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After the recent development of an accurate semi-analytical solution based on the three dimensional (3D) piezoelasticity

for the piezolaminated plates under arbitrary boundary conditions, it is now possible to assess the accuracy of two-

dimensional (2D) laminate theories in predicting the boundary layer stress field in elastic and piezoelectric laminates. In this

work, we assess an efficient layerwise theory, namely the improved zigzag theory (IZIGT), and its smeared counterpart

(ITOT) without the layerwise description of displacements, for predicting the edge effects in the smart piezoelectric

laminates under electromechanical loading. The solutions based on these 2D theories for the edge effect in piezolaminated

plates under cylindrical bending is obtained from an analytical Levy-type solution for rectangular plates. It is revealed that

the stresses predicted by both the 2D theories are not accurate in the close vicinity of the clamped support for pressure

loading, and near the clamped, soft simply supported and free supports for electric potential loading. However, away from

edges, the IZIGT yields accurate results for composite as well as highly heterogeneous sandwich plates. The ITOT, on the

other hand, is not good for sandwich laminates even beyond the boundary layer.
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1. Introduction

Composite and sandwich laminates with embedded
or surface-mounted piezoelectric sensors and
actuators form an important class of multifunctional
(smart) structures with the ability of active vibration
control, acoustic control, shape control, or damage
detection (health monitoring). The widely different
mechanical, electric and thermal material properties
in adjacent layers in these smart laminated structures,
and the geometric discontinuity at the boundaries may
resultin a stress field near the edge boundaries, which
decay rapidly away from the edges [1]. These localized
stresses are often responsible for premature
delamination failure and loss of actuation/sensing
authority of the piezoelectric layers. So, an accurate
estimation of the boundary layer stresses has been a
key issue of research since long. Analytical three-
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dimensional (3D) full field solutions for laminates with
arbitrary edge conditions can provide valuable insight
into the edge effects. Very recently, the authors [2]
pioneered an accurate semi-analytical three-
dimensional (3D) elasticity solution based on the
powerful multi-term extended Kantorovich method
(EKM) for elastic laminated panels subjected to
arbitrary boundary conditions, which was shown to
predict the stress field near the edges accurately. Prior
to this work, the EKM, which was initially proposed
by Kerr [3], had been used to analyze plates [4, 5]
and shells [6, 7] under arbitrary boundary conditions,
based on 2D theories only. The authors [8] further
extended the method to the coupled field problem of
3D piezoelasticity solution for edge stresses in hybrid
piezolaminated panels under pressure and electric
potential loading. The methodology can be used to
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obtain accurate solutions of many boundary value
problems of 3D elasticity/piezoelasticity such as the
free edge stresses under tension, torsion and bending.

For practical design, analysis and optimization
of smart structures, one has to use two dimensional
(2D) laminate theories, since the analytical three-
dimensional (3D) piezoelasticity solutions are possible
only for structures of some regular geometry and
shapes. A large number of 2D models have been
presented for the piezoelectric laminated plate
structures, a review of which is available in Ref. [9].
They can be generally classified into equivalent single
layer (ESL) theories [10-12], layerwise theories
(LWTs) [13] and efficient layerwise theories (ELTs)
[14]. The ESL theories consider global variation of
various degrees in the thickness direction of
displacement fields, Thus, these theories are the most
computationally efficient, but are less accurate. In
the LWTs, the displacements are assumed to follow
a polynomial variation across each layer of the
laminate. They yield very accurate results, but the
number of variables increases with the layers making
them computationally inefficient.

The coupled ELT, known as the zigzag theory
(ZIGT), as proposed by Kapuria and coworkers [14,
15] for hybrid plates have emerged as an excellent
combination of accuracy and computational efficiency.
In this theory, the inplane displacements are initially
assumed to have a layerwise linear variation across
the thickness, superimposed with a global third order
variation. But, the number of displacement variables
is finally reduced to only five, like in the smeared third
order theory (TOT), by enforcing the conditions of
transverse shear stress continuity at layer interfaces
and zero shear traction at the top and bottom surfaces.
The electric potential is assumed follow a quadratic
variation across the piezoelectric layer. The accuracy
of the theory has been assessed by comparing its
analytical solutions for simply supported hybrid
rectangular plates with the available exact 3D
piezoelasticity solutions. It yields very accurate
results, comparable to the LWTs even for laminates
with very inhomogeneous lay-ups. However, since
no boundary layer effects are observed on the simply-

supported edges [16] as opposed to clamped and free
edges, the assessment of 2D laminate theories for
simply supported plates can at best provide an
incomplete picture.

In a recent article, the authors [17] studied the
boundary layer effects in Levy-type hybrid plates,
using the coupled ZIGT. But in this paper, the edge
effects were studied in terms of the stress resultants
instead of directly the stresses, due to unavailability
of reliable 3D results. In this work, we examine the
accuracy of the coupled ZIGT and its smeared
counterpart, the TOT, in predicting the stress field
near the edges of elastic and hybrid plates in cylindrical
bending with non-simply supported boundary
conditions. The assessment is done in comparison with
the recently developed accurate 3D piezoelasticity
solution using the EKM [2, §].

2. EKM Solution of 3D Piezoelasticity Equations
for Hybrid Panel in Cylindrical Bending

2.1 Governing Equations and Boundary
Conditions

We consider an infinitely long (along y axis) hybrid
piezolaminated panel with span length a and thickness
h. The hybrid laminate has an elastic substrate made
of angle-ply composite laminas with some
piezoelectric layers that are surface-bonded or
embedded. The piezoelectric crystals have class mm2
symmetry and are poled along the thickness direction
z. The total number of layers is L, and they are
perfectly bonded to each other. It is subjected to
uniformly distributed electromechanical loads applied
on the bottom and top surfaces, and has arbitrary
boundary conditions at the two edges at x = 0 and a.
The 3D piezoelasticity solution of the panel presented
in Ref. [8] using the EKM is briefly described here.

Using the strain-displacement, electric field-
potential relations and 3D linear constitutive relations,
the extended Reissner-type mixed variational principle
for piezoelectric medium without body force and
internal charge source can be expressed as
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where, a subscript comma denotes partial
differentiation. V denotes the volume of the panel per
unit width in the y direction; G Ty , D, are normal
stresses, transverse shear stresses and electric
displacements; u, v, w are the displacements along x,
y, z directions; ¢ is electric potential; P, denotes
modified material constants. A d1mens1onless inplane
coordinate & which takes values 0, 1 at x = 0; a; and
a local thickness coordinate  for the kth layer which
takes values 0, 1 at. The non-homogeneous boundary
conditions at the top and bottom surfaces of the plate
are:

atz=-h/2: o.=-p,, 7,=0,

yT
7,=0, ¢=¢ or D =D,
atz=h/2: o =-p,, 7, =0, 2

¥z

7,=0, ¢=¢,or D, =D,

The interfaces between the piezoelectric layers
and the elastic layers are taken as grounded for
effective actuation/sensing. For such interfaces
nq(q =1, ..., L), the electric potential is prescribed as

(611" =0, g=L...L, 3)

The equilibrium and the compatibility conditions
at the kth interface between adjacent layers are:

[(u,v,W,O'Z,T_,T_ ,9,D, | - ](k)

=[(u,v,w,0,,T $.D,__ I )

Z.x’

fork=1,.
n,q—l

.. L-1; except for D_ for the interfaces k =

. L, The D_is d1scont1nu0us for the
1nterfaces For such surfaces the continuity condition
for D_is to replaced by Eq. (3). The boundary
conditions at the edges x = 0 and 1 can be arbitrary
e.g. simply supported, clamped and free.

2.2 Solution Using the EKM

The solution of the field variables, D _ =[uvwo, orT,,

T, T,0D, D, 17 is constructed as a sum of n terrns
of product of two separable functions in the inplane
(x) and thickness (z) directions, which is superimposed
with a solution satisfying identically the
nonhomogenous boundary conditions of applied
pressure and electric potential/charge at the top and

bottom surfaces:

X,E.0)= 3 £1(E)gi(€) + 8l p, + 2p,]

(5)
+39,8, for [=1,2,...,11.

wherein, f/(£) and &,(5) are unknown univariate

functions of & and { to be determined iteratively,
satisfying all homogenous boundary conditions. The
repeated index / does not mean summation here 8, is
Kronecker’s delta, p, = —(p, + p,)/2 and p, = —(p, -

p/h. The solution g, for nonhomogenous boundary
condition of ¢is given by

1- f -1
§9={¢1( ¢) for k } ©

oG for k=L

In the first iteration step, functions f'(£) are

assumed, the functions g;(g) are partitioned into a
column vector G of those eight variables that appear
in the boundary conditions given in Eq. (2) and column
vector G consisting of the remaining. Substituting
the variable X, in Eq. (1), integrating over x direction

and considering that the variations &, (¢) are arbitrary,
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the coefficient of §g;(c) [=1,2, ..., 11 are equated
to zero individually. This results in the following set of

differential-algebraic equations for §g f ().

MG_=AG + AG + Q,+ O, (8n ODEs);

KG=AG + Q, (3n algebric equations) )

where, M, A, A K and A are SnxS8n, 8nx8n,
8n xgn, 3nx3n and 3u x 8n matrices, QP, Qg
and Qp are load vectors of size 8n, 3n and 8n,
respectively. Solving the system of algebraic equations
for G and substituting back the solution into first order
ordinary differential equations (ODEs) yields a set of
8n non-homogenous first order ODEs with constant
coefficients, which are solved in close-form, satisfying
the homogeneous version of the boundary conditions
(2) and interface continuity conditions given by Egs.
(3) and (4).

In the next step, the solution of the first step is

taken as the known approximate solution for & /() and

considering variations §f, (<) are arbitrary. Following
the same procedure as discussed above, following
system of differential-algebraic equations for f;(&) is

given as

NF.=BF + BF + P, (8n ODEs);

A o~ o~ 8
LF = BF + P, (3n algebric equations) ®

where, N, B, B, L and B are 8nx8n, 8nx8n,

8nx3n, 3nx3 nand 3n x 8n matrices respectively,
P, and f’m are load vectors of size 8n, 3n respectively.
Equation (8) is solved similarly. Starting with initial
trial functions in x-direction, the functions in z and x

directions are solved alternatively, till the convergence
is achieved.

3. Analytical Solution of Levy-Type Hybrid Plate
using 2D Theories

3.1 Approximations for Field Variables

Consider a rectangular hybrid laminated plate (Fig.
1) with two opposite (at x = 0; a) simply supported

Fig. 1: Geometry of a hybrid plate

and the remaining two having arbitrary boundary
conditions. In the coupled improved zigzag theory
(IZIGT) [15], the linear constitutive equations of the
piezoelectric laminate with the usual assumption of
negligible transverse normal stress (G, ~ 0) are
considered here. ¢ is approximated as a piecewise

quadratic between Ny points at z = zﬂf across the

thickness of the laminate:

G(x,3,2) =y ()¢ (x, ) + W ()Pl (x,y)  (9)

where, ¢/ denotes the electric potential at the

piezoelectric layer sensors/interfaces at z = Z; with
jell,2,.., nq)]. ¢! denotes the quadratic component

of electric potential at z = (z +z7")/2 with g € [1,

2, s Ny —1]. Thus z = z; is the z-coordinate of jth
point from bottom for discretising ¢. The summation

convention is used for repeated indicesjand g -y ,/f ()

is a piecewise linear function and y?(z) is a quadratic

function, given by

4 (0" =2) (2=zZHN =20’

ifz) <z< 7

wi(z)= g (10)

0 otherwise

The approximation of the deflection w accounts
for the transverse deformation due to the transverse
electric field. Integrating the constitutive equation for
€_ after neglecting the contribution of elastic
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compliance gives

W(X, Y, Z) = W()(x’ )’) - W;(Z)¢j(x’ )’)
- 1/7:] (Z)¢¢q (xe )’)

(11)

where, 1/7¢{(z):J‘d33w¢{,Z(z)dz and y!(z) = _[Odzz
0

! (2)dz . The inplane displacements u_and u, are

approximated in the thickness direction as a
combination of a third-order variation in z over the
entire laminate thickness and a layerwise linear
variation with discontinuity in slopes u, , and u,, at
the layer interfaces. Using the conditions of u
continuity of and of the transverse shear stresses T
at the layer interfaces and four shear traction-free
conditions at the top and bottom surfaces, finally u
can be expressed as

u(x, y,z) =uy(x,y) — 2w, (x,y)

+ R (2, (x,y) + R (2)¢] (12)

where u = [u, uy]; uy = lug, uoy]; de = [uo,x uo’y]; s
= (¥, Y, J; 97 =[44.¢,1" and R¥z) and R&(z) are 2
x 2 matrices of layerwise functions of z which depends
on material properties and lay-up. The smeared
improved third order theory (ITOT) has the same
global variation of the inplane displacements as the
IZIGT, but there are no layerwise terms. Thus, u for
the ITOT can be expressed in the form of Eq. (12)
where R%(z) will have only global functions of z, and
no layerwise functions.

3.2 Governing Equations

Substituting the expression of deflections, electric
potential, strains and electric displacement in the
principle of virtual work, and applying Greens theorem,
wherever required, yields the coupled equations of
equilibrium for the laminated piezoelectric plate as

N..,+N,,=0, N  +N, =0,M_
+2M_Wy + MW +PF,=0
})x,x +Pv _Qx :0’ ny,x +})y,y _Qy :O’

yx,y

é"?"x + égsy + glf\' + [};I,x - éq = 0
Q! +Q/ +H! +H! -S/ -28

-8! ,~G'+P/ =0, for j=12,.n, (13)

and g = 1,2,...ng.

where, P, =p!+p? and P)=-pyl(z)) — p¥,
2)+D,0,, +D, 8 + q; 6, plp. are
mechanical load applied at the top and bottom of the

plate; (DZ_L D), q, are electric displacements and
jump in the electric displacements; 81.]. is Kronecker’s
delta. The variationally consistent boundary conditions
on edges can be expressed as the prescribed values
of one of the factors of each of the following products:

uy N,

n’ uOans > W(] (‘/n + Mns,s )’ WO,nMn >

Wo, B Wo Bs 0 (H =V,

O (H' =V, =S,.,). 9,5,

and at corners s;: w,(s;,)AM , (s,),

07 (5)AS,(s5,) (14)

where, N, M, P, Q, and V denote inplane stress
resultants, bending moments, higher order moments,
shear resultants, and transverse shear resultants; §/,
0’, 0, H’, H' G’, G* electromechanical
stress resultants. Using the mixed formulation
approach, these governing differential equations are
expressed in terms of displacements, stress resultants,
electric potential and electric displacement resultants
that appear in the boundary conditions at the arbitrary
edges.

Thus, the solution in the y direction is developed
in terms of 12 mechanical and 2 n o electrical primary
variables given by

X, = [MOX,,, Uy, WoWo.y, Wor, Yoy, N.vm N X
T
v, +M, )M, PP (Qi+H]),0]

XY, X,

Expanding the solution in terms of Fourier series
along the x-direction meeting the simply supported
ends, the governing differential equations reduce to a
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system 12+2n o first order ODEs and n 0 algebraic
equations for variables X, for each Fourier component
m

H"X, =K"X,+P"+C"¢" (15)
FIH¢I’1 — H;HX",['(v + K;"an _ P¢Iﬂ (16)

where, H", K™, P", C", F"", H ¢’", K ¢m and P ¢’” are the
coefficient matrices. Equation (16) is an algebraic
equation. In a general actuation-sensory response,
some of the piezoelectric layers act as sensors
wherein the induced electric potential is unknown, and
others as actuators where voltage is prescribed ®"is
partitioned into a set of unknown (sensor) output

voltages @ ™ at locations z = z; where ®"is not

prescribed and a set of known input actuation voltages

® ™ at the actuated surfaces z=z). The

corresponding matrices F”, H ¢’", K ¢’" and P¢’" are
also partitioned as

FyOFg | @7 || H
= Xm y
F" F" || ®] Hj '
K" P (17)
ibn Xm - ¢m
Kan Rpu

which is solved for @ and substituting @ into the
partitioned Eq. (15) yields

H"X, =K"X, +P" (18)

where, H", K™ and P™ are the modified matrices.
It’s solution is obtained in close form as in Sec. 2.2.

4. Numerical Results

To obtain the cylindrical bending behaviour in the Levy-
plate model, a plate with a large value of a/b under
an electromechanical loading of sinusoidal variation
along x direction and a constant variation in y-direction
is considered and the results are reported for the mid
section at x = a/2. The equivalence of the coordinate
systems for the two solutions are given in Fig.2 Since
the effective span in this case is b, the span to thickness

Arbitrary boundary
conditions

R

: AN
bitm:ry boundary
P Er— conditions
o 12 b2
3D EKM coordinate Levy solution coordmate system

system

Fig. 2: Coordinate systems of EKM and Levy solutions

ratio is redefined as S = b/h. For this study, the
effective span b is taken as 1 m.

The numerical results are presented for plates
of three configurations: Graphite-epoxy (Grt/Ep)
composite plate (a), soft-core sandwich (b) with faces
of Gr/Ep and hybrid sandwich plate (c) integrated
with piezoelectric fiber reinforced composite (PFRC)
layers at the top and bottom, as shown in Fig. 3. The
properties of Gr/Ep, soft core and PFRC are given in
Table 1.

4.1 Elastic Laminated Panels

The panels are subjected to a uniform pressure load

pf = p,sin(zrx/a) on the top surface. The results
are nondimensionalized as vT/:wK)/pOhS4;

(0,.7,.) = (0,.57,)/ p,S* with S = b/h and ¥, =

10.3 GPa. To arrive at an appropriate value of a/b
for cylindrical bending response, a convergence study
is conducted in Table 2 by using the results for a/b =
10, 20, 40 and 50. It is seen that very good
convergence is achieved with a/b = 50 for panels (a)
and (b). Also, whether a sinusoidal variation of
pressure in the x direction is appropriate for this study
is checked by comparing these results with those for
a uniform pressure variation along the x-direction.
Converged results for the uniform pressure load are

Vogerp 00 | Joask [ Gerp o 0.0 | o TRC_ g, cl)ik
— e T kD :
GriTip 90"_9 0250 t— (n.bp_L‘\ 0054 0.0k
core 0° g o
criep 90° ) T osh / bk i L. | | oot
G ) deﬁ (Gt oF | 95]\_\ 0056 L’r"..b_ [f;(?i}?
S GeEp 00 ) Loosk PERC 0.14

Panel (1) Lanel (b} Lanel (c)

Fig. 3: Laminate configurations of elastic and hybrid panels
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Table 1: Material constants
Y, Y, Y Gy, Gy3 G, V12 Vi3 Va3
Gr/Ep 181 10.3 10.3 2.87 7.17 7.17 0.28 0.28 0.33
Core 0.276 0.276 3.45 0.1104 0414 0414 0.25 0.02 0.02
PFRC 38.87 13.68 13.20 3.0148 4.3541 4.3699 0.3108 0.4179 0.2007
d, s, dy dy, ds My M, N33
PFRC -263 -263 485 0 0 29.769 29.769 24.403

Units: Young’s moduli ¥, and shear moduli Gij in GPa; piezoelectric strain coefficient d,.j in pm/V; electric permittivities 1, in nF/m

Table 2: Convergence study of Levy solution for panel (a) under CS boundary condition (S=5)

a/b=10 a/b=20
w o, 7. w o, 7,
/b, 7/h) 0, 0) (-0.5, -0.5) (-0.5,0) 0, 0) (-0.5, -0.5) (-0.5,0)
UDL* -2.0120 -2.6186 -0.11995 -2.0118 -2.6178 -0.1199
SL** -2.0092 -2.6163 -0.1197 -2.0113 -2.6186 -0.1199
a/b=40 a/b=50
w 7, 7 z,
UDL* -2.0105 -2.6156 -0.1199 -2.0094 -2.6141 -0.1199
SL#* -2.0119 -2.6191 -0.1199 -2.0119 -2.6192 -0.1199

*Uniform distributed pressure loading in x direction; ** Sinusoidal pressure loading in x direction

Table 3: Comparison of Levy solutions for uniform and sinusoidal loading for a long hybrid panel (¢) (CHD-SSP boundary

condition, S=5)

Pressure load case
" 7 % g i
(y/b, 2/h) (0,0) (-0.5,-0.5) (-0.5,-0.367) (-0.5,-0.4) (-0.5,0.5)
UDL -2.579 -3.5971 5.4387 -2.9369 -19.890
SL -2.598 -3.6055 5.4528 -2.9454 -19.938
Potential load case
w o) o, 7 ¢
(y/b, 2/h) (0,0) (-0.45,-0.5) (0.45,-0.36") (-0.45,-0.4) (-0.45,0.5)
UDL 2.2900 120.315 -88.168 19.522 -25.060
SL 2.2909 120.320 -88.177 19.532 -25.058
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obtained with M = 99. It is observed from Table 2
that the results at the mid span (x = a/2) for the
sinusoidal variation match with the converged results
for the uniform variation for at least three significant
digits. All subsequent results are, therefore, presented
with the sinusoidal pressure variation, and considering
a/b = 50.

In Fig. 4, the longitudinal variations of transverse

deflection w, inplane stress &, and transverse shear

stress 7, are plotted for a cantilever (CF) cross-ply

¥
composite panel (a) for § =5 and 10. The variations
predicted by the ZIGT and TOT are compared with
those obtained using the 3D elasticity based EKM
solution. It is observed that the results of the 2D
theories are in good agreement with the 3D elasticity
solution, except for the stresses in the vicinity of the
clamped boundary. The transverse shear stress is
particularly poorly predicted near the clamped edge,
the ZIGT yielding marginally better results among the
two. Similar comparison for the sandwich panel (b)
presented in Fig. 5 reveals that (i) the error in the
stresses near the clamped boundary is also larger for
the sandwich panel than the composite one, and (ii)

Fig. 4: Longitudinal variations of deflection and stresses for
cross-ply composite panel (a) with CF boundary
condition

Fig. 5: Longitudinal variations of stresses for cross-ply
sandwich panel (b) with CF boundary condition

this error is in general larger in the TOT than the
ZIGT. Similar trends are observed from Fig. 6 for the
sandwich panel under clamped-simply supported (CS)
boundary conditions, and the difference between the
ZIGT and TOT predictions of stresses near the
clamped boundary is distinctly bigger in this case. The
through-thickness distributions of the displacement v,

inplane stress &, and transverse shear stress 7,

are presented in Fig. 7 for panels (a) and (b)
respectively, for CS boundary condition. The ZIGT
results are in close agreement with 3D-EKM even
near the edges while TOT results are not in good
agreement. Fig. 7 reveals that layerwise variation of
the displacement with slope discontinuity at the
interfaces and the layerwise variation of stresses are
well predicted by the ZIGT away from the non-simply
supported boundary.

Fig. 6: Longitudinal variations of stresses for cross-ply
sandwich panel (b) with CS boundary condition
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Fig. 7: Through-thickness distributions of y, & 6 and 27 ,. for composite panels (a) and (b) with CS boundary condition

y

4.2 Hybrid Piezolaminated Panels

The response is obtained for the following two load
cases:

1. Pressure pz2 = p,, sin(7x/a) applied on the top
surface, with open circuit condition at the top and
close circuit condition at the bottom surface.

2. Actuation potential applied to the both top and

bottom surfaces, ¢' =¢"™ = ¢, sin(zx/a).

Nondimensionalized parameters are as follows:

Load case 1:

(v, w,9) = (S100v,100w,109d,S )Y, / p,hS*;
(6,.7,..D,)=(0,,5S7,_,D, 1d,)! p,S*

Load case 2 :

v, w) = (Sv,w)/ S*d @,
(G,.7,..D,)=(0,,57,,D_1100d))h/Y,d @,

where, ¥, = 10.3 GPa, d, = 100 x 10-?mV~'. The
boundary conditions of an edge are identified by both
mechanical and electric boundary conditions. Thus, a
hard clamped (CH) edge under open circuit condition
(D) is denoted as CHD. The plates are denoted in
terms of their boundary conditions at the edges at
y= +b/2. For example, a CHP-FP plate means a
plate with boundary condition CHD at y = —b/2 and
FP (free edge under close circuit condition) at y = b/
2.

Based on a convergence study, the value of a/b
to model the cylindrical bending response is taken 50
as in the elastic case. To check whether a sinusoidal
variation of pressure and electric potential in the x
direction will yield an accurate response for the
cylindrical bending case, the convergence for the
uniform pressure and potential loadings are compared
in Table 3 with those for the sinusoidal variation. It is
observed that the results at the mid-span (x = a/2) for
the sinusoidal variation match with the converged
results for the uniform variation for three significant
digits. All subsequent results are, therefore, presented
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with the sinusoidal variation.

In Fig. 8, the longitudinal variations of

displacements O, w, inplane stress 0, , transverse

shear stress 7, and electric potential ¢ are plotted

for a thick clamped simply-supported (CHD-SSP)
sandwich panel (c¢) with § = 5 under the pressure
load case. The variations predicted by the IZIGT and
ITOT are compared with those obtained using the
3D piezoelasticity based EKM solution. The
converged solution of the EKM is taken for the
purpose. It is observed that the results of IZIGT are
in very good agreement with the 3D piezoelasticity
solution, except for the stresses in the close vicinity
of the clamped boundary. In case of ITOT, not only
the predicted stresses deviate more from the 3D EKM
solution, but even the predicted displacements are
highly erroneous. The prediction for the induced
electric potential by the ITOT is also the erroneous
and inferior to the IZIGT.

The variations of the displacements (in Fig. 10
only), stresses and the electric displacement 5: under

the potential load case are plotted in Figs. 9 and 10
for the CHP-FP and CHP-SSP boundary conditions,
respectively. It is seen that the IZIGT results are

Fig. 8: Longitudinal variations of deflection and stresses for
sandwich panel (¢) with CHD-SSP boundary condition
under pressure load

Fig. 9: Longitudinal variations of stresses and transverse
electric displacement for thick hybrid sandwich panel
(¢) with CHP-FP boundary condition under potential
loading

Fig. 10: Longitudinal variations of displacements, stresses
and transverse electric displacement for thick
hybrid sandwich panel (¢) with CHP-SSP boundary
condition under potential loading

superior to the ITOT for both cases and are generally
accurate except for the stresses 0, and 7, in the

close vicinity of supports. Similar to the pressure load
case, the error in the ITOT is more significant in the
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CHP-SSP case than the cantilever one. It may be
noted that in the 2D plate theories, the boundary
conditions related to stresses (e.g. zero normal and
shear stresses at the free boundary and zero inplane
stresses at the simply-supported boundary) are
satisfied only in terms of stress resultants and not
strictly in terms of stresses. Nevertheless, it can be
seen from Fig. 8 that, under pressure loading, stresses
predicted by both the 2D theories satisfy the boundary
conditions at the free as well as simply supported
edges. This, however, does not happen in the potential
load case, as can be seen from Figs. 9 and 10. In this

case, both theories predict very large values for &,

and 7 _ at the edges where they are supposed to be

Z€ro.
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