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A bifurcation analysis of the dynamical behavior of a horizontal Rijke tube model is performed
in this paper. The method of numerical continuation is used to obtain the bifurcation plots,
including the amplitude of the unstable limit cycles. Bifurcation plots for the variation of
nondimensional heater power, damping coefficient and the heater location are obtained for
different values of time lag in the system. Subcritical bifurcation was observed for variation of
parameters and regions of global stability, global instability and bistability are characterized.
Linear and nonlinear stability boundaries are obtained for the simultaneous variation of two
parameters of the system. The validity of the small time lag assumption in the calculation of
linear stability boundary has been shown to fail at typical values of time lag of system. Accurate
calculation of the linear stability boundary in systems with explicit time delay models, must
therefore, not assume a small time lag assumption. Interesting dynamical behavior such as 
co-existing multiple attractors, quasiperiodic behavior and period doubling route to chaos have
been observed in the analysis of the model. Comparison of the linear stability boundaries and
bifurcation behavior from this reduced order model are shown to display trends similar to
experimental data.

1. INTRODUCTION
Combustion instability is a plaguing problem in the development of combustors for
rockets and gas turbines used in jet engines and power generation [1]. Fluctuations in
heat release rate arise due to acoustic fluctuations. They can further act as a source of
acoustic fluctuations and the coupled system can reach self-sustained large amplitude
oscillations. Combustion instability is caused when the fluctuating heat release rate and
the acoustic field form a positive feedback loop.

Traditionally, linear stability analysis is performed by examining the spectrum of the
linearized system. When all the eigenvalues of the system are in the left half of the
complex plane, the eigenmodes of the system have negative growth rates and therefore
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the system is linearly stable. If one or more of the eigenvalues lie on the right half of the
complex plane, correspondingly the eigenmodes have positive growth rates and the
system is linearly unstable. In a linearly unstable system, any infinitesimal initial
perturbation grows exponentially and asymptotically reaches another state different
from the initial state. A linearly stable system can also exhibit subcritical transition to
instability and asymptotically reach another state for suitable initial conditions. This
type of subcritical transition to instability from a finite amplitude initial condition is
called triggering [2].

Triggering has been exhibited in solid rocket motors [2] and also in Rijke tube [3].
Triggering can cause a system which is linearly stable to become unstable in the
presence of a finite amplitude disturbance. Therefore in systems exhibiting subcritical
transition to instability, it is important to determine the nonlinear stability boundaries
and the limit cycle characteristics. As linear stability analysis cannot predict the limit
cycle characteristics, nonlinear stability analysis or bifurcation analysis of
thermoacoustic instability is necessary.

We will perform nonlinear stability analysis of a thermoacoustic system by using a
simple model for thermoacoustic oscillations in a horizontal Rijke tube [5] that displays
the essential features. Rijke tube is an acoustic resonator tube, which consists of a heat
source (in the present case, an electrical heater), positioned at some axial location. A
mean flow is maintained at a desired flow rate using a blower. A correlation between the
heat release rate fluctuations at the heater location and the acoustic velocity fluctuations
at the heater [10] is used to model the fluctuating heat release rate from the heater in the
Rijke tube [5]. In the present paper, we use this model problem to understand the
nonlinear dynamics in a Rijke tube. Approaches used to study instability in a Rijke tube
are briefly reviewed below.

1.1. Thermoacoustic instability in a Rijke tube
Self-sustained thermoacoustic oscillations are observed in the Rijke tube when the
heater is positioned at certain axial locations of the tube and beyond some threshold
power level. Linear models for the unsteady heat release rate due to the acoustic velocity
fluctuations were used to calculate linearly unstable locations along the Rijke tube [6].
The stability thus predicted is the linear stability of the system; i.e. the stability of
oscillations in the asymptotic time limit for small amplitude oscillations. Therefore this
method cannot predict finite amplitude effects such as triggering instabilities and the
limit cycle characteristics. Estimation of the amplitude of acoustic oscillations during
limit cycle is important from the design point of view for gas turbines. For this, the
nonlinearity in the heat release rate response of the heater has to be included [7] in the
analysis. CFD based analysis was also used to study Rijke tube oscillations with 
the heat source being considered as a heated flat plate [8] or as flow over a cylinder [9]. 
The transfer functions obtained from CFD simulations of flow around cylinders [7]
have been used to study the bifurcation behavior in a Rijke tube [3, 4].

In most of the cases, solving the governing equations to obtain the unsteady heat
transfer from the heater is computationally expensive. For those cases, a low order
model is used to simulate the nonlinear response of the heater. A low order time lag
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model based on a correlation for the heat release rate given by Heckl [10] has been used
to model the dynamics of the heater [5]. The Rijke tube model thus obtained is a
physical model which is based on experimental observations. In this paper, results from
the present low order model are compared with experimental results obtained by
Matveev [4].

This above mentioned low order model is seen to retain the diverse dynamical
behavior of the thermoacoustic instability in a Rijke tube and exhibits nonlinear
phenomena such as subcritical transition to instability and limit cycles. Bifurcation
analysis of low dimensional models of systems has been studied using many techniques
for combustion instabilities in combustion chambers [11, 12]. This analysis can be used
to identify the nature of the transition to instability and to characterize the finite
amplitude oscillations produced. A brief review of the techniques used in bifurcation
analysis is given below.

1.2. Techniques for bifurcation analysis
The approach of obtaining bifurcation diagrams by systematic variation of parameter
and tracking direct time integration was used by Moeck [13], Mariappan & Sujith [9].
This method is computationally expensive. Moreover, the basins of attraction obtained
for the limit cycle and the steady state remain specific to the type of initial condition
applied, making it not suited for systems which exhibit pulsed instability [12]. Accurate
knowledge of the basins of attraction can be critical in understanding the global
dynamics of the system [14].

Numerical continuation [12, 15] is an alternate approach to obtain bifurcation
diagram from a numerical model. This method aims to solve a set of parameterized
nonlinear equations iteratively given an initial guess for the state of the system.
Solutions which satisfy the set of equations and which are additionally connected to a
given state of the system are tracked for a given smooth variation of one or more
parameters. Bifurcations are identified by including multiple test functions which
change sign at the critical value of the parameter. This method has the advantage that
once a stationary or periodic solution has been computed, the dependence of the
solution on the variation of a parameter is obtained very efficiently as compared with
the other methods described earlier. It can also be used to compute unstable limit cycles.

Jahnke & Culick [11] used the continuation method to obtain the amplitudes of
longitudinal acoustic modes in a combustion chamber. They obtained bifurcation plots
for different number of normal modes of the combustion chamber. Pitchfork
bifurcations leading to limit cycles and torus bifurcation leading to quasiperiodic
motions were observed in this analysis. Burnley [16] investigated the stability of a
combustion chamber using numerical continuation and the effect of combustion noise
on the stability of the system. Reduced order models for the combustion chambers have
been solved by the framework of expanding the pressure and velocity fields in terms of
modal or basis functions. Ananthkrishnan et al. [12] examined the issue of modal
truncation and established the number of modes required to accurately capture the
dynamics of the system. Control of a simple one-mode model of the thermoacoustic
system model was performed by Fannin et al. [17].
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However, in numerical continuation, the different types of equations encountered in
models of physical systems require special attention during the analysis stage. As an
example, numerical continuation methods used for models containing delay differential
equations must be capable of handling time delay systems. This is essential in the present
paper as the low order model used for the Rijke tube contains an explicit delay term.

Numerical continuation methods for delay systems have been developed by
Engelborghs & Roose [18, 19]. Their software called DDE-BIFTOOL, has been used to
obtain the bifurcation results in the present paper. A system of delay differential equations
is infinite-dimensional and has an infinite number of roots associated with the steady
state which govern its stability. However, only a finite number of them have real part
greater than a specified value and hence finitely many of the dominant roots govern the
dynamics. In DDE-BIFTOOL [18] the steady state of the system is evaluated iteratively
using a Newton-Raphson scheme and the obtained steady state is then used to continue
the solution curve for variations of one or more chosen parameters of the system.

The dominant roots (with real parts greater than a value specified by the user)
associated with these steady states are then evaluated numerically and bifurcation points
are detected. To get the periodic solutions of the system, an appropriate boundary value
problem wherein the solution of the governing equations of the system satisfies the
constraint of continuity of states at two time instants one time-period apart is solved
using an orthogonal collocation method [19]. Branches of periodic solutions with
variations of relevant parameters are obtained analogous to the branches of the fixed
points and their stability is estimated by calculating the dominant Floquet multipliers.
The main objective of the present paper is to determine the bifurcation behavior of the
Rijke tube model including the unstable limit cycles using DDE-BIFTOOL.

The stability boundaries of the steady solution in different parameter spaces will also
be obtained and the results validated with time marching solutions of the system.
Significant system parameters to be varied are the non-dimensional heater power (K),
location of heater (xf), damping coefficient (c1) and the time lag (τ). The rest of the
paper is organized as follows. Section 2 describes the low order model for the Rijke tube
and the formulation used in numerical continuation. Analysis of the results obtained
from numerical continuation is explained in section 3. The results of bifurcation
analysis using numerical continuation for various parameters and comparison of
numerical results with experimental data are summarized in section 4. Section 5 lists the
conclusions of the present work and presents the scope for future work.

2. MODEL FOR RIJKE TUBE
The Rijke tube model used in the present paper closely follows Balasubramanian &
Sujith [5] and is for the geometry shown in Figure 1. This model uses the zero Mach
number approximation [20] and is governed by the non-dimensional linearized
momentum and energy equations for the acoustic field as given below in Eqns (1) and
(2). The scales for non-dimensionalisation are as given in Eqn (3).
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(2)

(3)

In this model, x is the distance along the axial direction, l is the length of the duct
and t is time. The flow has a steady state velocity u0, pressure -p and temperature T

–
as

shown in the figure 1, with u′ as acoustic velocity and p′ as acoustic pressure. When γ
is the ratio of specific heats of the medium, the speed of sound is calculated as c0 and
M is the Mach number of the mean flow. Additionally, ζ is the damping coefficient and

is the heat release rate fluctuations per unit area due to the electrical heater.
Quantities with tilde are dimensional and those without tilde are non-dimensional.

The response of the heat transfer from the wire filament to acoustic velocity
fluctuations is quantified using the correlation given by Heckl [10]. This correlation
quantifies the quasi-steady heat transfer from a heated cylinder to the flow around it [21].
A time lag is introduced in the correlation in order to include for the thermal inertia of
the heat transfer [10]. The heat release rate fluctuations can then be rewritten in terms
of the acoustic velocity fluctuations as given in Eqn (4).
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Figure 1: Configuration of a horizontal Rijke tube with an electric heater as source.



The energy equation can be modified as given below by including the correlation for
heat release rate fluctuations:

(5)

where lc, Lw and Tw are the radius, length and temperature of the wire respectively, S is
the cross sectional area, -ρ is the mean density, λ is the thermal conductivity and CV is
the specific heat at constant volume of the medium within the duct.

The non-dimensional partial differential equations Eqn (1) and Eqn (5) can be
reduced to a set of ordinary differential equations by expanding the acoustic variables
in terms of basis functions using the Galerkin technique [22]. The Galerkin basis
functions chosen here are the natural acoustic modes of the duct in the absence of a
heater. The duct modes in the absence of the heater have non-dimensional frequencies 
f = 0.5j and time periods T = 2/j for j = 1 to N. In the following expressions kj = j π
refers to the non-dimensional wave number and ωj = j π refers to the non-dimensional
angular frequency of the j t h duct mode.

(6)

(7)

(8)

(9)

Here, ζ = 2ωj ζj is the expression for frequency dependent damping where ζj is given
by Matveev [3, 23] as shown in Eqn (10) and c1 and c2 are the damping coefficients
which can be varied and which control the amount of damping in the system.
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The resulting set of equations as given in Eqns (8) and (9) are evolved in time. Here,
the expression for the non-dimensional heater power (K ) is given by,

(11)

The equations can be simplified by expanding the term under the square root in 
Eqn (9) under the assumptions of small acoustic velocity at the flame (u ′f ) and small
time lag (τ). The resulting equation, valid in the limit of small time lag, is written as
given below in Eqn (12).

(12)

3. ANALYSIS
3.1. Steady-state equilibrium and linear stability analysis
The effect of infinitesimal perturbations on the evolution of the system about a steady state
is investigated in linear stability analysis. If the evolution moves away from the steady
state, the system is unstable and if the evolution approaches the steady state, then the
system is stable. This refers to the local analysis of the stability of the system near a steady
state. On the other hand, nonlinear stability analysis follows the effect of a finite amplitude
perturbation to the system and is used to characterize the resulting asymptotic state.

As an initial step in performing the stability analysis of a steady-state equilibrium
solution for given parameter values, the steady state of the system for the given set of
parameters has to be calculated. This calculation is done in DDE-BIFTOOL using the
Newton’s method. Next linear (local) stability of the obtained equilibrium is identified
by examining the eigenvalues of the system linearized around the equilibrium. If all the
eigenvalues lie on the left half plane, the equilibrium is linearly stable to small
perturbations. When one or more eigenvalues of the linearized system lie on the right half
plane, the system is said to be linearly unstable. Stability properties of the equilibrium is
therefore changed when the real part of the most dominant eigenvalue crosses zero as
some relevant parameter of the system is varied. The value of the parameter at which the
real part of the most dominant eigenvalue is zero is called the bifurcation point.

The behavior of the system changes as this value of the parameter is crossed since
the equilibrium solution loses stability. New steady states emerge from the bifurcation
point depending on the type and nature of the bifurcation to be discussed in the next
section. A bifurcation point is located in DDE-BIFTOOL by continuing the equilibrium
solution branch with a variation in the relevant parameter and studying the spectrum of
the first few dominant eigenvalues.

Once a bifurcation point is located with respect of one parameter, the bifurcation
point itself is continued with a variation in a second relevant parameter of the system.
The resulting branch of bifurcation points gives us the linear stability boundary which
separates regions in the relevant parameter space with linearly stable and unstable
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Figure 2: Modal convergence of linear stability boundary between xf and τ with 
(a) c1 = 0.1, c2 = 0.06 and K = 0.8 (b) c1 = 0.05, c2 = 0.06 and K = 0.8.
In this Figure, �� N = 1, ·– ·–· N = 2, – – – N = 9 and — N = 10.
Comparison of limit cycle amplitude from time evolutions with different
number of acoustic Galerkin modes (N) with xf = 0.3 and τ = 0.2 (c) for
case shown in 2(a) and (d) for case shown in 2(b). Comparison of
bifurcation plots for variation of non-dimensional heater power (K) with
different number of acoustic Galerkin modes (N) (e) for system in 2(a) (f )
system in 2(b). Grey areas are enlarged in inset figures to show
convergence with increase in number of modes.

equilibrium. This stability boundary is a hyper-surface in the space of all the free
parameters of the system, but is most conveniently represented by a curve in several
appropriate two-dimensional projections. A typical stability boundary for free variation
of the heater location and the time lag of the system is shown in Figure 2.



Figure 2 shows that for the chosen set of fixed parameter values for the damping and
the heater power, the system is linearly unstable for a chosen range of heater locations
(xf) depending on the time lag τ of the system and vice versa. For very low and
reasonably large values of τ like τ < 0.15 and τ > 0.85 in Figure 2(a), the system is
linearly stable for any heater location. Only in the range 0.15 < τ < 0.85, the
equilibrium solution can become unstable depending on the heater location.

The number of Galerkin modes required to accurately capture the linear and
nonlinear behavior of the system is termed as modal convergence in the caption of
Figure 2. In this figure, the stability boundary for different number of acoustic Galerkin
modes from 1 mode to 10 modes show little variation for the case shown in 2(a) while
for the case shown in 2(b) with lesser damping 10 modes are required to capture the
linear stability boundary accurately.

In the remainder of this paper, we will use 10 Galerkin modes only and will not
reduce our damping coefficient c1 less than 0.1. In the next section, we discuss limit
cycles obtained using the nonlinear analysis and establish the convergence of the general
solution of the system for 10 Galerkin modes.

3.2. Numerical simulation, limit cycles and nonlinear analysis
The bifurcation points at the linear stability boundaries obtained in the previous section
are associated with a pair of complex conjugate eigenvalues crossing the imaginary axis
and accordingly there is a Hopf bifurcation. At the Hopf bifurcation point, the steady
state loses stability and becomes unstable, and isolated periodic solutions called limit
cycles emerge. The stability of the emerging branch of limit cycles decides the type or
nature of the Hopf bifurcation. The two types are shown in Fig. 3. If the limit cycles are
unstable, as shown in Fig. 3(a), the branch of unstable limit cycles forms a region of
bistability where the steady solution is stable to small perturbations but is unstable to
large perturbations. However this branch of unstable limit cycle might undergo a fold
bifurcation and stabilize. For values below the fold point the steady solution is stable to
perturbations of any magnitude and hence are globally stable. Therefore in the case of
a subcritical bifurcation, the linear (local) and nonlinear (global) stability boundaries are
different. This behavior is called a subcritical Hopf bifurcation. If however the limit
cycles are stable as shown in Fig. 3(b), the system smoothly evolves from a stable steady
solution to an unstable steady solution with progressively increasing limit cycle
amplitudes. This type of bifurcation is called a super-critical Hopf bifurcation.

We first check the existence of limit cycles in our model and the convergence of the
number of acoustic Galerkin modes. For this the time evolutions of the system with
different number of acoustic modes for system parameters in the linearly unstable
region are compared in Figs. 2(c-d). It can be seen from Figs. 2(c) that there is a limit
cycle and also that the amplitude of the limit cycle shows very little variation with an
increase in the number of acoustic Galerkin modes. The variation in the phase of the
various solutions can be attributed to initial conditions. In fact, the difference in the
solutions with different numbers of acoustic modes is not visible when the phase
difference is compensated. This feature can be seen more easily from Figure 2(e)
wherein we have plotted the variation of the amplitudes of the first Galerkin mode with
a variation in the heater power K. In fact the measure used to quantify the asymptotic
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state (t → ∞) of the system in Figure 2(e) is the difference between the maximum and
minimum value (|U1|) of the non-dimensional first acoustic velocity mode.

The amplitudes of the limit cycles in Figure 2(e) are obtained using continuation of
the limit cycles using DDE-BIFTOOL. In this Figure, the equilibrium is stable for 
K < 0.625 and small-amplitude limit cycles originating from the Hopf bifurcation point
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also exists in this region. These limit cycles are unstable and the Hopf bifurcation is
subcritical in nature. As the amplitude of these limit cycles increase in magnitude, these
limit cycles stabilize through a ‘turning point’ or ‘fold’ bifurcation. The unstable branch
of limit cycles turns around at around K = 0.523 and in the region 0.523 < K < 0.625,
a stable equilibrium, an unstable small-amplitude limit cycle and a large-amplitude
stable limit cycle coexist. This is the range of ‘bistability’ [24, 25] where the equilibrium
is only locally stable and large amplitude disturbances grow to limit cycles.

It is to be noted that the amplitudes of the limit cycles shown in the bifurcation plots
are only the amplitudes of the first Galerkin mode in the asymptotic state. Initial
conditions reach either the stable limit cycle or the steady state depending on the
magnitude of the perturbation relative to the amplitudes of the unstable limit cycles only
if the initial condition given has nonzero component only in the first Galerkin mode.
Therefore the unstable limit cycle shown in the bifurcation diagrams are not
representative of the basin boundaries but represent only the triggering amplitudes for
the above mentioned kind of initial conditions. The basin boundaries are formed by the
stable manifolds of these unstable limit cycles and they lie in a high-dimensional space.
As mentioned earlier, below the fold bifurcation point, i.e., for K < 0.523 the
equilibrium is globally stable to any perturbations.

When the damping coefficients are reduced, the change in the amplitudes of the limit
cycles with an increase in the number of acoustic Galerkin modes is more significant as
can be seen from Figures 2(d ) and 2( f ). Both the location of the Hopf bifurcation point
and the location of the fold bifurcation point are seen to change when the number of
modes is increased from 1 to 2 suggesting that a single mode Galerkin projection is
largely inadequate to capture the true stability information.

These changes decrease with an increase in the number of modes and the difference
in the solution with 9 and 10 acoustic modes is almost negligible again emphasizing the
convergence of the model with 10 acoustic modes in the Galerkin projection. For a
model with 10 acoustic modes, an addition of more Galerkin modes changes the limit
cycle amplitude of the acoustic velocity by less than 1.4%. Therefore, in all calculations
considered henceforth, a model with 10 Galerkin modes is used to ensure convergence
in the number of acoustic Galerkin modes for the linear and nonlinear stability analysis.

We noted in Figs. 2(e) and 2(f) that a subcritical Hopf bifurcation happens when the
non-dimensional heater power is varied as the free parameter. This will also happen
with variation in any other free parameter of the system as it is an inherent property of
the nonlinearity present in the system. To justify our claim, we present a crude
qualitative analysis which will be substantiated with a more rigorous analysis along the
lines of Saha et al. [26] in our future work. The nature of the bifurcation associated with
a source term nonlinearity of the form (1 ± X)α, where X is the state variable and α is
a real number can be identified by expanding the nonlinearity in a series about small X
and dropping higher order terms. A binomial expansion of the above expression results
in the following equation.

(13)1
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1 2
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In the above expression, the signs of the first and the third order terms are seen to be
same when 0 < |α| < 1 and |α| > 2. The signs will be different when the value of α
lies between 1 < |α| < 2. The relative signs of the first and the third order term dictates
the nature of the bifurcation. Whenever these terms have the same sign, the bifurcation
is subcritical while it is supercritical when these terms have different signs. This result
has been obtained in the context of machine tool vibrations by Kalmar-Nagy et al. [27]
and Wahi and Chaterjee [28] for α = 3/4. In the model for the heat release rate
fluctuations in a Rijke tube, α = 1/2, which implies that this model will exhibit
subcritical Hopf bifurcation.

We had noted in our previous discussion in this section that there are multiple 
co-existing solutions in the range of the free parameter values between the Hopf point
and the fold point. A stable steady state and a pair of stable and unstable limit cycles are
seen to co-exist which is a general feature of systems exhibiting subcritical Hopf
bifurcation followed by a fold bifurcation which gives rise to a branch of stable limit
cycle solutions. Depending on the initial condition, the system will asymptotically reach
a steady state or a limit cycle. This range of parameters has two possible asymptotic
states and is hence called the region of bistability. The region of bistability for the
variation of non-dimensional heater power and the time lag is shown in Figure 4.

In this figure the linear stability boundary is the locus of the Hopf points, i.e. when the
non-dimensional power is larger than this value, an infinitesimal perturbation is sufficient to
destabilize the steady state of the system. Similarly, the nonlinear stability boundary is the
locus of the fold points, i.e. when the non-dimensional power is is below this value, the
steady state of the system is stable to any finite amplitude perturbation. In the region between
the two curves (the bistable region), a finite amplitude perturbation is required to destabilize
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the system from the unperturbed state. The nonlinear stability boundary can also be called
as the ‘triggered’ or ‘pulsed’ instability boundary as it marks the beginning of the triggering.

It can be seen from this figure that the bistability region is much smaller for small
time lags and it increases with an increase in the time lag in the system. Hence, the effect
of the nonlinearity introduced by the heating is more profound for larger time lags
which roughly corresponds to smaller speeds of mean flow in the tube. (Refer Eqn 14)

4. RESULTS & DISCUSSIONS
4.1. On the effect of the small time lag assumption
The delay differential equations governing the Rijke tube system are linearized about 
τ = 0 to get ordinary differential equations which are valid for small time lags. The
corresponding set of equations in the matrix form dχ/dt = Lχ is given in
Balasubramanian & Sujith [5]. This matrix L can be used to calculate the eigenvalues
of the system with small time lag assumption and the value of the parameters when the
system becomes unstable can be noted as the stability boundary. This approximate
stability boundary is compared with the exact stability boundary predicted by the system
of delay differential equations given by Eqns (8) and (9) in Figure 5.
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The linear stability boundaries showing the variation of the critical nondimensional
heater power K, damping coefficient c1 and the heater location xf with the time lag in
the system τ are shown in Figures 5(a) to 5(c). It can be seen clearly that for all the three
cases, the stability boundary predicted with the small time lag assumption does not
match very well with the exact stability boundary of the delayed system. The curves
approximately match when the time lag (τ) is very small.

However, the match deteriorates very fast with an increase in the time lag (τ). Note
from Figure 5(b) that the small time lag assumption breaks down even at values of time
lag like τ = 0.2. Hence it is important to relax the small time lag assumption, as the
typical mass flow rates encountered in experiments [3] are in the range 0.5 − 3 gm/s,
which correspond to τ values between 0.05 − 0.3 for the experimental configuration
described by Matveev [3].

4.2. Effect of heater power
The effect of varying the non-dimensional heater power (K) on the evolution of the
system is analyzed with the bifurcation diagram as shown in Figure 6(a).
Nondimensional heater power can be increased by increasing the electrical power
supplied to the heater [23] and it represents an increase in the driving force given to the
system. Increased driving strives to destabilize the system. Therefore, for small values
of K, the equilibrium is stable and all perturbations decay asymptotically to zero.
Increasing K decreases the margin of stability of the flow and at a critical value of K, a
pair of complex eigenvalues of the system cross over to the right half plane (Hopf
bifurcation) and the system becomes linearly unstable resulting in an oscillating flow
pattern in the tube.

The variation of |U1| with K is shown in Figure 6(a). The empty circles indicate
unstable solutions and filled circles indicate stable solutions. A limit cycle is first
obtained by varying the parameter near the Hopf point and iterating using a Newton’s
scheme. As discussed earlier, the bifurcation is subcritical and the resulting 
small-amplitude limit cycles close to the Hopf point are unstable. These unstable limit
cycles are obtained using numerical continuation of the limit cycle and they coexist with
the stable equilibrium. This unstable branch of limit cycles further undergoes a fold or
turning point bifurcation and gains stability [29].

The bifurcation diagram for the variation of the non-dimensional heater power is
obtained for various values of time lag τ in the interval [0.2, 0.8] and all the results are
plotted along with the stability boundary for the system as a 3-D plot in (τ, K, |U

1
|) in

Figure 6(b). From this 3-D bifurcation diagram, we can also obtain the 2-D bifurcation
diagram involving the limit cycle amplitude variation with the time lag τ for a given
value of K.

4.3. Effect of damping
To study the effect of the variation of the amount of damping present in the system on
the response of the system, one of the damping coefficients (c1) of the mode dependent
damping model is varied. Change in the damping of the system can be achieved in
experiments by changing the end conditions of the duct. As expected, increased
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Figure 6: (a) Bifurcation plot for variation of non-dimensional heater power K. The
other parameter values of the system are c1 = 0.1, c2 = 0.06, xf = 0.3 and
τ = 0.2 (b) 3D plot of bifurcation plot of non-dimensional heater power
K for varying values of time lag τ with the other parameters of the system
c1 = 0.1, c2 = 0.06 and xf = 0.3.



damping has a stabilizing effect on the dynamics of the system since the equilibrium is
stable for any τ for larger damping coefficients and lowering of damping might lead to
instability depending on the time lag τ as shown in figure 5(b).

For a fixed time lag, there exists a critical value of c1 below which all perturbations
grow to limit cycles and above which there exists a region wherein large amplitude
perturbations grow to limit cycles and small perturbations decay to the equilibrium as
shown in Figure 7(a). The critical value of the damping coefficient c1 and the
bifurcation diagrams has been obtained for various values of the time lag τ again and
the results are plotted as a 3-D plot in Figure 7(b). A 2-D projection of this plot on the
(τ, c1) plane gives us the linear stability boundary (Hopf points also shown in Figure
5(b)) as well as the nonlinear stability boundary (fold points). The region enclosed
between them gives us the bistable region to be discussed in more detail in subsequent
subsections.

4.4. Effect of heater location
The location of the heat source (xf ) also has a very significant effect on the dynamics
of the system and is achieved by placing the heater at different locations along the length
of the duct. The stability of the system depends on the location of the heater along the
duct in a non-trivial manner. When the location of the heater along the duct is varied
from the upstream open end, the system is initially linearly stable. At a critical value of
the heater location xf1, a pair of complex eigenvalues crosses over to the right half plane
and the system becomes linearly unstable. With further change in the location of the
heater, the system remains linearly unstable till xf 2, when another Hopf bifurcation is
observed in which a pair of complex eigenvalues crosses from the right half plane to the
left half plane and the system regains linear stability as also shown in Figure 5(c).

The bifurcation plot for the variation of heater location (xf) shows subcritical Hopf
bifurcation at both the locations along the duct length corresponding to the Hopf
bifurcation as shown in Figure 8. The stable branch of limit cycles arising from the
turning point bifurcations of the two branches of unstable limit cycles emanating from
the Hopf points merge smoothly such that the region of linear instability is completely
bounded by a single branch of stable limit cycles. Any initial condition within the
linearly unstable region will asymptotically reach the corresponding stable limit cycle.
An initial condition within the subcritical region will either decay asymptotically or
reach the corresponding limit cycle based on whether it is above or below the stable
manifold of the unstable limit cycles. The amplitude of limit cycle is seen to be a strong
function of the location of the heater and is seen to increase with an increase in the
heater location from the open upstream condition.

4.5. Bistability regions
As discussed in section 3.2, there are regions of bistability for parameter ranges where
the system can reach an equilibrium solution or a limit cycle depending on the initial
conditions. This bistable region lies between the linear stability boundary given by the
Hopf point and the nonlinear stability boundary given by the fold points. For the
unstable region bounded by the Hopf bifurcation points, the system is unstable to any
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perturbation and hence, this region is termed as a globally unstable region. The system
is globally stable to any perturbations for parameters in the region outside the nonlinear
stability boundary (fold points) and this is called the region of global stability [30]. Thus
the linear and nonlinear stability boundaries divide the parameter plane into three
regions. The globally unstable region is shaded with light grey, the region filled with
dark grey correspond to region of bistability and the white region represents globally
stable region in Figure 9.

Figure 9 shows the bistable regions along with the globally stable and unstable
regions for variations of the damping coefficient (c1) and the heater location (xf) as
functions of the time lag τ. From Figure 9(a), we can observe that the bistable region in
the damping coefficient c1 first increases with an increase in τ, reaches a maximum
value and starts decreasing thereafter.

In contrast, the bistable region in the parameter xf first decreases with an increase in
the time lag τ and increases after reaching a minimum value at a certain critical value
of τ as shown in Figure 9(b). The extremum value of the bistable regime typically
appears at the parameter value τ at which the other parameter value corresponding to
the linear stability boundary reaches an extremum itself.

4.6. Characterizing dynamical behavior through time evolutions
The linear stability boundaries obtained for the simultaneous variation of various parameters
with the time lag of the system were given in Figure 5. The variation of the time lag of the
system can be obtained in experiments by changing the mean flow rate of air through the
duct. However, the most relevant parameters which could be varied in an experiment are 
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the heater location along the duct (xf) and the heater power [3] (K). The stability boundary
for the simultaneous variation of these two parameters is given in Figure 10.

This figure shows that the linear stability boundary crosses itself many times to form
loops. Along the direction of increasing power for a given heater location, linear stability is
lost after the first crossing of the stability boundary. Further crossings lead to other pairs of
eigenvalues moving to the right half plane. Accordingly the regions enclosed by the loops
in the stability curves have two or more pairs of unstable eigenvalues and hence indicate the
occurrence of interesting dynamical behavior in these parameter combinations e.g. points
A to F. At these parameter combinations complicated dynamical behavior such as
quasiperiodicity, co-existing multiple attractors, chaos etc. may be observed.

In this subsection we will characterize the dynamical behavior of the system through
time evolutions corresponding to some typical points marked A to F in the linearly
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unstable region of the Figure 10 and its inset. These are chosen to represent more
complicated solutions and situations than those already discussed in this work.

Shown in Figure 11(a) is the system evolution for parameters corresponding to the
point A. At this point, we see that the system has an asymptotic behavior in which the
amplitude of the limit cycle is modulated periodically. This type of regular amplitude
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modulation of the time series is related to the beating phenomena and represents a
quasiperiodic solution. Figure 11(b) shows a 3-D projection of the phase portrait
corresponding to the quasiperiodic solution. It can be clearly observed from Figure 11(b)
that the trajectory stays on a torus and completely fills out its surface. We also observe
chaotic solutions for our system for specific choice of parameter values. One of the
routes to chaos is the period-doubling route to chaos wherein periodic solutions with
longer and longer time-periods are observed with a change in some typical parameter till
aperiodic solutions appear [31]. This particular route to chaos is observed as parameters
are varied from points B through E. These points are chosen such that they lie in the
direction of increasing heater power at a given heater location as shown in Figure 10. The
phase plot of the evolution after the loss of linear stability at point B shows a limit cycle
as given in Figure 12(a). Further increase in the nondimensional heater power to point C
and D causes limit cycles with periods that are twice and four times the time-period
corresponding to point B, respectively. The phase plots of these limit cycles are shown in
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Figures 12(b) and (c) wherein the simple closed curve corresponding to the limit cycle in
Figure 12(a) transforms into a closed curve which intersects itself once and twice
respectively in this projection. With a sufficient increase in the heater power to point E,
the system evolution becomes highly aperiodic (chaotic), and the trajectory is seen to fill
almost an area in the phase space as shown in Figure 12(d).

Figure 13 shows that the time evolution of the system at point F with two different
initial conditions gives two different asymptotic behavior. Time evolution at F with
initial condition U1 = 1.5, Ui = 0, i ≠ 1 and Pi = 0 i = 1, …, N evolves into a
complicated quasiperiodic attractor with a large magnitude of the total velocity
fluctuation as shown in Figure 13(a). The frequency content of this attractor is shown
in Figure 13(c) wherein the phase space projection of the solution on the first acoustic
mode U1 and P1 is also shown in the inset. The arrow indicates the direction of
evolution of the system in the phase plot. A second frequency close to zero is distinctly
visible along with the major frequency at around 0.5 and its harmonics.

∀∀
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The time evolution with a different initial condition of U1 = 0.5, Ui = 0 i ≠ 1 and
Pi = 0 i = 1, …, N however reaches a small amplitude limit cycle where the third
mode is primarily unstable as shown in Figure 13(b). The frequency content of this limit
cycle shown in Figure 13(d) clarifies that the third mode with a fundamental frequency
of around 1.5 is unstable. At a given heater power level and heater location, we thus
observe the coexistence of two different attractors. One of them is a low amplitude limit
cycle and the other is a high amplitude quasiperiodic solution. Thus, a given system can
produce two qualitatively as well as quantitatively different noise levels.

Thus, we have seen that for different system configurations, the dynamics of the
system model can exhibit complicated dynamical behaviors such as coexisting
attractors, quasiperiodicity, complicated limit cycles with increasing time-periods and
chaotic solutions. These behaviors have been observed in experiments: ducted premixed
flame [32] and laboratory combustor [33].

4.7. Comparison with experimental results
Experimental determination of the stability boundaries and bifurcation behavior of a
horizontal Rijke tube have been performed by Matveev [3, 4] and Song et al. [34].
Matveev [4] obtained the stability boundaries for a horizontal Rijke tube and also
reported hysteresis at the stability boundary. Song et al. [34] also obtained linear
stability boundary and matched their results with Matveev [4]. In both the papers, the
linear stability boundaries were obtained for the simultaneous variation of heater power
and mass flow rate at different locations along the Rijke tube.

Changes in heater power leads to changes in the non-dimensional heater power (K).
The effect of heater power and mass flow rate in determination of K is as given in Eqn (11).
Increasing heater power increases the temperature of the wire and affects K while
increasing mass flow rate increases u0 thereby decreasing K. The effect of changing
mass flow rate affects both the non-dimensional power K and the time lag τ through
changes in the mean velocity. Variation in K occurs according to the Eqn (11) while time
lag is related to the mean velocity through the quasi-steady approximation given by
Lighthill [35]

(14)

The additional factor of (c
0
/l) has been included to non-dimensionalize the time lag.

Damping coefficients, c1 and c2 are calculated using the formula given in Matveev [4].
The stability boundaries obtained at two different heater locations from Matveev’s
experiments are shown as + in Figure 14. The corresponding numerical results from the
present study are denoted with solid lines in the same figure. Figure 14 (a) is the linear
stability boundary when the heater is placed at one-quarter of the duct length. At this
location, the frequency close to the fundamental mode of the duct becomes unstable.
Figure 14 (b) shows the linear stability boundary when the heater is placed at 5/8th of
the duct length where the frequency close to the second mode of the duct becomes
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unstable. In both the cases the linear stability boundary predicted has the same trend as
the experimental observations.

Matveev [3] also reported hysteresis at the stability boundary for different mass flow
rates. Results obtained from his experiments are shown as × and in the Figures 15 (a)
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and (b). In order for comparison with experimental data, the measure chosen in the
bifurcation plots is |p′|, the amplitude of the acoustic pressure. In the plot, × indicate
values acquired during increase of power and correspond to data for the decrease in
power. The numerically calculated bifurcation plots for the same system parameters
are compared with the experimental data for two different mass flow rates. In both the
cases, the limit cycle amplitudes predicted are much lower than the observed values.

The under prediction of limit cycle amplitudes can be attributed to the following
reasons. A mesh type electrical heater is used in experiments [3] while the present model
assumes the flow over a single cylinder. However, the heat transfer characteristics of a
single cylinder is significantly different from that of a mesh [36]. A constant speed of
sound is assumed throughout the tube in the present model. However, the presence of
the heater causes a higher downstream temperature. This could have a noticeable effect
on linear stability and oscillation amplitude by modifying the eigenfrequencies and
mode shapes. Also, the present model assumes significant nonlinear effects when the
amplitude of the velocity fluctuations exceed one-third of the steady state velocity.
However, recent results for the nonlinear system identification of pulsatile flow over a
cylinder [37] show that the effect of nonlinearity in the heat release rate response occurs
only when the perturbation velocities exceed 1.5 times the steady state velocity. Due to
the above reasons, the limit cycle amplitudes predicted by Heckl’s correlation are lower
than experimental results.

The numerically predicted Fold points are close to the experimental results while the
Hopf point is over predicted in Figure 15 (a) and under predicted in Figure 15 (b). This
shift in the Hopf point may be due to the presence of inherent noise in actual
experiments. Uncertainties in the parameters is seen to affect the bifurcation behavior
[38] while noise in the initial perturbation can cause sub-critical transition to instability
[39] in the present Rijke tube model. A factor which possibly contributes to the
mismatch is related to the uncertainties in the values of steady state parameters. The
value of the damping coefficients (c1 & c2) used are currently calculated from the cold
flow conditions [23]. However, these values could be different when the heater is turned
on. Further investigations are required to determine the variation of the damping
coefficients with temperature.

Another reason for the mismatch of the present model could be the use of a single
time lag to obtain the response of the heater to velocity perturbations. Other
investigations of the Rijke tube model which include multiple time lags [40] exhibit
higher limit cycle amplitudes. Studies incorporating a modeling of the heat release rate
using multiple time lags to better correspond to the experiments would be undertaken
in our future work. The main objective of the present study was to demonstrate the use
of the software DDE-BIFTOOL in a systematic analysis of these models. An
encouraging outcome of the present study is that even with these simplifying
assumptions, our model is seen to predict the trends in the linear stability boundaries
and the bifurcation behavior of a Rijke tube which are reasonably close to the
experimental results.
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5. CONCLUSIONS
The dynamical behavior of a model for a horizontal Rijke tube has been studied using
the method of numerical continuation. Linear stability boundary for the simultaneous
variation of two parameters of the system are obtained. The stability predictions
calculated by linearizing about the unperturbed state with small time lag are shown to
be not accurate.

The nonlinear stability boundary and the regions of bistability where the system can
reach one or two possible asymptotic states are also obtained. Using the linear and
nonlinear stability boundaries, regions of global stability, global instability and regions
of potential instability are identified for the Rijke tube model. It is seen that only
subcritical Hopf bifurcations are possible for the model considered to represent the
behavior of the Rijke tube. The stability boundaries obtained are complicated, and
interesting dynamical behavior such as co-existing limit cycles, quasiperiodic behavior
and period doubling route to chaos are observed.

Linear stability boundaries and bifurcation plots obtained from numerical
continuation are compared with experimental data. Trends of the numerically obtained
linear stability boundaries are similar to experimental results. However, the numerical
model under predicts the amplitude of the stable limit cycles observed in experiments.
In summary, reduced order models of physical systems with explicit time delays can be
studied in detail using the method of numerical continuation to identify stability
boundaries, to obtain bifurcation plots and to examine their possible dynamical
behavior.
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