that S2094-phosphorylated Tpr and

total Tpr showed a similar distribution pattern through the
different stages of mitosis (Fig. 5D).

Tpr phosphorylated at S2059 associates with chromatin
during telophase
Tpr and its orthologs have been shown to be crucial for the

progression of mitosis across different species (Lee et al., 2008;

Lince-Faria et al., 2009; Nakano et al., 2010; Niepel et al., 2005).
Immunofluorescence analysis using antibodies against Tpr

and Tpr-pS2059 showed that the distribution of S2059-
phosphorylated Tpr was the same as that of the Tpr protein
during interphase and all the way up to metaphase (Fig. 6A).
Interestingly, at anaphase and telophase, we observed that the

localization of S2059-phosphorylated Tpr was different from
that of unphosphorylated Tpr, with S2059-phosphorylated Tpr
demonstrating a stronger staining near the segregating

chromosomes in anaphase and a distinct pattern of
colocalization with chromatin in telophase (Fig. 6A). A
previous study has demonstrated that NPC components are

sequentially reassembled at the pore after the completion of
mitosis, and Tpr was shown to be one of the components that is
recruited at the end of this process. It was speculated that Tpr

might require an intact nuclear pore to allow the protein to
traverse the nuclear membrane (Bodoor et al., 1999). Therefore,
we sought to investigate the localization of Nup153 and FG-Nups
during telophase, and we observed that although both the FG-

Nups and Nup153 began associating with the nuclear membrane
during telophase, both Tpr and S2059-phosphorylated Tpr were
not recruited to the NPC at this stage (Fig. 6B; supplementary

material Fig. S3A). These results are the first evidence of
differential localization of a phosphorylated nucleoporin during
mitosis.

Phosphorylation at the S2059 residue is required for the
interaction of Tpr with Mad1 and the localization of
Mad proteins
In our study, we observed significant phosphorylation of Tpr at
both S2059 and S2094 residues during mitosis, a finding that
suggests that these phosphorylation events might be crucial for

mediating the known mitotic functions of Tpr. Mad1 and
Mad2 proteins have been shown to regulate the mitotic spindle
checkpoint by inhibiting the Cdc20–APC complex (Dobles et al.,

2000; Fang et al., 1998; Li and Benezra, 1996; Li et al., 1997).
Tpr has been shown to directly interact with Mad1 and Mad2
proteins through its amino- and carboxy-terminal regions,

respectively (Lee et al., 2008). We have previously shown that
phosphorylation of Tpr by ERK2 enhances its interaction with
ERK2 (Vomastek et al., 2008). Therefore, we wanted to
determine whether the ERK-independent phosphorylation

events play any role in regulating the interaction between Tpr
and the Mad proteins. To this end, FLAG–Tpr-Si and the
phosphorylation-site mutants Tpr-Si-S2059A or Tpr-Si-S2094A

were co-transfected with either HA–Mad1 or HA–Mad2. The
cells lysates were immunoprecipitated with anti-FLAG antibodies
and probed for co-immunoprecipitated HA–Mad1 or HA–Mad2.

Although the interaction of HA–Mad1 with Tpr and Tpr-Si-
S2059A was apparent, we could not detect interaction of HA–
Mad1 with Tpr-Si-S2059A (Fig. 7A). By contrast, the interaction

of HA–Mad2 with Tpr seems to be independent of
phosphorylation on S2059 or S2094 residues (Fig. 7B). Thus,
our data strongly suggest a role for S2059 phosphorylation in
mediating the Tpr–Mad1 interaction, although a direct effect of

the mutation independent of phosphorylation cannot be strictly
excluded.

Tpr knockdown has been shown to affect the localization of

Mad1 protein and also to result in decreased nuclear accumulation
of Mad2 (Lee et al., 2008; supplementary material Fig. S3B). We
investigated whether Tpr phosphorylation plays any role in the

localization of Mad1 and Mad2 proteins. To this end, HeLa cells
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were transfected with Tpr-specific siRNA along with GFP-tagged
siRNA-resistant wild-type Tpr (GFP–Tpr-Si) or phosphorylation-
site mutants (GFP–Tpr-Si-S2059A and GFP–Tpr-Si-S2094A), and
the localization of Mad1 and Mad2 proteins was analyzed by

immunofluorescence. In agreement with the previously published

data, we clearly observed compromised nuclear-rim staining of
Mad1 protein (data not shown) and reduced Mad2 in the nucleus
upon Tpr depletion (supplementary material Fig. S3B). The
restoration of rim staining of Mad1 was clearly observed upon

rescue with GFP–Tpr-Si or GFP–Tpr-Si-S2094A proteins

Fig. 5. Localization of S2094-
phosphorylated Tpr during cell cycle.
(A) HeLa cells were arrested at a pre-
mitotic stage by treatment with 40 ng/ml
nocodazole and were subsequently
released by washing off the drug.
Samples were stained with propidium
iodide and analyzed by flow cytometry to
check for the synchronization of cells
after release from the nocodazole block.
(B) Western blot analysis of the lysates
obtained from cells harvested at different
time-points after release from the
nocodazole block and probed with anti-
Tpr, anti-b-actin, anti-phosphorylated-
histone3, anti-Tpr-pS2059 and anti-Tpr-
pS2094 antibodies.
(C) Immunofluorescence analysis of
HeLa cells stained with anti-Tpr-pS2094
(green) and anti-fibrillarin (red)
antibodies. Arrowheads indicate the
nucleolar staining. Scale bars: 10 mm.
(D) Immunofluorescence analysis of an
asynchronous HeLa cell population
stained with DAPI (DNA, blue) and anti-
Tpr (red) and anti-Tpr-pS2094 (green)
antibodies. Images of the cells captured
at different stages of mitosis are shown.
NEBD, nuclear envelope breakdown.
Scale bars: 5 mm.

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 3505–3520 doi:10.1242/jcs.149112

3512

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.149112/-/DC1


Jo
ur

na
l o

f C
el

l S
ci

en
ce

(Fig. 7C). Interestingly, upon rescue with the phosphorylation-
deficient mutant GFP–Tpr-Si-S2059A, we observed diminished
nuclear-rim staining of Mad1 protein (Fig. 7C). Similarly,

the nuclear localization of Mad2 could be restored upon
co-transfection with either GFP–Tpr-Si or GFP–Tpr-Si-S2094A
but not with the GFP–Tpr-Si-S2059A mutant (Fig. 7D,
GFP-positive cells indicated by arrow). These results clearly

demonstrate that phosphorylation at S2059 residue is crucial for
Tpr-mediated nuclear localization of the Mad proteins.

Phosphorylation of Tpr is crucial for mediating its role in
mitosis
Recently, Tpr-depleted cells were shown to undergo accelerated

mitosis, and Tpr-mediated stabilization of Mad1 and Mad2 was

shown to be required for a normal spindle assembly checkpoint
response (Schweizer et al., 2013). As the data presented in Fig. 7

demonstrated the importance of S2059 phosphorylation for the
appropriate localization of Mad proteins, we sought to determine
the role of S2059 phosphorylation in mitotic timing. To address
this question, Tpr-depleted HeLa cells were rescued with either

GFP–Tpr-Si or GFP–Tpr-Si-S2059A constructs. We imaged
transiently transfected GFP-positive live cells through mitosis,
from the appearance of the metaphase plate until the end of

anaphase. In accordance with the findings of Schweizer et al.
(Schweizer et al., 2013), the transition time from metaphase to
anaphase was shortened in Tpr-depleted cells (Fig. 8A,B). Upon

rescue with GFP–Tpr-Si, the mitotic timing was partially
restored, whereas the transfection of GFP–Tpr-Si-S2059A failed
to rescue the phenotype (the mitotic timing observed was similar

to that of Tpr-depleted cells; Fig. 8B). These results imply that
phosphorylation of S2059 is crucial for facilitating the role of Tpr
in mitosis. Although these results are fascinating, more-detailed
investigations with stable cell lines expressing GFP–Tpr-Si and

GFP–Tpr-Si-S2059A would help to determine the impact of
S2059 phosphorylation on the Tpr–Mad1–Mad2 complex during
mitosis.

Depletion of Tpr has been shown to lead to a chromosome-
lagging phenotype and results in cell cycle defects such as
multinucleation and the presence of micronuclei (Lee et al.,

2008). In concurrence with these results, when HeLa cells were
depleted of Tpr for ,96 h (by performing two rounds of
transfection), we observed micronuclei formation in ,38%

cells (Fig. 8C,D). Next, we performed rescue experiments
wherein Tpr expression was restored by co-transfecting Tpr-
siRNA along with siRNA-resistant GFP–Tpr wild-type or
phospho-mutant constructs. The GFP-positive cells (n550)

were then visualized for the presence of micronuclei by
confocal microscopy. In the cells transfected with the GFP–
Tpr-Si wild-type construct, the occurrence of aberrant

micronuclei was reduced to ,9%, suggesting that Tpr function
was reinstated upon rescue. However, when we restored Tpr
expression using siRNA-resistant GFP–Tpr-Si-S2059A or GFP–

Tpr-Si-S2094A, micronuclei were still detected in ,45% of
the cell population (Fig. 8E,F). These results indicate that
phosphorylation of Tpr on the S2059 and S2094 residues is
crucial for the role of Tpr in mitosis.

DISCUSSION
In the present study, we have identified novel in vivo

phosphorylation sites at S2059 and S2094 in the Tpr protein. We
demonstrate that PKA and CDK1 phosphorylate the Tpr protein
at S2094 and S2059 residues, respectively. Phosphospecific

antibodies were raised against these residues, and these
antibodies were found to be specific to the phosphorylated form
of the protein. Results indicate that both total Tpr protein levels and

its PKA-dependent phosphorylation are regulated during the cell
cycle. Specifically, we demonstrate that the S2059-phosphorylated
form of the Tpr protein differentially localizes with the chromatin
during telophase and that phosphorylation at this residue is crucial

for the interaction of Tpr with Mad1 protein. Abrogation of S2059
phosphorylation on Tpr compromises the localization of Mad
proteins and results in cell cycle defects.

The mammalian PKA and PKC, the Saccharomyces cerevisiae

casein kinase and the Aspergillus nidulans Ser/Thr kinase NIMA
have been shown to phosphorylate NPC components (Cai et al.,

2002; De Souza et al., 2004; Lusk et al., 2007; Miller et al.,

Fig. 6. S2059-phosphorylated Tpr localizes to chromatin at the end of
mitosis. (A) Immunofluorescence analysis of an asynchronous HeLa cell
population stained with DAPI (DNA, blue) and anti-Tpr-pS2059 (green) and
anti-Tpr (red) antibodies. Images of the cells at different mitotic stages are
shown. NEBD, nuclear envelope breakdown. Scale bars: 5 mm.
(B) Asynchronous HeLa cells were stained with anti-Tpr-pS2059 (green) and
mAB414 (red) antibodies. Cells imaged at interphase and telophase are
shown. Scale bars: 10 mm.
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Fig. 7. See next page for legend.
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1999). Phosphorylation of structural proteins of the NPC by PKA
or PKC has been suggested to be necessary for nuclear import

(Karin and Hunter, 1995; Nigg, 1990; Nigg, 1997; Pemberton and
Paschal, 2005; Terry et al., 2007; Wen et al., 1995). We have
previously shown that although Tpr has a limited role in protein
transport through the NPC, it specifically regulates the export

of CTE-dependent unspliced RNAs (Rajanala and Nandicoori,
2012). The results from our study suggest that phosphorylation
of Tpr by PKA does not have any impact on the known

transport function of Tpr. In our study, we observed that
S2094-phosphorylated Tpr localizes to the nucleolar
compartment. The nucleolar compartment serves as a major

hub for ribosome biogenesis, ribosomal (r)RNA processing and
transcription (Aitchison and Rout, 2000; Lewis and Tollervey,
2000). Several studies have reported that important factors which

regulate cell division, senescence, pre-mRNA processing, mRNA
export, stress response and telomere activity are transiently
localized to the nucleolus (Boisvert et al., 2007; Boulon et al.,
2010; Johnson et al., 1998; Olson et al., 2000; Pederson, 1998;

Raška et al., 2006). The stage-specific nucleolar sequestration of
certain cell cycle proteins, such as Cdc14 and Mdm2, has been
shown to regulate their activity and to be crucial for cell cycle

progression, by preventing early mitotic exit (Shou et al., 1999;
Tao and Levine, 1999; Visintin and Amon, 2000; Visintin et al.,
1999; Weber et al., 1999). Further detailed analysis needs to be

performed to examine the functional significance of nucleolar
sequestration of S2094-phosphorylated Tpr.

Mitotic kinases, such as Aurora kinase, PLK, Nek (NIMA-
related kinase) and CDK1, phosphorylate several nucleoporins

and the members of the spindle assembly and thereby have been
shown regulate crucial mitotic check points (Barr et al., 2004;
Ducat and Zheng, 2004; Fry et al., 2012; Ma and Poon, 2011;

Petronczki et al., 2008; Portier et al., 2007). In our study, we
observed that CDK1 phosphorylates Tpr on the S2059 residue.
The PLK1-dependent phosphoproteomic analysis of the human

mitotic spindle specifically demonstrated that many proteins of
the spindle assembly, including Mad1 and several nucleoporins,
such as Nup98, Nup153 and Tpr, were substrates for PLK1

(Santamaria et al., 2011). The site for the PLK1 phosphorylation
on the Tpr protein has been found to be the S1185 residue
(Santamaria et al., 2011). In addition, in our study, we identify the

S2034 residue on the C-terminal region of Tpr as a consensus site
for PLK1 phosphorylation. Depletion of PLK1 has been found to

decrease the association of Mad1 and Mad2 proteins to the
kinetochore (Ahonen et al., 2005; Kang et al., 2006). It was
speculated that the phosphorylation of proteins by PLK1 might
influence their localization to the spindles (Santamaria et al.,

2011). However, PLK1 was not found to be crucial for the
progression of mitosis controlled by the spindle checkpoint
(Petronczki et al., 2008).

Studies by various groups have tried to decipher the factors
involved along with Mad1 and Mad2 proteins in regulating the
spindle assembly checkpoint during mitosis. In budding yeast, it

has been demonstrated that phosphorylation of Bub1 by Mps1 is
essential for the Mps1-mediated recruitment of Mad1–Mad2
complexes to the kinetochores (London and Biggins, 2014). The

interaction of Mad1 protein with Bub1 has been found to be
crucial for the targeting of Mad1–Mad2 complexes to the
kinetochores (Heinrich et al., 2014; Moyle et al., 2014). The
phosphorylation of Mad1 by ATM kinase was shown to be crucial

for its heterodimerization with Mad2 (Yang et al., 2014). Apart
from the kinetochore recruitment of Mad2, Mad1 has additional
functions in regulating SAC (Heinrich et al., 2014; Kruse et al.,

2014). Furthermore, it is known that the timely relocalization of
Mad1 to kinetochores during metaphase can restore initially
silenced SAC activity (Kuijt et al., 2014). The nucleoporin Tpr

has been shown to be crucial for the maintenance of SAC
proteostasis in all stages of the cell cycle. Tpr is essential for the
localization of Mad2 but not Mad1 to the kinetochores

(Schweizer et al., 2013).
Previously, Tpr has been shown to directly interact with Mad1

and Mad2 proteins through its N-terminus and C-terminus,
respectively (Lee et al., 2008, Nakano et al., 2010). Co-

immunoprecipitation experiments revealed that although the
interaction of Tpr with Mad1 is modulated by S2059
phosphorylation, its interaction with Mad2 seems to be

independent of Tpr phosphorylation. Using immunofluorescence
experiments, we found that the localization of both Mad1 and
Mad2 proteins was dependent on the S2059 phosphorylation of

Tpr. This was somewhat unexpected in light of the data from the
co-immunoprecipitation experiments. Lee et al. have suggested
(Lee et al., 2008) that Tpr might act in a manner akin to a scaffold
at the pore, thus being required for the localization of Mad1 and

Mad2 proteins to the pore. It is possible that the abrogation of
phosphorylation on the S2059 residue of Tpr affects its suggested
functional role as a scaffolding protein at the NPC, thus having an

impact on the localization of both Mad proteins.
Cdk1-mediated phosphorylation has been shown to regulate the

breakdown of the nuclear envelope at mitosis and the dissociation

of the NPC into different subcomplexes (Lusk et al., 2007;
Macaulay et al., 1995; Mühlhäusser and Kutay, 2007;
Onischenko et al., 2005). The phosphorylation of Nup98 has

been shown to be essential for NPC dissociation (Laurell et al.,
2011). After mitosis, the NPC is reassembled at the pore step-
wise, and Tpr has been shown to be recruited at the last stage
(Bodoor et al., 1999; Hase and Codes, 2003). In agreement with

this data, we observed that whereas both FG-Nups and Nup153
began associating with the nuclear membrane during telophase,
both Tpr and S2059-phosphorylated Tpr have not yet been

recruited to NPC. An independent study has shown that the
nucleoporin Tpr is important for establishing nucleopore-
associated HEZs and thereby mediating the formation of

distinct intranuclear subcompartments (Krull et al., 2010). The

Fig. 7. Phosphorylation at S2059 is required for the interaction of Tpr
with Mad1 and the correct localization of Mad proteins. (A) COS-1 cells
were transfected with pCDNA3-FLAG construct or constructs encoding
FLAG–Tpr-Si, FLAG–Tpr-Si-S2059A, FLAG–Tpr-Si-S2094A or HA–Mad1.
At 36 h post-transfection, cells were lysed, and the lysates were
immunoprecipitated (IP) with anti-FLAG antibodies. The immunoblots were
probed with anti-FLAG and anti-HA antibodies to check for the presence of
the interacting HA–Mad1 protein. (B) COS-1 cells were transfected with
pCDNA3-FLAG construct or constructs encoding FLAG–Tpr-Si, FLAG–Tpr-
Si-S2059A, FLAG–Tpr-Si-S2094A or HA–Mad2. At 36 h post-transfection,
the lysates were immunoprecipitated with anti-FLAG antibodies. Western
blot analysis was performed using anti-FLAG and anti-HA antibodies to
check for the presence of interacting Mad2 protein. (C) HeLa cells were co-
transfected with Tpr-specific siRNA along with GFP–Tpr-Si or GFP–Tpr-Si-
S2059A or GFP–Tpr-Si-S2094A constructs. The next day, the cells were
replated and, 24 h later, the cells were re-transfected with Tpr-specific siRNA
and the same constructs. At 96 h after the first transfection, cells were
stained with anti-Mad1 antibodies (red) and analyzed by confocal
microscopy. Scale bars: 10 mm. (D) HeLa cells were co-transfected with Tpr-
specific siRNA along with GFP–Tpr-Si, GFP–Tpr-Si-S2059A or GFP–Tpr-Si-
S2094A constructs. At 48 h post-transfection, cells were stained with
anti-Mad2 antibodies (red) and analyzed by confocal microscopy. Arrowheads
indicate cells transfected with GFP constructs. Scale bars: 10 mm.
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Fig. 8. See next page for legend.
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results obtained in this study specifically indicate that Tpr
phosphorylated at the S2059 residue associates with the
chromatin at the telophase, just before the NPC reassembly.

The association of S2059-phosphorylated Tpr with chromatin
during telophase might also influence the ability of Tpr ability to
mediate nucleopore-associated perinuclear HEZs during the re-
formation of nuclear envelope.

The observations presented in this study unequivocally
demonstrate the importance of phosphorylation of Tpr on
S2059 and the S2094 residues in mitotic progression. Previous

reports have established the fact that Tpr acts as a scaffold that
recruits proteins that are required for chromosome segregation,
such as the Mad proteins and members of the dynein complex

(Lee et al., 2008). The necessity of S2059 phosphorylation
for Tpr–Mad1 interaction and localization suggests that S2059
phosphorylation might modulate the scaffolding function of Tpr.

Although S2094 phosphorylation does not seem to have any
effect on the Tpr–Mad1 interaction or Mad2 subcellular
localization, the inability of the mutant to rescue the
chromosome-lagging phenotype suggests a crucial role for

S2094 phosphorylation. An in-depth study of the mechanistic
details of Tpr phosphorylation would assist us in investigating
how crucial functions, such as spindle assembly and chromatin

organization, are modulated by Tpr, throwing more light on how
various cellular processes are regulated by the NPC during the
different stages of the cell cycle.

MATERIALS AND METHODS
Plasmid constructs, antibodies, inhibitors and siRNA
The construction of pcDNA3-Tpr, pcDNA3-TprC (TprC) and TprC-M4

and Tpr-M4-Si have been reported previously (Vomastek et al., 2008).

The pcDNA-TprC-M4-(S2059A), TprC-S2059A, TprC-M4-(S2094A)

and TprC-S2094A constructs were made by overlapping PCR using

appropriate mutagenic primers, and the mutations were confirmed by

DNA sequencing. The full-length clones FLAG–Tpr-Si-S2059A and

FLAG–Tpr-Si-S2094A were made by subcloning the NotI–PpuMI

fragments from TprC-S2059A and TprC-S2094A constructs into the

corresponding sites in the plasmid encoding FLAG–Tpr-Si (Vomastek

et al. 2008). The CMV-PKA plasmid was kindly provided by Pushkar

Sharma (National Institute of Immunology, New Delhi, India). The

plasmids encoding GFP–Tpr-Si, GFP–Tpr-Si-S2059A and GFP–Tpr-Si-

S2094A were generated by amplifying the ,7.5-kb full-length Tpr gene

from corresponding constructs encoding FLAG–Tpr using Phusion DNA

polymerase (New England Biolabs) and cloning the amplicons into

pcDNA6.2/C-EmGFP (Invitrogen).

The anti-Tpr mouse monoclonal antibody (ab58344) and antibodies

against nuclear pore complex proteins (mAb414), fibrillarin, Mad1,

Mad2 and b-actin were obtained from Abcam. The rabbit polyclonal

anti-Tpr antibody was kindly provided by Larry Gerace (Frosst et al.,

2002). The antibodies against ERK2, pS133-CREB, PKA, HA and

phosphorylated histone 3 were purchased from Cell Signaling

Technology. The anti-Nup153 antibody was obtained from Santa Cruz

Biotechnology. The anti-FLAG antibodies were obtained from Sigma.

The phosphospecific antibodies used in this study were custom-made

by PhosphoSolutions (Aurora, CO). The CREST anti-sera was kindly

provided by Mary Dasso (NIH, Bethesda, MD). All the secondary

antibodies were obtained from Jackson Immuno Research Laboratories.

NS-siRNA, Tpr-specific siRNA (Rajanala and Nandicoori 2012) and the

PKA-specific siRNA were obtained from Dharmacon. The inhibitors

used were against GSK3b (Inhibitor VIII, Calbiochem), PLK (BI2536,

Sigma), p38 kinase (SB203580, Sigma), Aurora kinase (MLN8237,

Shelleck) (gifted by Tapas Kundu, Indian Institute of Science, New

Delhi, India) and CDK1 (RO3306, Calbiochem) (gifted by Sandeep

Saxena, National Institute of Immunology, New Delhi, India).

p24 ELISA and b-galactosidase assay
The p24 ELISA and b-galactosidase assay were performed in HEK-293T

cells as described previously (Rajanala and Nandicoori, 2012). Briefly,

HEK-293T cells were transfected with 1 mg of NS-siRNA or Tpr-specific

siRNA along with 2 mg of construct encoding FLAG–Tpr-Si, FLAG–

Tpr-Si-S2059A or FLAG–Tpr-Si-S2094A, 250 ng of pCMV-Gag/

Pol-CTE and 100 ng of pCMV-b-Gal reporter constructs. At 48 h post-

transfection, the cells were replated and re-transfected. At 96 h post-

transfection, cells were lysed and the p24 levels and b-galactosidase

activity in the lysates were determined as described previously

(Rajanala and Nandicoori, 2012).

Cell culture and transfection
COS-1 cells and HeLa cells were grown in DMEM supplemented with

10% fetal bovine serum (FBS). All transfections were performed using

Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s

instructions. For observing the micronuclei upon Tpr depletion, HeLa

cells transfected with NS-siRNA or Tpr-specific siRNA were replated the

next day and, 24 h later, the cells were again transfected with the siRNAs

and incubated for an additional 48 h. At ,96 h after the original

transfection, the samples were analyzed by immunofluorescence.

Immunofluorescence
The cells were plated on coverslips and fixed in 4% paraformaldehyde.

The cells were then permeabilized using 0.1% Triton X-100 and blocked

with 10% chicken serum. The coverslips were mounted in Vectashield

anti-fade medium containing DAPI (Vecta Laboratories), and images

were acquired with the help of Carl Zeiss Axiovision LSM 510 Meta

confocal microscope using LSM5 software.

Metabolic labeling, phosphopeptide mapping and phospho-
amino-acid analysis
COS-1 cells grown in 100-mm dishes were transfected with 8 mg of

constructs, and the cells were metabolically labeled for 3 h and stimulated

with EGF (20 ng/ml) for 10 min. The metabolic labeling of COS-1 cells,

as well as phosphopeptide mapping and phospho-amino-acid analysis,

were performed as described previously (Vomastek et al., 2008).

Purification of the C-terminal fragment of Tpr from E. coli
Plasmids pQE2-TprC, TprC-S2059A or TprC-S2094A expressing the

carboxy-terminal fragments of Tpr were transformed into E. coli BL21

Fig. 8. Tpr-depleted cells rescued with phospho-mutants display cell
cycle defects. (A) Live-cell analysis of HeLa cells transfected with NS-
siRNA or Tpr-specific siRNA, and cells that were rescued with either GFP–
Tpr-Si or GFP–Tpr-Si-S2059A constructs. Representative images of cells at
metaphase, anaphase and telophase are shown. Scale bars: 20 mm.
(B) Analysis of the mitotic timing measured from metaphase until the end of
anaphase. Data was obtained from two independent experiments in which
cells were treated with control siRNA (4064.15 min; n59), depleted of Tpr
(29.565.45 min; n59) or depleted of Tpr followed by rescue with either
GFP–Tpr-Si (33.9166.6 min; n58) or GFP–Tpr-Si-S2059A
(27.7263.29 min; n58). Data show the mean6s.d.; *P50.0413;
***P50.0003; ****P,0.0001. (C) HeLa cells transfected with NS-siRNA or
Tpr-specific siRNA were replated the next day and, 24 h later, the cells were
again transfected with the same siRNA oligos. After ,96 h of Tpr depletion,
the cells were stained with anti-Tpr antibodies (red) to visualize the presence
of nuclear defects resulting from Tpr knockdown. DIC, differential
interference contrast. (D) Quantification of the percentage of HeLa cells
(n550) containing micronuclei after ,96 hours of Tpr depletion. Data show
the mean6s.d. (two independent experiments). (E) HeLa cells were
transfected with Tpr-specific siRNA along with constructs encoding GFP–
Tpr-Si, GFP–Tpr-Si-S2059A or GFP–Tpr-Si-S2094A. Immunofluorescence
analysis was performed at ,96 h after the first transfection. Arrowheads
indicate the presence of micronuclei. Scale bars: 10 mm. (F) Quantification of
the percentage of HeLa cells containing micronuclei after ,96 h of Tpr
depletion and following rescue with GFP–Tpr-Si, GFP–Tpr-Si-S2059A or
GFP–Tpr-Si-S2094A. Data show the mean6s.d. (n550, two independent
experiments).
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(DE3) Codon Plus cells (Stratagene). Cultures in the exponential phase of

growth were induced with 0.1 mM IPTG and incubated for 3 h at 37 C̊.

Cells were harvested, lysed by sonication in lysis buffer (20 mM Tris-

HCl pH 7.5, 200 mM NaCl and 10 mM b-mercaptoethanol) and clarified

by high-speed centrifugation. The cell lysates containing His-fusion

recombinant protein were nutated with equilibrated Ni–NTA agarose (GE

Healthcare) affinity resin. His-tagged protein was eluted with lysis buffer

containing 50–200 mM imidazole. Peak fractions were pooled and

dialysed against storage buffer (10 mM Tris-HCl pH 7.4, 50 mM NaCl

and 20% glycerol).

In vitro kinase assay
COS-1 cells were transfected with 8 mg each of constructs encoding wild-

type FLAG–TprC, FLAG–TprC-S2059A, FLAG–TprC-S2094A, HA–

ERK2 and CMV-PKA. The lysates of cells obtained at 36 h post-

transfection were immunoprecipitated with anti-FLAG, anti-HA or anti-

PKA antibodies. The immunoprecipitated FLAG–TprC was mixed with

immunoprecipitated HA–ERK2 and the kinase reaction was performed in

kinase buffer (25 mM HEPES pH 7.4, 20 mM magnesium acetate and

1 mM dithiothreitol) containing 10 mCi [c-32P]-ATP (Perkin Elmer,

Boston, MA), at 30 C̊ for 10 min. The immunoprecipitated CMV-PKA

sample was distributed and mixed either with the immunoprecipitated

FLAG–TprC, FLAG–TprC-S2059A or FLAG–TprC-S2094A samples,

and kinase reactions were carried out for 10 min at 30 C̊. The reactions

were stopped by adding 26 SDS sample buffer, followed by heating at

95 C̊ for 5 min. The samples were resolved by SDS-PAGE followed by

transfer onto nitrocellulose membrane and autoradiography.

To carry out the kinase assays with CDK1, the CDK1–cyclinB active

complex was purchased from New England Biolabs. A total of 5 mg of

MBP or 1 mg of purified wild-type or mutant His-TprC fragments were

incubated with 20 U of CDK1–cyclinB complex, and the kinase reactions

were performed with 10 mCi [c-32P]-ATP in the buffer provided by

manufacturer.

Characterization of phospho-specific antibodies
COS-1 cells were transfected with 2 mg each of pCDNA3-FLAG, FLAG-

TprC, FLAG-TprC-S2059A or FLAG-TprC-S2094A constructs. The

lysates obtained at 36 h after transfection were loaded alongside the

purified bacterial TprC protein. The samples were resolved, transferred

onto nitrocellulose membrane and the blot was probed with antibodies

against FLAG, ERK, Tpr, S2059-phosphorylated Tpr and S2094-

phosphorylated Tpr. For the detection of full-length Tpr protein,

COS-1 cells in six-well plates were transfected with 2 mg each of

pCDNA3-FLAG, FLAG-Tpr-Si, FLAG–Tpr-Si-S2059A or FLAG–Tpr-

Si-S2094A constructs. The lysates were then analyzed with antibodies

against FLAG, ERK, S2059-phosphorylated Tpr and pS2059-

phosphorylated Tpr.

Cell cycle synchronization and flow cytometry analysis
HeLa cells were grown in dishes of 100-mm diameter and treated with

nocodazole (40 ng/ml) for 16 h. The mitotic cells were shaken off, and

the released cells were replated in drug-free medium. The cells

harvested at different time-points after nocodazole release were

fixed in 70% ethanol at 4 C̊ with constant agitation for 16–18 h.

Cells were washed three times with 16 PBS and resuspended in

appropriate amounts of propidium iodide/RNase staining solution (BD

Biosciences). After incubation for 15 min, the cells were analyzed by

flow cytometry (BD FACS Calibur) using Cell Quest Software (BD

Biosciences).

Immunoprecipitation
COS-1 cells plated on 100-mm dishes were transfected with different

plasmid constructs (individually or in combination) using Lipofectamine

2000 (Invitrogen). Cells were harvested 36 h after transfection. To detect

co-immunoprecipitated HA–Mad1, cells were lysed with M2 lysis buffer

(50 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 1% Triton X-100,

0.5 mM EGTA and 0.5 mM EDTA) containing protease inhibitor

cocktail (Roche). To detect co-immunoprecipitated Mad2, hypotonic

lysis buffer (20 mM HEPES pH 7.4, 2 mM EGTA, 2 mM MgCl2,

200 mM sodium orthovanadate and protease inhibitor cocktail) was used

for cell lysis. The lysates were clarified by high-speed centrifugation and

the FLAG-tagged Tpr was immunoprecipitated with the help of anti-

FLAG-M2–agarose beads (Sigma). Immunoprecipitates were resolved by

SDS-PAGE on a 10% gel, followed by western blot analysis with

different antibodies.

Identification of phosphorylation sites by mass spectrometry
COS-1 cells on 100-mm dishes were transfected with FLAG–TprC-M4,

the cells were harvested at 24 h post-transfection and FLAG-tagged

TprC-M4 was immunoprecipitated as described above. FLAG–TprC-M4

bound to the beads was eluted using 0.2 M glycine (pH 2.0) and the

eluate was immediately neutralized by the addition of 1 M Tris-HCl

(pH 8.0). The eluate was dried and resuspended in freshly prepared

digestion buffer (8 M urea in 25 mM NH4HCO3), followed by reduction

and alkylation (Jagtap et al., 2012). Samples were diluted with 25 mM

NH4HCO3 to a final concentration of 1 M urea and processed and

analyzed as described previously, except that spectra were queried

against the Homo sapiens UniProt database (Jagtap et al., 2012).

Precursor Ions Area Detector node of proteome discoverer 1.3 (Thermo)

was used to calculate the area of all the identified peptides. The

stoichiometry of phosphorylation was determined using the equation

[(area of phosphorylated peptide/area of phosphorylated peptide+area of

non-phosphorylated peptide)6100].

2D gel electrophoresis
COS-1 cells in 100-mm dishes were transfected with FLAG–TprC-

M4, FLAG–TprC-M4-S2059A or FLAG–TprC-M4-S2094A and, 24 h

post-transfection, FLAG-tagged proteins were immunoprecipitated.

Bound proteins were eluted using 26 SDS sample buffer, and eluted

proteins were precipitated with five volumes of cold acetone. Precipitated

proteins were resuspended in 300 ml of 2D sample buffer and resolved on

pH 3.5–5.6 IPG strips (GE) as described previously, followed by western

blotting using anti-FLAG antibodies (Khan et al., 2010).

Live-cell imaging and statistical analysis
Transfected HeLa cells grown in DMEM supplemented with 10% FBS at

37 C̊ under 5% CO2 were imaged over time in a dedicated live-cell

chamber attached to a Carl Zeiss Axiovision LSM 510 Meta confocal

system using the 636 oil-immersion objective. The acquired time-lapse

images were analyzed using the LSM5 software. Statistical analysis was

performed using Graphpad Prism version 6.04. One way ANOVA

analysis was performed to analyze differences between the means of the

groups under study.
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