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Abstract.

The problem of prediction of finite temperature properties of materials poses great computational

challenges. The computational treatment of the multitude of length and time scales involved in determining
macr oscopic properties has been attempted by several workers with varying degrees of success. This paper
will review therecently developed quasicontinuum method which isan attempt to bridge thelength scalesin a
single seamless model with the aid of the finite element method. Attemptsto generalize this method to finite

temperatureswill be outlined.

Keywords.

1. Introduction

Technological  breakthroughs and  experimentd  advances
have made posshle the menufecture of devices and direct
observation of maerids a the nanomeer length-scde
These innovations have ushered a renewed interest in the
theoreticd undersanding of the behaviour of materids
with the god of desgning devices and materids dating
from an aomic point of view. Properties of materids and
devices ae a result of phenomena a vaious length-
scades and require accurae modding to capture  the
physcs a each length-scde For example, the plagtic
response of metas involves the core structure of indivi-
dud didocations, interactions of didocations with each
other and with grain boundaries. Thus the prediction of
plagic behaviour requires modding a different scdes
where input to a modd a a higher scade will be the out-
put form to the modd & a lower scde (see figure 1). For
example, the junction dtrength of didocations which is
required in didocaion dynamics smulations is obtained
from an aomigic dmulaion. While wel established
modding draegies exit for esch length-scae, the thrust
of ressarch has shifted, in recent times to developing
modding strategies that bridge the length-scales.

The quasicontinuum method pivots on a srategy which
attempts to teke advantage of both conventiona atomigtic
smulaions and continuum mechanics to devdop a
seamless methodology for the modding of defects such
as didocations, gran boundaries and cracks and ther
interactions. The key idea of the quasicontinuum method
is the use of a full aomigtic description of the materiad
near the defect cores while a coase graned finite de
ment modd is used fa away from the defect cores and
heterogeneity where the lattice is not highly distorted.
The conditutive description of the materiad in the finite
dements is dso obtaned from an aomidic caculdion.
This drategy dragticdly reduces the required computa

M ulti-scale models; quasicontinuum method; finite elements.

tiona effort, and dlows for the smulation of much larger
systems than those possible in traditiona atomistic mod-
gs At the present time, the methodology is fully deve-
loped for datic cdculations with interatomic potentias
such as embedded aom method, a zero Kevin—examn
ples of such smulaions include interaction of a grain
boundary with extend dresses, and the interaction of a
lattice didocation with a grain boundary. The future direc-
tions incdude extenson of the method to the more
sophisticated tota energy descriptions such as  density
functional theory, and to finite temperature nonequili-
brium simulations.

The paper is organized as follows 8§2 deds with the
quasicontinuum formulation for zero Kevin datics, 8§83
contains formulation for dynamics a zero Kdvin; con-
clusions and future directions are summarized in &4.

The quasicontinuum method was fird formulated by
Tadmor et al (1996) and reformulated by Shenoy et al
(1998), Shenoy (1998) and Shenoy et al (1999). The pre-
sent paper is an extract of Shenoy (1998).

2. Staticsat zeroKeévin

The quasicontinuum method is constructed as an appro-
ximation theory to aomidics, i.e a sysemdic construc-
tion that reduces to the exact aomigtic theory when al
the aomic degress of freedom ae conddered. Also, the
method is able to ded with cracks grain boundaries and
free surfaces in a uniform fashion. To this end, we dart
with the premise that the body is made of a large number
of aoms N. The presence of a cydadline reference con-
figuration is exploited in the sense that for many regions
of the crystd, it is unnecessary to save lists of atomic
positions since they can be generated as needed by expl-
oiting the cydadline reference state. A given atom in the
reference  configuration is specified by a triplet of inte-
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gers 1 =(l4, |y, I3), and the grain to which it bdongs. The
postion of the aom in the reference configuration is then
givenas,

3
X(1)=Q 1.BI+R™, N

a=1

where B]' is the ath Bravais ldtice vector associated
with gran G, and R™ the postion of a reference aom in
gran, Gp which serves as the origin for the aoms in
gran G,

Macroscopic (> 10™m)

Figurel. Multiple scalesin materials modeling.

Once the aomic postions have been given, from the
dandpoint of a drictly atomistic perspective, the tota
energy isgiven by the function

Eror = Bexaat (X1: %20 X300 Xy ) = g ({ Xi}): (2

where x; is the deformed position of atom i. The follow-
ing convention is adopted: capita letters refer to the un-
deformed configuration while lower case letters refer to
the deformed configuration. The energy function in (2)
depends explicitly upon esch and every microscopic deg
ree of freedom, and as it stands becomes intracteble once
the number of aoms exceeds on€s current computationd
cgpacity. The problem of determining the minimum  of
the potentid energy is in the context noted above, noth-
ing more than a statement of conventiond ldttice statics.

The first sep in the congtruction of an approximation
scheme is the sdection of R ‘representative atoms whose
postions will be the only uncongtrained degrees of free
dom of the sysem. The postion of any other atom in the
system is obtaned from a finite dement mesh that is
congtructed with the representative a@oms as nodes. Thus
the approximate posiion x!' of any aom can be obtained
by interpolation as

Xih = é, Na (Xi)xa! (3)

where NL(Xj) is the finite dement shgpe function centred
aound the representative atom, a (which is dso a FEM
node), evauated a the undeformed pogtion, X; of atom i.
The finite dement formulation therefore provides a com-
plete kinematic description of the body on the specifica
tion of the representative atoms and condruction of the
mesh.

The next step in the process is to gpproximate the ener-
getics, i.e to devdop an approximate energy function
that depends only on the pogtions of the representative
aoms. It is here that we make a very crucid assumption
regarding the type of energy functionds that are dedt
with. We asume that the atomigtic formulaion under
condderation provides for a dtewise additive decompo-
stion of the total energy

N
[o]

Eo=a Ei- 4
i=1

Such a decompostion is adlowed in the embedded atom
method and pair potentia formulations but not in the case
of more sophidicated quantum mechanics formulations
such as densty functionad theory. While this assumption
regtricts the class of energy functionas that alow for the
goproximations discussed herein, it is beieved that the
method developed will neverthdess be ussful in tredting
vay lage sysdems using the smpler aomigtic formula
tions such as EAM and pair potentids that would other-
wise have required the use of supercomputers. Now for
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the approximaion scheme notice tha the sum in (4) runs
over dl the aoms in the body, and if it is to be computed
usng the gpproximae podgtions given by (3) it would
dill require the condderation of dl aomic degrees of
freedom, and therefore no reduction is achieved. It is
here, then, that we make the crucid approximation to
compute the total energy in that

R
o
Ewt>a MEa- ®

a=1

The crucid idea embodied in this eguation surrounds the
section of some st of representative atoms, eech of
which, in addition to providing a kinematic description of
the body, is intended to characterize the energetics of
some spatid neighbourhood within the body as indicated
by the weight, n,. As yet, the statement of the problem is
incomplete in that summation weights, n,, have not yet
been specified. We treat the problem of the determination
of n; in a manner andogous to determination of quadra-
ture weights in the gpproximate computation of definite
integrals. In the present context the god is to approxi-
mate a finite sum (‘definite integrd’ on the latice) by an
goproprictely chosen quadraure rule where the quadra
ture points are the dtes of the representative atoms.
Physicdly, the quantity ny, may be interpreted as the
‘number of aoms represented by the representative
aom, a. The quadrature rule (5) is designed such that in
the limit in which the finite dement mesh is refined dl
the way down to the atomic scde (a limit that is denoted
as fully refined) each and every aomidtic degree of free-
dom is accounted for, and the quadrature weights are
unity (each representative aom represents only itsef).
On the cother hand, in the far fidd regions where the
fidds ae dowly varying, the quadrature weights reflect
the volume of space (which is now proportiona to the
number of atoms) that is associated with the representa
tive aom, and this is where the continuum assumption is
mede ie in the exigence of a wel defined number den-
sity in space.

An additiond energetic  gpproximation in  computing
(5 that smplifies the energy cdculations and dso makes
it possble to formulate boundary conditions which
mimic those expected in an dadic continuum is now
mede. The essentid idea is motivated by figure 2, which
depicts the immediate neighbourhood of a didocation
core. In paticular, for this Lomer didocation note the
characterigtic geometric  signaure of the core viz. the
pentagond group of aoms in the core region. Consder
the environments of two of the aoms in this figure, one
(lsbded A) in the immediate core region, and the other
(lebded B) in the far fidd of the defect. It is evident that
the environment of aom A is nonuniform, and tha esch
of the aoms in tha neghbourhood experiences a dis
tinctly different environment. By way of contrast, atom B
has an environment that may be thought of as emerging

from a uniform deformation, and esch of the atoms in its
vicinity seesanearly identica geometry.

As a reallt of these geometric indghts, the energy, Ej,
may be computed from an aomigtic perspective in two
different ways, depending upon the nature of the atomic
environment of the representative atom a. Far from the
defect core, the fact that the aomic environments are
nearly uniform is exploited by making a locd cdculaion
of the energy in which it is assumed tha the date of
deformation is homogeneous and is well characterized by
the locd deformation gradient F. To compute the totd
enegy of such aoms, the Bravas lattice vectors of the
deformed configuration, b,, ae obtained from those in
the reference configuration B, via by, =FB,. Once the
Bravais latice vectors ae gpecified, this reduces the
computation of the energy to a sandard exercise in the
practice of lattice Setics.

On the other hand, in regions that suffer a date of de-
formation that is nonuniform, such as the core region
aound aom A in figure 2, the energy is computed by
building a cryddlite that reflects the deformed neighbour-
hood from the intepolated displacement fidds. The
aomic postions of each and every aom ae given excu-
svely by x=X+u(X), where the displacement fied u is
determined  from  finite edement interpolation.  This
ensures tha a fully nonloca aomidic caculation is per-
formed in regions of repidly vaying F. An automdic
criterion for determining whether to use the locad or
nonlocad rule to compute a representative aom’s energy
based on the variation of deformaion gradient in its vici-
nity is presented by Shenoy et al (1999). The digtinction
between locd and nonlocd environments has the unfor-
tunate dSde effect of introducing smdl spurious forces
referred to as ‘ghost’ forces a the interface between the
locd and nonlocd regions. A correction for this problem
isdso discussed in Shenoy et al (1999).

Figure 2. Atomic structure near the core of a Lomer disloca
tion in Al. The atom, A, in the core region experiences an
inhomogeneous environment while the environment of atom B
is nearly homogeneous.
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Once the totd energy has been computed and both the
kinematic and energetic bookkeeping have been settled,
we ae in a podtion to determine the energy minimizing
digplacement fidds. As will be discussed beow, there are
a number of technicd issues tha surround the use of
dther  conjugate gradient or Newton-Rgphson  tech-
niques. Both of these techniques are predicted upon a
knowledge of various deivatives of the totd energy with
respect to nodal displacements.

As noted in the introduction, one of the design criteria
in the formulation of the method was that of having an
adaptive capability that dlowed for the targeting of par-
ticular regions for refinement in response to the emer-
gence of rapidy vaying dislacement fidds  For
example, when smulaing nancindentation, the indenta
tion process leads to the nuclestion and subsequent
propagation of didocations into the bulk of the crysd.
To capture the presence of the dip that is tied to these
didocations, it is necessary that the dip plane be refined
dl the way to the aomic scde. The adgption scheme
dlows for the naturd emergence of such mesh refine
ment as an outcome of the deformaion higory. The
adaption scheme, except for the adaption criterion, remains
identicd to that of Tadmor (1996).

We now list the essentid points of the approximation
scheme presented in this section:

() A subsst of the tota number of atoms that make up
the body ae sdected (representative atoms) and
their postions ae trested as the only unknowns.
The postion of any other atom in the body is then
obtained from a finite dement mesh whose nodes
correspond to the representative atoms.

(1) The energy of the system is dso computed with the
knowledge of energies of only the representative
atoms. Thisisaccomplished by therulein (5).

(1) A further approximation in the computation of the
energies of the representative atoms is made where
the deformations ae approximatdy homogeneous
on the scale of the lattice.

2.1 Application: dislocation—grain boundary interaction

The interaction of didocations with grain boundaries has
been identified as an important factor governing the yield
and hadening behaviour of solids For example, the dep-
endence of the yield sress on the grain size given by the
cdebrated Hdl-+Petch rdationship, is explaned usng a
pileup modd which assumes tha didocations are
stopped by the grain boundary. In this section we illus-
trate how the QC method can be used to build redigic
modds that address the issue of the interaction of lattice
didocations with grain boundaries. For the specific grain
boundary that we condder, we confirm the hypothess
that a pileup will indeed occur, and that no-dip trans
mission takes place across the boundary.

We dudy the interaction of %[110] didocations with
a a=21241) symmetric tilt boundary in auminum.
Figure 3 shows a bhicrystd, the top face (between A and B
in figure 3) of which is subject to a kinematic boundary
condition tha mimics the effects of a rigid indenter. On
atanment of a citical load, didocations are nuclested a
the point A, and they move towards the grain boundary.
We investigate the nature of the interaction of thee dis
loctions and the gran boundary through the considera
tion of the following questions will the didocation be
absorbed by the boundary, and if so what is the result of
this process? will the didocation cause a sufficient stress
concentration a the boundary so as to result in the nude
ation of adidocation in the neighbouring grain?

On gppliction of the load, the bicrystd undergoes
some initid dadic deformation and the firg didocation
is nuclested when the displacement of the top face
reeches 142 A. This didocation is driven into the bound-
ay and is dsorbed without an increase in the load leve.
Figures 4a, b show the configuration of the gran bound-
ay immediately before and after this nuclegtion event. It
is seen that the didocation absorption produces a step on
the gran boundary. This process may be understood
based on the DSC latice by decomposng the Burgers
vector into DSC latice vectors (King and Smith 1980).
In the present case, we find that

27,101 =2312]+2[2.
111,01 ="L{312] +—2{241], (6)

where 2[312] is the Burgers vector of a gran boundary
didocetion pardle to the boundary and —=*[341] is per-
pendicular to the boundary plane. A careful examinaion
of figue 4b reveds that 72[312] travds dong the
boundary, and stops on reeching the end of the nonlinesr
zone. On subsequent loading, another pair of Shockley

patids ae nuclested when the displacement of the rigid

B Crrain 1 A

B0 =

K. (A}

Girain 2

g
§

Figure 3. Mesh designed to model the interaction of disloca-
tions and a grain boundary. Dislocations are generated at the
point A by rigidly indenting on the face AB of the crystal.
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(a) b) ' (c)

Figure 4. Snapshots of atomic configurations depicting the
interaction of didocations with a grain boundary. (a) Atomic
configuration immediately before the nucleation of the partials,
(b) atomic configuration immediately after the nucleation of the
first set of partials which have been absorbed into the boundary
and (c) the second pair of nucleated partials form a pile up.

indenter is 182A, which agan does not result in any
sgnificant reduction of the load. Unlike the first pair,
these didocations are not immediatedly absorbed by the
boundary, and they form a pileup ahead of the boundary
as shown in figure 4c. On additiond indentation, these
didocations ae dso absorbed by the bounday. The
simulation was terminated at this stage.

The neighbouring cysd shows no dSgnificant didoca
tion activity and thus it may be concluded that dip is not
transmitted into the neighbouring grain across the bound-
ary. The absorption of the didocation resulted in a diding
motion of the gran boundary by the passage of a gran
boundary didocation and the formation of a step on the
gran boundary. The formation of the step appears to
result in the increased resistance of the boundary to dis
locations, as is clear from the fact that a significantly
higher sress leved had to be atained before the absorp-
tion of the second didocation. The type of didocation
gran boundary interaction seen here is the third type as
classified by Shen et al (1988).

It is worth noting the dgnificant computationd saving
obtained by the use of the QC method for this problem.
The number of degress of freedom used in the QC modd
was about 10* while a complete aomistic modd of this
problen would have required more than 10" degress of
freedom. The QC dmulation required about 140h on a
DEC-Alpha work-gation while a purdy atomisic mode
would have required aparalel supercompuiter.

3. Dynamicsat Okelvin

The badc idea of the ddic quasicontinuum method pre-
sented in 82 is caried forward to dynamics, in that repre-
sentative aoms are chosen, and a finite dement mesh is
condructed with these as nodes. The kinematics of dis
placements and velocities ae obtained by interpolation.
The totd energy (or Hamiltonian) of the system is dso
gpproximated in asmilar fashion asin the case of gdtics.

To achieve this we gat with an expresson for the
Hamiltonian (in aclassica setting) as

2

o P

H(Xgso o Xyo Pres Py) = Bt (X0 X))+ @) 2r|n
—_— i

potentialenergy

kineticenergy

o]
- a fixX ) )
J
potential of external sources
where the x; is the postion of the aom i, p; its momen-
tum, and N the tota number of aoms The potentid ene-
ray, Eio, IS obtaned from an aomigic formulation. It is
assumed that al the atoms that make up the solid are the
same species and the mass of esch of them is assumed to
be m. The evolution of this aomic sysem is governed by
Hamilton's equations of motion (Goldstein 1980):

m:_ ﬂ:-—ﬂEtOt +fi!
qt T T
ftt iz, m
These equdions have been widdy used in molecular

dynamics smulations such as in the work of Abraham et
al (1997) which involves hillion-atom dsudies of fast
fracturein solids.

3.1 Approximate Hamiltonian

The god of the dynamic quascontinuum method is to
devdlop an goproximate Hamiltonian and derive evolu-
tion eguations for the reduced degrees of freedom from
the approximate Hamiltonian. As dways, the firg sep is
the sdection of R representative atoms whose postions
and momenta are the reduced degrees of freedom. The
position and velocity of any other atom may now be obtai-
ned usng a finite dement interpolaion from the mesh
condructed with these representative atoms as nodes—
this provides a complete kinematic description of the
dynamicaly deforming solid. As in the case of datics
condant grain triangles are used for this discretization
procedure. It is here that the important assumption of O
Kelvin temperature is made—the fidds are assumed to be
smooth enough to dlow for a finite dement interpolation.
This will not be true a finite temperatures where therma
fluctuations result in these quantities varying wildly from
one atomic site to the next.

Having obtaned an approximate description of the
kinematics, atention is now focussed on congtructing an
goproximate Hamiltonian that depends only on the redu-
ced degrees of freedom. Since the potentid energy is
assumed to possess the property of Stewise decomposa
bility, one can put down the approximate Hamiltonian
as
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R
o]
Hn(X4,o 0 Xy Proee-s PR) =@ Ma Ea (X140, XR)

R 2
Ny f_a XX +é. My &v (9)
Z, 2m

Qo i

a=1

where a is a subscript over al representative atoms. The
main point of (9) is that the kinetic energy term is appro-
ximaed in exectly the same manner as the potentid ene-
rgy term. Also, from a finite dement point of view, this
is the lumped mass approach to dynamic problems. In the
lumped mass gpproach the mass marix for esch dement
is taken to be a diagond matrix, as opposed to the con-
dgent mass matrix which is derived from the wesk form
of the equations of motion and is not diagond (Hughes
1987). The lumped mass approach in conjunction with an
explicit integration scheme provides a very efficient
method to tackle dynamics problems.

The eguations of motion will now be derived from the
approximate Hamiltonian. Before we do that we will rec-
agt the expresson in (9) such that it actudly represents a
Hamiltonian—the momenta and pogtions in a Hamilto-
nian must be canonicdly conjugate (see Goldgtein  1980).
To this end define the lumped mass, M,, of the represen-
tative atom a as

Ma =nam, (10)

and define the lumped momentum, P, and lumped force,
F 4 of the representative atom a as

Pa :napa'
F,=nf,.

Usng the definitions in (10) and (11) the expresson in
(9) can berewritten as

(12)

H, (Xp oo Xgs Prye ooy Pe) = ER (X050, Xg)

tot

& & p2
'aFaxXa+a a’ (12)
a=1 a=1 ZMa
where the abbreviation
o]
Etpt (X3 Xg) =@ Ma Ea (X, XR), (13)

a

is used. It is now evident from the form of (12) that P, is
canonicdly conjugate to X, and tha the expression truly
represents a Hamiltonian system.

The eguations of motion for the representative aom
may now be derived using the Hamilton' s equations as

ﬂ:_ﬂmF

It ™,

1TXa Pa

-2 =-_2 14
M (14

a

Using the definitions in (10) and (11) the above equations
can beamplified as

T LTEL
a
It n, X,
TXa _ Pa (15)
t m’

and it is this set of equations that is integrated to obtain
the approximate evolution of the aomic sysem. As in
the case of ddtics, representative atoms are classfied as
nonlocd and locd—nonlocd  representaive  aoms  are
treated usng an exact aomidic rule, while the locd re-
presentative aoms ae trested using the homogeneous
deformation gradients in the dements tha surround the
representative  aom. The problem of ghost forces that
accompanies this classfication is not trested in the pre-
sent case.

One of the advantages of the present formulaion is the
fact that if al atoms in the modd are sdected and trested
in a nonloca fashion, the results of the conventiond
molecular dynamics are recovered.

3.2 Subcycling

We shdl now discuss the integration of the equations of
motion (15). The standard method would be to use the
centrd difference rule (Hughes 1987)

2
1 Dt
xml = x" + Dtp" +Tan,

"= y" +%(an +a™h, (16)
where X, » and a represent the postions, velocities and
accderdtions of dl the representative atoms. The super-
scripts denote the time step, and Dt represents the step
sze. The step size, Dt, in the dandard centrd difference
scheme is taken to be equd for dl the atoms The centrd
difference scheme is only conditiondly doable i.e Dt
cannot exceed a critica vadue for the dgorithm to be da
ble In the case of a nonuniform mesh where some of the
nodes are a atomic resolution the vaue of Dt will be de-
termined by the time dep taken required for the stable
integration of these fully refined aoms. This vdue is of
the order of 107'°-10'*s All the aoms in the modd
have to be integrated with thistime resolution.

Beytschko and coworkers (Belytschko et al  1979;
Bdytschko and Smolinski 1985, Beytschko and  Lu
1993) have devdoped a method cdled subcyding where
each node in the finite dement has its own dep size and
eech dement information is updated only on its own time
gsep. Ther motivation was to treat dynamic problems in
nonlinear/indlagtic andyss so that savings in  computa
tiond times can be subdantiadl in that the conditutive
equation need not be integrated a every time sep for
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eech dement. Each dement sep size is computed by
solving the eigenvaue problem

|K,-wZM,|=0, an
where K. is the dement diffness matrix, M the lumped

mess marix and w¢ the frequency of vibration. Now the
step sizefor the dement, e, isgiven by

2
where W)™ is the maximum eigenvaue obtained from

(17). The nodd step size for each node is defined as the
minimum sep size of dl the dements of which the given
nodeisapart.

The smalest step size over dl eements is taken as the
step size, Dt, for the problem—this is assumed to be the
basic unit of time.

Dt=minDx,. (19
e

Each demet is then asdgned an integer, s, that corre
sponds to the number of units of this step that makes up
thetime step for thiselement, i.e.

S (,%H (20

which represents the number of steps of Dt that are taken
before the dresses and other internd  varidbles in  this
dement are updated. Smilarly, each node is ds0 asdg-
ned an integrd number, s;, which is taken as the mini-
mum vaue of s, over the dements that touch node a The
accderation of the node a is updated only for every s,
steps of Dt. The scheme for integration of any node
whosetime step is s, steps of the unit timeisasfollows

i i1 Ly D et
X;H — X:+(|. )+Dtv;1+(|. )+ > a;n(l. ),

y2+i :v:+(i—1) +[Ia2+(i—1),
a;]-f—i :a;]+(i—l) ("| <Sa) (21)

Put in words (21) means this—assume that at the time
step n measured with the unit step that the accderation of
the node a was updaed. Then for dl the s, steps from
this step, the above dgorithm is used to integrate the
equation of moation for the node a, and the accderation
of the represontative aom a is updated at the time step
n+s,.

The dgeps involved in the subcycing agorithm can
now be enumerated as follows. Fird, dl the dement and
noda sep szes are computed. At every time step each
dement is vidted, and if its time dep is reached, the
sresses in tha dement are updated. Each node is then
visted and eguations of motion are integraied based on
(21) and the accderdtions are computed if the nodd time

step is reached. We should point out here that subcycling
is effective for locd representaive atoms only as dl
nonlocad aoms live in fully refined regions and therefore
automatically have the unit step sze for their integraion.
Therefore, computationd gains will be subgtantid only in
caxs where the bulk of the computation comes from
loca atoms at each time Step.

The effective use of this theory is possble only when
goproprigte  adgptive  remeshing  schemes  ae  imple
mented. This would involve deveoping a more generd
criterion than tha given in Shenoy et al (1999), which
preserves the energy of the modd when the mesh is
adapted. No such scheme is developed here, and is cer-
tainly an important step forward for this method to be
effective. The present drategy has been to adapt the mesh
to the fully refined state a priori where the defects are
expected. The representative aoms in these fully refined
regions are initidly treated usng the locd rule and sub-
sequently  turn nonlocal  when  gpproached by defects—
this is guaranteed by periodic updates in the status of the
representative atoms during the integration process.

3.3 Applications—Dynamic nanoindentation

Tadmor (1996) <udied the problem of quesdtatic nano-
indentation in duminum usng the quascontinuum
method. Not only was he ale to compute the load dis
placement curves, he was dso able to find the different
dructures that evolved when indentation was carried out
on different crysta faces. In the present context, it is inte-
resing to use the same geomelry to explore the dynamic
effects that might appear in nanoindentation.

The materid in question is duminum which is smu-
laed usng the embedded aom potentids developed by
Ercoless and Adams (1993). A dngle crystd auminum
block is subjected to the action of a rectangular rigid
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Figure5. Mesh used for dynamic nanoindentation.
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Figure 6. Left: Contour plot of the out of plane displacement, u,; the numbers in the legend are in A. Right:

Plot of jump in the out of plane displacement.

indenter whose width is 30A. The indenter pushes on a
(110) face of the crysd—an orientation that is best
auited to nucleste %[110] type didocations. These dido-
cations would then run into the crysta. The indentation
seed is chosen to be 50 A/ps—seven percent of the
longitudind wave speed. The mesh used for the smula
tion is shown in figure 5 Shnce adgptive remeshing
schemes are not used in the present set up, the mesh is

refined to the aomic scde dl dong the dip plane where
the didocations are expected.

Figure 6 shows a contour plot of the out of plane dis
placement, u, and a plot of the jump in the displacement
[u] as a function of the digance from the indenter. These
plots ae of dgnificance for the following reason. The
%[110] didocations in duminum Solit into  Shockley
patids each of which have a screw chaacter as wadll.
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This shows up as an out of plane digplacement in the
smulations and therefore acts as the dgnaure of the
presence of didocations. A caeful sudy of figure 6
shows that the first sat of didocations is fully formed a
about 06 ps ater the beginning of indentation and this
st rushes into the crysta under the influence of the
dress from the indenter. Subsequently, another st of
didocetions is nuclested a 14 ps and a third par a
1¥ps (sngpshots immediately after these events are
shown in figure 6). All of these didocetions travel into
the bulk of the crystdl in procession.

One may cdculate the speed of the didocations as they
rush through the crystd. The postion of the didocation is
teken to be the digance a which the magnitude of the
jump in the out of plane displacement is maximum. The
jump in the displacement is plotted on the right hand col-
umn of figure 6. A plot of the postion of the leading
didocation is shown in figure 7(2). The veocity of the
didocation can be computed usng a centrd difference
scheme from the data shown in figure 7(8) and this is
shown in figure 7(b). It is seen from figure 7(b) that the
didocation rapidy accderates to a veocity of about
700A/ps and then later reaches an approximatey con-
dant velocity of about 610A/ps dthough it is dearly
decderating as it runs through the crystd. The behaviour
of the other didocations that are nucleated is aso smilar.
The main concluson of this study is that the didocations
ae supearsonic. A more detaled andyss of the results
can be found in Shenoy (1998).

4. Conclusionsand futuredirections

This paper presents a review of the quasicontinuum
methodology. The quasicontinuum method is an aopro-
ximation scheme for aomigics. The method is fully deve
loped for the case of 0 Kelvin smulations.

Future work may be caried forwad in two main dire-
ctions. Firgt, the method as it stands is applicable only to
aomigic formulaions which dlow for a dStewise addi-
tive decomposition of the totd energy. Thus, the method
in its present form will not be applicable to densty func-
tiond approaches where a thilmning of the degrees of
freedom will prove to be of great advantage The second,
and perhgps more chdlenging, direction is to extend this
method to finite temperature smulations. For equilibrium
smulations, a temperature dependent free energy is defi-
ned (Shenoy 1998) and minimization is caried out in a
smilar fashion as the 0 Kdvin case. For nonequilibrium
sysems, the exact governing principles of the sysem are
not clear. An datempt has been made by Shenoy (1998) to
devdop a odf-condgtent theory for  non-eguilibrium
processes which may be approximated by quasicon-
tinuum method. These ae, of course, the firg seps in
this direction and much further work is required towards
congruction of a sound mode for nonequilibrium smu-
letions.
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