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ABSTRACT

Residue depth accurately measures burial and par-
ameterizes local protein environment. Depth is the
distance of any atom/residue to the closest bulk
water. We consider the non-bulk waters to occupy
cavities, whose volumes are determined using a
Voronoi procedure. Our estimation of cavity sizes
is statistically superior to estimates made by
CASTp and VOIDOO, and on par with McVol over a
data set of 40 cavities. Our calculated cavity
volumes correlated best with the experimentally
determined destabilization of 34 mutants from five
proteins. Some of the cavities identified are capable
of binding small molecule ligands. In this study, we
have enhanced our depth-based predictions of
binding sites by including evolutionary information.
We have demonstrated that on a database (LigASite)
of �200 proteins, we perform on par with ConCavity
and better than MetaPocket 2.0. Our predictions,
while less sensitive, are more specific and precise.
Finally, we use depth (and other features) to predict
pKas of GLU, ASP, LYS and HIS residues. Our results
produce an average error of just <1 pH unit over 60
predictions. Our simple empirical method is statis-
tically on par with two and superior to three other
methods while inferior to only one. The DEPTH
server (http://mspc.bii.a-star.edu.sg/depth/) is an
ideal tool for rapid yet accurate structural analyses
of protein structures.

INTRODUCTION

Atom/residue depth measures the degree of burial of an
atom/residue from bulk solvent (1). This simple measure
has found a variety of uses in characterizing physical and
chemical properties of protein structures. It has been
shown to correlate well with hydrogen/deuterium amide
proton exchange rates (1,2), structural stability (1), sizes of
globular domains (1,3), hydrophobicity (1,3,4), residue
conservation (4), protein activity and 3D structural
model accuracy (5). Further, residue depth has been
used to predict the location of folding nucleation sites
(4,6), protein–protein interaction hot spots (1), phosphor-
ylation sites (4) and small molecule-binding sites on
proteins (7).

This study reintroduces our web server to compute
residue depth. Here, we have explored three applications
of residue depth, namely, estimating the sizes of cavities in
proteins, improving protein ligand-binding site prediction
and predicting acid dissociation constant (pKa) for ioniz-
able amino acids GLU, ASP, LYS and HIS.

Our algorithm, DEPTH, inherently differentiates be-
tween bulk solvent waters and waters present in protein
cavities. These cavities could be of structural and/or func-
tional importance. For instance, cavities in the interior
could destabilize proteins, whereas some cavities on the
exterior could bind ligands. Here, we describe the depth-
based algorithms to compute the volumes of these cavities
and predict ligand-binding sites.

pKa is a measure of the protonation strength of ioniz-
able groups. Properties of proteins such as folding, stabil-
ity, solubility, dynamics, interactions and functions in
general could all be modulated by pKa (8–14). pKas of
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ionizable amino acid residues are sensitive to their imme-
diate protein/solvent environment. As depth is a concise
way of describing the residue environment in proteins, we
have used it here in conjunction with other features such
as accessible surface area (ASA), electrostatic interactions
and hydrogen bonds to predict pKa.

Amino acid protonation (or deprotonation) is some-
times not accurately described by a single value. Our
method, like many others, however simplifies the
problem and predicts one value of pKa that is most rep-
resentative of the interaction between the ionizable group
and its immediate environment. Accordingly, we have
benchmarked our method against pKa values that have
been experimentally determined unambiguously.

In the sections later in the text, we describe our methods
and show the benchmarks of our predictions. For each of
the applications of depth described later in the text, we
have compared our method with other popular methods
and tested the statistical significance of the differences in
results. Finally, we briefly describe the functioning of our
web server.

MATERIALS AND METHODS

Residue (or atomic) depth measures the closest distance of
the residue (or atom) to bulk solvent. We have described
the computation of this feature in detail earlier (1,7). In
the sections later in the text, we outline methods to
compute the sizes of cavities and detect which of these
are likely to bind small molecule ligands and compute
the pKa of ionizable residues of proteins.

Detection of cavities in proteins

The depth of protein residues are computed by distin-
guishing between bulk and non-bulk waters. Briefly, the
protein of interest is solvated [immersed in a box of
SPC216 waters (15)] a number of times by varying its
orientation [for a detailed description of the method, see
(1,7)]. Water molecules with less than a certain number of
neighbours (in this study—less than 2 waters within 4.2 Å)
are deemed non-bulk. Residue depth is computed as the
average distance to the closest bulk solvent molecule from
each solvation iteration.

All non-bulk water molecules are considered to be con-
tained in cavities. The solvated protein structures from the
different iterations are superimposed using CLICK
(16,17). Waters from different iterations are clustered
together if they lie within 1.2 Å of each other. A cavity
is identified if it contains at least two water molecules.
Each cavity contains a set of sometimes overlapping
water molecules that however do not clash with protein
atoms. The volumes of these water-containing cavities are
measured using a Voronoi procedure, a modification of a
protocol described earlier (18). Volumes are computed for
the protein with all water molecules and then again for the
same system without the non-bulk waters using the
program McCavity (19). The difference in these two meas-
urements gives us the initial estimate of cavity volume.
McCavity on average slightly overestimates volume
(Supplementary Table SA1), and hence the results were

re-calibrated using a linear fit: Vc=m1V+m2. Where Vc

is the expected volume, V is the volume computed by
McCavity. The values of constants m1 and m2 (0.8 and
21, respectively) are obtained from a least squares fit of
calculated to expected volumes. The output to our
program distinguishes between cavities that are buried
and exposed. All cavities that are lined by residues
whose minimum depth is greater than 3.75 Å are con-
sidered buried cavities, or inaccessible to bulk solvent.

Datasets
The relatively larger residues VAL, LEU, ILE, MET,
PHE and TRP were all mutated in silico to ALA in 40
different positions in 13 proteins (Supplementary Table
SA1). The mutations were effected by simply deleting all
side chains atoms after the CB atom. No minimization
was performed. The volumes of the cavities thus created
are expected to be the differences in molecular volume
between the large amino acid and ALA (19). This data
set was split randomly into training and testing sets of
20 mutants each. The volume calibration described
earlier in the text used the training set data only.
Another data set of 34 proteins was compiled from the
PDB (Supplementary Table SA2). These proteins were
cavity-containing point mutants of RNase S, Barnase,
Gene V protein, T4 Lysozyme and Human Lysozyme.
Experimentally determined changes to protein stability,
in terms of free energy change (��Go values), are avail-
able for all 34 mutants.

Small molecule ligand-binding site prediction

Previously (7), we developed a simple method to predict
small molecule ligand-binding sites based on the obser-
vation that ligand-binding residues on proteins were
simultaneously deep and accessible to water. The
accuracy of our method was comparable with that of
other more sophisticated methods such as LIGSITE
(20), Pocket-Finder (21) and SURFNET (22). In this
study, we have enhanced our prediction schema to
include evolutionary information (in terms of residue con-
servation). The enhanced procedure consists of four con-
secutive steps.

(i) Assigning ligand-binding probability to residues. For
every residue in a protein, its ligand-binding prob-
ability Pi was assigned based on its amino acid type
R, depth D and solvent accessibility S from a
database of 900 single chain ligand-bound proteins as

Pi ¼
Rbound

S,D

Rtotal
S,D

ð1Þ

A detailed description of this has been given earlier
(7).

(ii) Adjustment to binding probability using evolution-
ary information. To incorporate evolutionary infor-
mation, Pi was adjusted with a conservation score Ji
as a weighted average to give the adjusted binding
probability qi.

qi ¼ �P
0
i+ð1� �ÞJ

0
i ð2Þ
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where a is an optimized weighting coefficient (see
end of this section for note on weight optimization),
Pi
0 and Ji

0 are the normalized binding probabilities
of residue and conservation score, respectively.
The conservation score Ji of a position i was defined
as its Jensen–Shannon divergence with respect to a
background distribution of amino acid residue oc-
currence. To compute Jensen–Shannon divergence,
a multiple sequence alignment of homologues for
the protein was obtained by running five iterations
of PSI-BLAST (23) against the uniref90 sequence
database (24) with an e-value cut-off of 0.0001.
The Jensen–Shannon divergence Ji at a position i
is given by

Ji ¼
1

2

X20
a¼1

fia ln
fia

f bga
+f bga ln

f bga
fia

 !
ð3Þ

where fia is the frequency of residue a at position i
and f

bg

a
is the frequency of the residue a in the back-

ground distribution.
In addition, pseudo-counts were introduced (25) to
account for sparseness of data using the following
formulae–

fia ¼
nia+bia
Ni+Bi

ð4:1Þ

bia ¼ Bi

X20
k¼1

nik
Ni
�

tka
Tk

ð4:2:1Þ

where Tk ¼
X20
a¼1

tka ð4:2:2Þ

Bi ¼ m� Ri ð4:3Þ

where for amino acid a at position i, fia is its
occurring probability, nia is its frequency and bia is
its pseudo count. Ni and Bi are the total number of
residue counts and pseudo counts at position i, re-
spectively. tka is the probability that amino acid k
would be substituted by amino acid a as estimated
from the BLOSUM62 matrix (26). Tk is the overall
probability of substituting amino acid k. m is a par-
ameter that has been set to 5 and Ri is the number of
different residue types at position i.
As conservation score J and binding probability P
differ in magnitude, both measures were normalized
to unity using

S0i ¼ max min
Si � Smin, 5

Smax, 5 � Smin, 5
, 1

� �
, 0

� �
ð5Þ

where S0i is the normalized measure, Smin,5 and
Smax,5 are the mean values of the smallest and
largest five values of the respective measures.

(iii) Predicting cavity waters to be displaced. At every
solvation cycle, using the adjusted residue-binding
probabilities, we estimate for every cavity water
(identified as described previously in section on de-
tecting cavities), its likelihood to be displaced by a

small molecule ligand. The displacement likelihood
D is given by

D ¼
Y
c

1�
Y
i

1� qci
� � !

ð6Þ

where q
c

i
is the adjusted binding probabilities of

residue i from chain c that is within 5.6 Å of the
cavity water. We assume that displacement likeli-
hood of a cavity water from two different chains
are independent of one another [Equation (6)].
Additionally, we made the assumption that a ligand
must displace at least two water molecules (distance
between displaced waters should not exceed 4.2 Å,
i.e. 1.5 hydration shells) for a binding event to
occur. Hence, for every cavity water, its neighbour-
ing cavity waters within 4.2 Å are identified. The dis-
placement likelihood of a cavity water was assigned
as the average of the two highest displacement like-
lihoods of its and its neighbouring waters.

(iv) Prediction of binding site residues. A cavity water
was predicted to be displaced when the averaged
displacement likelihood exceeds a threshold value
b. All residues with at least one atom within 6.5 Å
of this cavity water were listed as binding site
residues candidates. The candidate residues listed
from different solvation iterations could be slightly
different owing to differences in cavity water config-
urations. A residue was predicted to be part of the
binding site if it was listed in >60% of the solvation
iterations.
The values of weighting coefficient a [Equation (2)]
and threshold value b were optimized for the
Matthews Correlation coefficient (MCC) (see
‘Results’ section) over a training set of 99 ligand
bound PDB structures (Supplementary Table SB1),
using a grid search of step 0.05 and 0.1, respectively.
The optimized values of a and b were 0.7 and 0.8,
respectively.

Protein ionizable amino acid pKa prediction

The model pKa value of an ionizable amino acid residue
(in this study, ASP, GLU, LYS or HIS) is determined by
titrating isolated amino acids in solution (27). In the
context of proteins, pKa values are dependent on their
immediate environments and could shift from these
model pKa values. We predict these shifts by characteri-
zing the environment of ionizable groups using depth and
other features.

The features used to describe the environment include (i)
average depth of main-chain atoms (DEPTHMC), (ii)
average depth of polar side-chain atoms (DEPTHpolar SC),
(iii) number of hydrogen bonds involving the ionizable
groups as donor or acceptor (HB), (iv) The electrostatic
energy, calculated in vacuum, of the interaction between
the ionizable groups and their environments (truncated at
a cut-off distance of 12 Å) (EE) and (v) percentage side-
chain solvent ASA (ASASC). For simplicity, these features
are combined in the form of a linear combination
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pKa ¼ pKmodel
a +c0+c1DEPTHMC+c2DEPTHpolarSC

+c3HB+c4EE+c5ASA
SC

ð7Þ

where c0-c5 are the coefficients of the linear combination.
Hydrogen bonds were detected between donor-acceptor

pairs if they were (i) within 3.5 Å of one another and (ii)
the donor-acceptor-acceptor antecedent angle was 100� or
greater [adapted and modified from (28)]. For computa-
tion of electrostatics energy, hydrogen atoms were expli-
citly added using the program Reduce (29). All acidic
groups were assumed deprotonated, whereas the basic
groups were assumed protonated (HIS was assumed
protonated at d and e positions). Partial charges were
assigned to all atoms using values from the gromos43a1
force field (30). ASA was computed using the Shrake–
Rupley algorithm (31).

Data sets and parameter optimization
The coefficients of the linear combination were obtained
by optimizing the predictions on a training set of 112 ASP,
125 GLU, 70 LYS and 60 HIS residues, whose pKa values
were experimentally determined (Supplementary Table
SC1). The coefficients of the linear combination for
each of the amino acids were optimized separately. The
prediction formula was then tested on a set of 15 GLU, 15
ASP, 15 LYS and 15 HIS (Supplementary Tables SC1 and
SC3). None of the testing set data overlapped with the
training set.

In the cases where the pKas were determined for
mutants of proteins, homology models were built using
the mutate_residue command of MODELLER (32). In
other cases where structures reported more than one al-
ternative conformation for residues, the first listed con-
formation was always chosen.

The features of the linear combination here were
selected from amongst a large number of features that
were tested to describe residue environment (Supplemen-
tary Table SC2). Polar side chain atom depth and main
chain atom depth were the most informative of the envir-
onmental features.

RESULTS

Cavity size estimation

We first tested the efficacy of our method to accurately
compute the volumes of cavities in proteins. For this
purpose, we chose the 20, in silico, large-to-small amino
acid mutations that constituted the testing set (see
Materials and Methods’ section). On average, we
overpredict cavity volumes by about 0.9 Å3 (Table 1).
We compared the performance of our method with
those of McVol (33), VOIDOO (34) and CASTp (35).
McVol and VOIDOO were run locally with default par-
ameters while CASTp results were obtained by submitting
the input PDB files to the server http://sts-fw.bioengr.uic.
edu/CASTp/calculation.php. The errors in our method
are consistently lower than those of the other methods
compared (Table 1). Although McVol (average error:
1.3 Å3) performs statistically on par with our method,
we are statistically significantly better than CASTp

(average error: 23.2 Å3) and VOIDOO (average error:
�96.1 Å3) according to a Wilcoxon paired sign rank test.

Correlation with mutational stability

We next tested how well our method, and the others,
estimated the instability of mutations. For this, we used
the data set of 34 crystal structures of single point (large-
to-small) cavity containing mutants of RNAse S, Barnase,
Gene V protein, T4 Lysozyme and human Lysozyme. Our
volume estimates are better correlated (r2=0.75, as
compared with 0.65 and 0.28 for CASTp and McVol, re-
spectively) to the experimentally determined free energy
change (��G�) for each of the mutants (Figure 1).
McVol, the next best method failed to predict cavities in
6 of the 34 cases while we detected all cavities except 1.

Protein small molecule ligand-binding site prediction

Benchmark
In all, 299 proteins complexed to small molecule ligands
were taken from the LigASite database v7.0 (36) for
benchmarking. The data set consisted of 119 single- and
180 multi-chain proteins, filtered for non-redundancy
(25%) and for which evolutionary information was avail-
able. This data set was divided into a training set of 99
structures (39 single-chain, 60 multi-chain) and a testing
set of 200 structures (80 single-chain, 120 multi-chain).
The training and testing sets do not overlap with each
other (Supplementary Table SB1).
MCC (37) was computed to assess the performance of

binary classification of residues (binding site or non-
binding site) for each protein structure. It is computed as

MCC ¼
TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP+FPð Þ TP+FNð Þ TN+FPð Þ TN+FNð Þ
p ð8Þ

where TP, TN, FP and FN represent the rates of true
positives, true negatives, false positives and false nega-
tives, respectively. The overall performance of a predictor
was measured as its mean MCC over the testing set.
We have compared our performance with the popular

small molecule ligand-binding site predictor, ConCavity
(38) and a meta-algorithm MetaPocket 2.0 (39).
ConCavity adds evolutionary information to enhance
three other popular binding site prediction methods—
LIGSITE (20), Pocket-Finder (21) and SURFNET (22).
The addition of evolutionary information makes
ConCavity outperform the original methods (7,38). In
our tests, ConCavity was run using LIGSITE for struc-
tural geometry with all parameters set to their default

Table 1. Cavity size estimations by DEPTH, CASTp, VOIDOO and

McVol

DEPTH CASTp McVol VOIDOO

Average error in
cavity size estimation

0.9 Å3 23.2 Å3 1.3 Å3
�96.1 Å3

P-value 0.0002 0.4317 <0.0001

The P-values reported are from a Wilcoxon paired sign rank test
applied to compare DEPTH with the other methods.
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values (7,38). Evolutionary information for ConCavity
was obtained at http://compbio.cs.princeton.edu/Con
Cavity/pqs/jsd/. MetaPocket is a consensus method that
takes into consideration output from eight different
binding site predictors including LIGSITEcs (40), PASS
(41), Q-SiteFinder (42), SURFNET (22), Fpocket (43),
GHECOM (44), ConCavity (38) and POCASA (45).
MetaPocket 2.0 was run through the web-server at
http://projects.biotec.tu-dresden.de/MetaPocket/, and the
number of predicted binding sites was set to 1.
MetaPocket 2.0 returns predictions for only a fraction of
the LigASite testing set. The comparisons of MetaPocket
to DEPTH and ConCavity were done on 110 proteins (70
single- and 40 multi-chain).
For single chain proteins, DEPTH performs on par with

MetaPocket 2.0 (MCC: 0.55) and better than ConCavity
(MCC: 0.53). For multi-chain proteins, DEPTH and
ConCavity performed better (DEPTH MCC: 0.47,
ConCavity MCC: 0.50) than MetaPocket 2.0
(MetaPocket 2.0 MCC: 0.33). The overall performance
of DEPTH and ConCavity are similar (DEPTH MCC:
0.50, ConCavity MCC: 0.51), and a two-tailed paired t-
test showed that the difference is not statistically signifi-
cant (P=�0.8) The same test showed that both methods
are significantly better than MetaPocket 2.0 (MetaPocket
2.0 MCC: 0.47) (Table 2).
By incorporating evolutionary information, the enhan-

ced DEPTH ligand-binding site prediction improves over
our previous method (MCC: 0.39) (7). A statistical
analysis of DEPTH with ConCavity and MetaPocket 2.0
was performed (Table 3). Although DEPTH (0.63) is not
as sensitive as ConCavity (0.80) and MetaPocket 2.0
(0.71), its predictions are more specific (DEPTH specifi-
city: 0.92, ConCavity specificity: 0.87, MetaPocket 2.0 spe-
cificity: 0.89) and more precise (DEPTH precision: 0.48,
ConCavity precision: 0.43, MetaPocket precision: 0.43).
The predictions of DEPTH and ConCavity partially

overlap with each other. Of all predictions made by
DEPTH, 67.6% overlap with ConCavity. Of the consen-
sus predictions by the two methods, 61.3% are true
binding sites. In all, 49.4% of binding sites were predicted
by both methods, and 86.3% of all binding sites were

predicted by at least one of the methods (see Supplemen-
tary Figure SB1).

Ionizable amino acid pKa prediction

Using the known pKa values of 367 residues in the
training set, the coefficients of the linear combination of
environment features [Equation (7)] were optimized
(Table 4). Using these optimized values, pKa predictions
were made on 60 residues in the testing set (Supplementary
Table SC1). On average, the root mean squared deviations
(RMSDs) of our predictions were �0.96 pH units away
from that of the experimentally determined values. Our
predictions for ASP were closest to the experimentally
determined values (RMSD=0.71), whereas predictions
for HIS were the farthest (RMSD=1.26).

We compared our predictions with those made by
other methods including (i) Molecular dynamics/

Figure 1. Correlation between experimentally measured free energy change on mutation (��Go) and cavity sizes computed by DEPTH (a), CASTp
(b) and McVol (c).

Table 2. The MCC values for DEPTH, ConCavity and MetaPocket

2.0 binding site residue predictions over the testing set

DEPTH ConCavity MetaPocket 2.0

Single-chain
N 80 80 70
MCC 0.55 0.53 0.55
Difference 0.02 0.00
P-value 0.39 0.47

Multi-chain
N 120 120 40
MCC 0.47 0.50 0.33
Difference �0.02 0.15
P-value 0.34 0.04

All
N 200 200 110
MCC 0.50 0.51 0.47
Difference 0.00 0.03
P-value 0.78 0.04

Each data set was divided into single-chain and multi-chain categories.
For each category, a two-tailed paired t-test was performed to test the
statistical significance of difference between DEPTH MCC values and
those of ConCavity and MetaPocket 2.0. P-values from two-tailed
paired t-test are reported. N denotes the size of the dataset over
which the comparisons were made.
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generalized-Born/thermodynamic integration (MD/GB/
TI), with and without water (46), (ii) PROPKA (27), (iii)
Geometry-dependent dielectric method (47), (iv) micro-
environment screened Coulomb potentials (Microenv
SCP) (48), (v) EGAD (49), (vi) Monte Carlo sampling
with continuum electrostatics (MCCE) (50) and a
Quantum mechanics/molecular mechanics (QM/MM)
method (51) (Supplementary Table S5). The values of
the testing set pKas predicted from the methods listed
earlier in the text, except PROPKA were obtained from
literature (52). PROPKA 3.0 was run over the web server
(http://propka.ki.ku.dk/) using default parameters.

In terms of the error in predicting pKas, our predictions
were significantly better (at 95% confidence using a
Wilcoxon paired sign rank test) than the predictions of
MD/GB/TI, Geometry-dependent dielectric method and
EGAD (Table 5). Our results were on par with the
PROPKA 3.0 and MCCE methods. Only QM/MM
(0.30 pH units over five predictions) and Microenv SCP
(0.70 pH units over 43 predictions) methods have lower

pKa errors than our predictions (0.96 pH units). Though
the Microenv SCP method is statistically superior to our
simple empirical method, we are closer to the experimen-
tally determined value in 18 and worse in only 21 of the 43
common predictions.

Server description

Our server computes depth at the atomic/residue level and
as applications, calculates cavity volumes, predicts the
location of small molecule-binding sites and predicts the
pKa of ionizable amino acid residues. The web server is
freely accessible without login requirements at http://
mspc.bii.a-star.edu.sg/depth. Users have a choice of up-
loading a protein structure (in PDB format) or specifying
the four-letter PDB code. The optimal values of param-
eters are set by default on the server. Users have the
option to override the default values to cater to specific
biological systems. Help pages provide information about
the program and its different parameters.

Table 5. RMSDs of pKa prediction of DEPTH and other methods to experimentally determined values

MD/GB/TI
with waters

MD/GB/TI
without waters

PROPKA3.0 Geom dep
dielectric

Microenv
SCP

EGAD MCCE QM/MM DEPTH

ASP 1.9 (4) 1.3 (15) 0.7 (15) 0.8 (14) 0.8 (12) 0.8 (10) 1.4 (12) 0.3 (1) 0.7 (15)
GLU 1.9 (3) 1.1 (15) 1.0 (15) 0.9 (14) 0.7 (13) 1.2 (8) 0.9 (14) 0.3 (4) 1.1 (15)
HIS 1.7 (7) 1.9 (15) 1.6 (15) 1.3 (15) 0.5 (9) 1.4 (7) 1.6 (9) 1.3 (15)
LYS 2.5 (1) 0.9 (15) 0.7 (15) 0.8 (9) 0.6 (9) 1.1 (11) 0.8 (15)
Total 1.9 (15) 1.4 (60) 1.1 (60) 1.0 (52) 0.7 (43) 1.2 (25) 1.3 (46) 0.3 (5) 1.0 (60)
P-value <0.001* <0.0001* 0.48 0.01* 0.02* 0.04* 0.45

The number of predictions are given in parentheses. The P-values listed are from a Wilcoxon paired sign rank test comparing the DEPTH to the
other methods.
*Indicates that statistically significant difference.

Table 4. RMSD of predicted pKa from experimentally determined values, in pH units

Residue type model pKa

(pH units)
c0 c1 c2 c3 c4 c5 RMSD (pH units)

Training set (size) Testing set (size)

ASP 3.8 �2.18 0.29 0.47 �0.61 0.16 �0.15 1.02 (112) 0.71 (15)
GLU 4.5 �1.91 �0.1 0.79 �0.19 0.26 �0.09 0.83 (125) 1.07 (15)
HIS 6.5 3.13 �0.04 �0.54 0.28 �1.12 �0.83 1.14 (60) 1.26 (15)
LYS 10.5 4.22 �0.21 �0.19 �0.01 �7.65 �1.81 0.86 (70) 0.80 (15)
Total 0.94 (367) 0.96 (60)

c0–c5 are the coefficients of the linear recombination [Equation (7)].

Table 3. Statistical analysis of binding residues predictions of DEPTH, ConCavity and MetaPocket 2.0

Methods N TP FP TN FN Sensitivity Specificity Accuracy Precision

DEPTH 200 0.07 0.07 0.82 0.04 0.63 0.92 0.89 0.49
ConCavity 200 0.08 0.11 0.78 0.02 0.80 0.87 0.87 0.43
MetaPocket 2.0 110 0.08 0.10 0.79 0.03 0.71 0.89 0.87 0.43

TP, FP, TN, FN represent the mean values of true positive, false positive, true negative and false negative rates over the testing set, respectively.
The testing set of 200 protein structures (for MetaPocket 2.0 comparisons, the size of the dataset was 110) consists of 12 020 binding site and 112 035
non-binding site residues. The average chain lengths of single- and multi- chain protein are 308 and 277, respectively. Of 120 multi-chain proteins, 77
are dimers, 3 are trimers, 22 are tetramers and the remaining 13 consist of five or more chains.
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The results of the computation/prediction are returned
in pictorial representation and/or rendered using the Jmol
viewer (http://www.jmol.org/), with appropriate accom-
panying figure legends. Users can download the results
in tab-delimited and/or PDB formats. All results will be
stored for up to 30 days. Stand-alone versions of the
programs to compute depth, ASA and predict binding
site residues are all available for download.

DISCUSSION

The new version of our server re-establishes the import-
ance of depth as a measure of determining several physical
features of proteins. Having previously established its
general utility, we have added three new application fea-
tures—computing the sizes of cavity volumes, predicting
ligand-binding sites and predicting pKas of ASP, GLU,
LYS and HIS residues.
Computing the depth of amino acid residues in proteins

forms the basis of estimating cavity sizes within proteins.
Although computing depth, water molecules from a
solvating box are divided into bulk and non-bulk waters.
The non-bulk waters usually occupy cavities. A Voronoi
method was used to estimate the volumes of these cavities.
Our volume estimates scale linearly with the experimen-
tally measured change in free energy associated with cavity
creating mutations, making it an accurate predictor of
protein stability on mutation. Our relatively swift
running program could also be used to help design
cavity-filling mutations to structurally stabilize proteins.
Some of the cavities have the capability of binding small

molecule ligands. We have refurbished our earlier method
to predict such sites by adding evolutionary information in
addition to the depth-related predictions of plausible
binding site residues. Our method produces results that
are now on par with the best prediction programs.
Though the identification of binding sites is based on a
relatively coarse measurement involving residue depth,
our predictions are more specific and precise when
compared with the predictions made by ConCavity and
MetaPocket 2.0. DEPTH is an attractive and simple tool
for functional annotation as well as finding suitable drug-
docking sites.
Depth is a simple yet informative measure of protein

internal environment. Several physical properties of
proteins correlate well with depth. In this study, we have
showcased this utility of depth in helping predict the pKa

of ionizable amino acid residues. Benchmarking results
show that our empirical method is statistically indistin-
guishable from other methods such as MCCE and
PROPKA 3.0, while being superior to the methods
MD/GB/TI, Geometric dependent dielectric and EGAD.
Although our predictions of the pKa’s of Histidine in
general are a little weak, the method is rapid and
performs at almost the same level of accuracy than other
more sophisticated methods.
The DEPTH server is simple to use, and the output is

presented to the users either visually on the output page or
links are provided for downloading results. Given the
proven general utility of depth and its correlation to

several physical features, we hope to grow this server by
adding more biologically relevant applications. Depth
should be included as a standard measure in structural
studies related to proteins and their functions.
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