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ABSTRACT

The statistical expectation values of the temperature fluctuations of the cosmic microwave background (CMB)
are assumed to be preserved under the rotations of the sky. This assumptiorsetiieal isotropy(Sl) of
the CMB anisotropy should be observationally verified since detection of a violation of Sl could have profound
implications for cosmology. We propose a set of measued, = (L , 2, 3, ...), for detecting a violation of Sl
in an observed CMB anisotropy sky map indicated by nonzero . We define an estimator fpr the  spectrum
and analytically compute its cosmic bias and cosmic variance. The results match those obtained by measuring
k, using simulated sky maps. Nonzero (bias-correated) larger than the SI cosmic variance will imply a violation
of SI. The SI measure proposed in this Letter is an appropriate statistic to investigate a preliminary indication
of Sl violation in the recently releasalfilkinson Microwave Anisotropy Prolsata.
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Cosmic microwave background (CMB) anisotropy is a very pairs of pixels with the angular separatiénn particular, for a
powerful observational probe of cosmology. In standard cos- CMB temperature mapT(¢;)) defined on a discrete set of points
mology, CMB anisotropy is expected to be statistically isotro- on a celestial sphere (pixelg) i € 1, ... ,N, ),
pic; i.e., the statistical expectation values of the temperature
fluctuationsAT(q) are preserved under the rotations of the sky. - L
In particular, the angular correlation functio@(q, §) = C) = 2 AT(G)AT(G)d(cost — § - q) )
(AT(Q)AT(Q)) is rotationally invariant for Gaussian fields. In hi=1
3223;2'5 hgrgogliggsopna;;; ;Xngef(é)g”,(sj'm a'”;,?,('ﬁéc% ttlp]le is an estimator of the correlation functi@@)  of an underlying
widely used angular power spectrum of CMB anisotropy, is a S! statistic’
complete description of (Gaussian) CMB anisotropy. Hence, it ~/nthe absence of SC(@, ¢) is estimated by a single product

is important to be able to determine whether the observed CMBAT(q)AT(q) and hence is poorly determined from a single
sky is a realization of a statistically isotropic process or'not. realization. Although it is not possible to estimate each element

We propose a set of measures ¢ # 1 2, 3, ...) that for of the full correlation functiorC(g, ) , some measures of the
nonzero values indicate and quantify a violation in statistical Statistical anisotropy of the CMB map can be estimated through
isotropy (SI) in @ CMB map. A null detection af  will be a Suitably weighted angular averages &T(Q)AT(q) . The an-
direct confirmation of thessumeds! of the CMB sky. It will gular averaging procedure should be such that the measure

also justify a model comparison based on the angular poWerinvolves averaging over a sufficient number of independent
spectrunC, only (Bond, Pogosyan, & Souradeep 1998, 2000a “measurements,” but it should ensure that the averaging does
2000b; Souradeep 2000). The detection of an Sl violation canhnot erase all of the signature of statletlcal anisotropy (as would
have exciting and far-reaching implications for cosmology. In Na@PPen in eq. [1] or eq. [2]). Another important desirable prop-

particular, an Sl violation in CMB anisotropy is the most ge- €'Y IS that the measures be independent of the overall orien-
neric signature of nontrivial geometrical and topological struc- tation of the sky. Based on these considerations, we propose

ture of space on ultralarge scales. Nontrivial cosmic topology & S€t of measures  of Sl violation given by
is a theoretically well-motivated possibility that is only recently J,
VK, = dQJdQ’[

2
being observationally probed on the largest scales (Ellis 1971, 8 R
Lachieze-Rey & Luminet 1995; Starkman 1998; Levin 2002). J ARX(RICRA RD] ()
For a statistically isotropic CMB sky, the correlation function o A
whereC(Rq, Rg) is the two-point correlation betwe®q  and
o o 1 o R obtained by rotating angl by an eleméat  of the rotation
C(ny, ny) = C(ny-ny) = S—ZJd‘RC(‘Rnl, Rny), (1) group. The measures  involve an angular average of the cor-
T relation weighed by the characteristic function of the rotation
where RA denotes the direction obtained under the action of a?Jr?St?oﬁé%)arshalowcﬂ(ql\%)oslgl]:\;egwnerggiézi? 1\gv8|98r)]_6f3Vhen
rotation R onn , anddR is a volume element of the three- R is expressed as rotation by an anglgwhere0 < o < 7 )
dimensional rotation group. The invariance of the underlying about an axisf(6, ®) , the characteristic functiq_n(‘lﬁ =
statistics under rotation allows the estimatiorCgh, - i using B

the average of the temperature prodNTC(n)AT(n ) between all

(2¢ + 1)
8x?

2 This simplified description does not include optimal weights to account
for observational issues, such as instrument noise and nonuniform coverage.
! Statistical isotropy of CMB anisotropy and its measurement have been However, this is well studied in the literature, and therefore we avoid discussing

discussed in the literature (Ferreira & Magueijo 1997; Bunn & Scott 2000). them here in order to keep our presentation clear.
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X (w) = sin [(2¢ + 1)w/2]/ sin (/2) is completely determined  around a sufficiently large sample of rotation axes. The integral
by w, and the volume element of the three-dimensional rotation in the brackets in equation (3) is estimated by summing up the
group is given bydR = 4 sirf w/2 dw sin® dO d® . Using the terms for different values of weighed by the characteristic
identity [ dR'x(R)x.(RR’) = x.(R), equation (3) can be sim- function. We can define an estimator fgr  as

plified to

_ =B 2!
Ke = Ke_sbev

20+ 1 A s RSO
o= &2 f do f d2C(, §) f AR x (R)C(RG, RE), @ % o X
™ K=" 2 AT@ATE) 2 x(w,)
4 ij=1 m=1
@ )
containing only one integral over the rotation group. For a X ZlAT(‘Rmnqi)AT('Rmrﬁj):
statistically isotropic modelC(Rg,, RG,) = C(@,, §,) is in- "
variant under rotation, and equation (4) gives= «%,, be- (11)
cause of the orthonormality of,(w) . Hence, defined in
equation (3) is a measure of SI. o _ where, as described beloW, = (kf)  accounts for the “cosmic
The measure, has a clear interpretation in harmonic spacepjas” for the biased estimata} . As with the sky, the rotation
The two-point correlatiorC(q, ¢) can be expanded in terms group is also discretized &,,, , where= 1, ...,N,, is an
of the orthonormal set of bipolar spherical harmonics as index of equally spaced intervals in rotation angleand
o . ~ n =1, ...,N indexes a set of equally spaced directions in the
ca,q9) = %‘A ALY (@ @ YA e (5) sky. While we have also implemented this real-space compu-

tation, practically, we find it faster to estimate  in the harmonic
space by taking advantage of fast methods of the spherical har-
monic transform of the map. In harmonic space, we first define
an unbiased estimator for the bipolar harmonic coefficients based
on equation (6) and then estimaie  using equation (7),

where A are the coefficients of the expansion. These coef-
ficients are related to an “angular momentum” sum over the
covariancesa,, &) as

(’l\,/l = m ﬁ;m/ _1 m@(x/, y 6 ~ ~
"= © 1= D ananCi ko= 2 (AN 8. @2)

whereCM,, are Clebsch-Gordan coefficients. The bipolar func-

tions transform just like an ordinary spherical harmonic func-  Assuming Gaussian statistics of the temperature fluctuations,
tion Y, under rotation (Varshalovich et al. 1988). Substituting the cosmic bias is given by (A. Hajian & T. Souradeep 2003,
the expansion equation (5) into equation (3), we can show thatin preparation)

— £ ~
“= 2 IAYF20 @) @) == 2 20 D (@i Bm) @ )

is positive semidefinite and can be expressed in the form + (@8 ) (@ B )]

20 +1 x 2GS, (13)

87’

K¢ J dQ{X(/(R) |Zﬂf <alm al*’nf><alma*ljrﬁ>R1 (8)
. ) Given a single CMB sky map, the individual elements of
where(...)" is computed in a frame rotated By . When Sl the 3 4 ) covariance are poorly determined. So we can cor-

holds, (@& = Cdybny, IMplying Ay = (_1)_IC|,(2| + rect for the biagB, that arises from the SI part of correlation
1)"%,.:6,06m0- The coefficient#\° represent the statistically iso- fynction where

tropic part of a general correlation function. The coefficients
W, are the inverse transform of the two-point correlation T

B, = (B = (20+1) > >, GG+ (D)3,

17 o= €Iy

R

Vs = J Y j dQ’ C(, A{Y (M S Y (M} (9)

(14)
The symmetryC(n, ') = C(i¥,n) implies Hence, for an Sl correlation, the estimafor  is unbiased, i.e.,
‘ <E(> = 0.
o= (1) OAN  AM = AMS, L, k=10,1,2, ... Assuming Gaussian CMB anisotropy, the cosmic variance
of the estimatorg\!” and, can be obtained analytically for
(10) full sky maps. The cosmic variance of the bipolar coefficients
Recently, the Wilkinson Microwave Anisotropy Probe ~
(WMADB has provided high-resolution (almost) full sky maps of o*(A}) = mErd r;ﬁ [(@m.8 m) @ m A )
CMB anisotropy (Bennet et al. 2003) from whigh)  can be n e
measured. Given a single independent CMB map(Q) , we + (8 1m, i) (@ A i)
need to look for a violation of SI. Formally, the estimation pro- ~ eM
cedure involves averaging the product of temperature at pairs of X G mtom & it i (15)

pixels obtained by rotating a given pair of pixels by an angle
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which, for an Sl correlation, further simplifies to

o3 (ANV) = GG 1+ (-1, ] A

m+my(TEM M
X 2 (_1) ' zﬁé’llmllzmzyllmllzrﬁg

my, mz

4

as a result of equation (10) arising from the symmetry of i
C(@, &)- Sl
A similar but more tedious computation of 105 terms of the - [
eight-point correlation function yields an analytic expression
for the cosmic variance af  (A. Hajian & T. Souradeep 2003, i L
in preparation). For the Sl correlation, the cosmic variance for L %
£ >0 is given by T T
5 10 15 20

@ iy + 1) l

(16) 0.5 : s :
Note that forl, = I, , the cosmic variance is zero for ofid >0 % e {% % % ' %§§(§ 5

¥
>

od(k) = 2, 4CH2 "5

Fic. 1.—Bias-corrected “measurement” of of an S| CMB sky with a
flat-band power spectrum smoothed by a Gaussian béém- L)C =

+[1+ 2(-1)°IRS exp (—1%18?)]. The cosmic errow(x,) , obtained using 50 independent re-
alizations of the CMB (full) sky map, match the analytic results shown
ol by the lower dotted curve with stars. The upper dotted curves separately
+ z 2 ACZC(2¢ + 1)+ R{ ] outline the cosmic error envelope for odd multipoléfied triangleg and
Ip l3=[€—1q for even multipoles ¢pen triangley. Violation of SI will be indicated by
o4l 5 nonzerox, measured in an observed CMB map in excess«Qf given
(2¢+1) , ¥ by the C, of the map. The lower dashed curvilgd square$ shows the
+8 E ﬁ C|l 2 Qz cosmic error for an ideal unit flat-band power spectrdthf 1)C, =1 ]
h L lz=1¢-hl with no beam smoothing. The curve falls off roughly at &t large.
(2€ n 1)2 an [See the electronic edition of the Journal for a color version of this figure.
+16(-1) >, —=——= > CG, (17)

wiaze 20+ 1 =y the contribution from the region of multipole space where the

Sl violation is not expected, e.g., the generic breakdown of Si

where due to cosmic topology. The underlying correlation patterns in
the CMB anisotropy in a multiply connected universe is related

, S s ¢ » » to the symmetry of the Dirichlet domain (Wolf 1984; Vinberg
Fis = 2 2 2 G omismCiman, 1993). In a companion paper, we study the  signal expected
e Tl mamas Tat, M= in flat, toroidal models of the universe and connect the spectrum

X G G yims  (18) to the principle directions in the Dirichlet domain (Hajian &

Souradeep 2003). The Sl violation arising from cosmic topology

Numerically, itis advantageous to rewii¢  in a seriesinvolving is usually limited to low multipoles. A wise detection strategy
9 symbols. The expressions for variance and bias are valid forwould be to smooth CMB maps to a low angular resolution.
full sky CMB maps. For observed maps, one has to contendWhen searching for a specific form of Sl violation, linear com-
with incomplete or nonuniform sky coverage. In such cases, onebinations ofk, can be used to optimize the signal-to-noise ratio.
could estimate the cosmic bias and variance by averaging oveBefore ascribing the detected breakdown of statistical anisotropy
many independent realizations of simulated CMB sky from the t0 cosmological or astrophysical effects, one must carefully ac-
same underlying correlation function. Figure 1 shows the mea-count for and model into the SI simulations other mundane
surement ok, in an SI model with a flat-band power spectrum. sources of SI violation in real data, such as incomplete and
The bias and variance are estimated by taking measurements dfonuniform sky coverage, beam anisotropy, foreground resid-
50 independent random full sky maps using the HEALPix soft- uals, and statistically anisotropic noise.
ware packag@The cosmic bias and variance obtained fromthese ~ In summary, the, statistics quantifies the breakdown of SI
realizations match the analytical results. Just as in the case ofnto a set of numbers that can be measured from the single
cosmic bias, the cosmic variance of  at odd multipoles is CMB sky available. The;, ~spectrum can be measured very
smaller. The figure clearly shows that the envelope of cosmic fast, even for high-resolution CMB maps. The statistics have
variance for odd and even multipoles converge at ldtgeor a very clear interpretation as quadratic combinations of off-
a constant(l + 1)C, angular power spectrum, thek,) falls diagonal correlations betwee),  coefficients. The signal Sl
off with €. (The absence of the dipole and monopole in the maps Violation is related to underlying correlation patterns. The an-
affectsk, fort < 4, leading to the apparent rise in cosmic variance gular scale on which the off-diagonal correlations (patterns)
atf <4 seen in Fig. 1.) occur is reflected in the, spectrum. A_s a tool for detecting
The bias and cosmic variance depend on the total SI angularccosmic topology (more generally, cosmic structures on ultra-
power spectrum of the signal and noi€e,= CS+ CN . Hence, large scales), the, spectrum has the advantage of being in-
where possible, prior knowledge of the expeated  signal shoulddependent of the overall orientation of the correlation pattern.

be used to construct multipole space windows to weigh down This is particularly suited for searching for cosmic topology
since the signal is independent of the orientation of the Dirichlet

3 Publicly available at http://www.eso.org/science/healpix & Hivon, domain. (However, orientation information is ayailabl_e in the
& Wandelt 1999). ) The recent all-sky CMB map frodVMAP is an ideal
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data set where one can measure the Sl. Interestingly, there arapproach complements the direct search for the signature of
hints of Sl violation in the low multipole 0fWVMAP (Tegmark, cosmic topology (Cornish, Spergel, & Starkman 1998).

de Oliveira-Costa, & Hamilton 2003; de Oliveira-Costa et al.

2003; Eriksen et al. 2003). Hence, it is of great interest to make T. S. acknowledges enlightening discussions with Larry Wea-
a careful estimation of the Sl violation in tM¢MAP data via ver of Kansas State University at the start of this work. T. S.
the k, spectrum. This work is in progress, and results will be also benefited from discussions with J. R. Bond and D. Po-
reported elsewhere (A. Hajian et al. 2003, in preparation). This gosyan on cosmic topology and related issues.
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