
P H Y S I C A L L E T T E R S week ending
19 DECEMBER 2003VOLUME 91, NUMBER 25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows
Transverse Optical Mode in a One-Dimensional Yukawa Chain

Bin Liu,* K. Avinash, and J. Goree†

Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
(Received 27 May 2003; revised manuscript received 11 September 2003; published 19 December 2003)
255003-1
A transverse optical mode was observed in a one-dimensional Yukawa chain. Charged particles,
suspended in a strongly coupled dusty plasma, were arranged in a 1D periodic structure. Particle
displacement in the direction perpendicular to the chain was restored by the confining potential. The
dispersion relation of phonons was measured, verifying that the optical mode has negative dispersion,
with phase and group velocities that are oppositely directed. A theoretical dispersion relation is
presented and compared to the experiment and a molecular dynamics simulation.
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FIG. 1. (a) Apparatus. (b) Particles, levitated above a groove
in the lower electrode, arrange themselves into a 1D chain.
(c) Image of particles. At the chain’s center, two counterpro-
ionic crystal, massive positive ions act as a ‘‘steady-state’’
ion matrix (in analogy with the confining potential for a

pagating laser beams push a single particle in the y direction to
excite a wave.
A linear chain is a simple form of condensed state
matter with a low dimensionality. Charged macroscopic-
sized particles, levitated in a dusty plasma, can be con-
fined in a single row, forming a 1D plasma crystal [1].
Colloidal particles, suspended in an aqueous solution, can
be trapped in a potential well provided by two counter-
propagating laser beam to form a 1D coupled array [2]. A
1D Coulomb chain confined in a storage ring [3] may be
used in atomic clocks [4] or quantum computing [5]. At
the atomic scale, a 1D chain can be found in compounds
such as Hg3��AsF6 [6], as well as low-dimensional sys-
tems formed on surfaces, such as chains of Au on Si(111)
[7]. A 1D chain of gas atoms adsorbed in carbon nano-
tubes has been produced experimentally, and its phonon
frequencies have been predicted theoretically assuming a
Lennard-Jones potential [8,9].

Here we study a linear chain of charged particles that
interact with a Yukawa potential, i.e., a shielded Coulomb
repulsion. To study the chain experimentally, we use a
dusty plasma consisting of electrons, ions, neutral atoms,
and small particles of solid matter. The particles acquire a
negative charge and are confined in an external potential.
Because of mutual repulsion and external confinement,
the particles can arrange themselves in a 1D structure. In
2D and 3D experiments, studies have included the melt-
ing transition [10,11] and phonon propagation [12–14].

An externally confined chain can vibrate with two
modes. In the longitudinal mode [1], particle motions are
compressional along the chain. In the other mode [15–
17], particles move transverse to the chain, and their
displacements are restored by an external confining po-
tential; this is different from the transverse acoustic mode
in a 2D lattice [12], where an in-plane restoring force is
provided by interparticle interactions.

When the particles are mutually repulsive, we term this
wave as the ‘‘transverse optical mode.’’ The word ‘‘opti-
cal’’ here does not refer to high-frequency electromag-
netic waves. Instead, it is chosen in analogy with the
optical mode in ionic crystals. In an extreme case of an
0031-9007=03=91(25)=255003(4)$20.00 
1D chain), and negative ions oscillate in the matrix. For
the optical mode in an ionic crystal, the frequency de-
creases with wave number k, but does not extend down to
zero frequency. It has a maximum frequency at k � 0
corresponding to a sloshing motion, with like ions all
moving together.

We used the experimental setup sketched in Fig. 1(a).
A plasma was produced in a capacitively coupled rf
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FIG. 2. Optical and longitudinal acoustic waves both propa-
gated away from the excitation region. The phase dependence
indicates they are backward and forward, respectively. Data are
shown for N � 28.
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discharge, using a 13.56 MHz rf voltage with a peak-to-
peak amplitude of 94 V and a self-bias of �48 V. A
sheath formed immediately above the lower electrode.
We used xenon gas at low pressure of �5 mtorr. The
plasma had a density of 1:2� 109 cm�3 and an electron
temperature of 1.6 eV, as measured by a Langmuir probe
located in the plasma glow region. We used a shaker to
introduce a small number of particles with diameter of
8:09� 0:18 �m and a mass density of 1:514 g=cm3.
Particles were levitated in the sheath, well below the
height of the Langmuir probe.

The interparticle potential consists of a shielded
Coulomb interaction that is modified by a wakefield
downstream of the particle. Konopka et al. [18] demon-
strated that the binary interparticle potential for particles
moving in a horizontal plane was accurately modeled by a
simple Yukawa potential, over the range 0:77< �< 1:5,
where � � a=
D, a is the interparticle distance, and 
D is
a shielding length.

We determined the particle’s charge Q and 
D using
two methods. First, using a method based on particles’
equilibrium position [19], we found that 
D � �0:86�
0:07� mm and less precisely Q � �6476� 1308�e, where
e is elementary charge. Second, constraining 
D �
0:86 mm, we found Q by fitting a dispersion relation of
the longitudinal wave in the chain [1]. The final values
were 
D � 0:86 mm and Q � 7595e.

Particles were externally confined by natural electric
fields in the sheath above the lower electrode. The sheath
conforms to the shape of the electrode, which had a
groove-shaped depression along the x direction, to form
a 1D chain. Everywhere along the groove’s length, it had a
parabolic shape in the y direction [Fig. 1(b)] with a depth
z � y2 � 4 mm and a length of 80 mm. Figure 1(c) shows
an image of the chain. The interparticle spacing was not
uniform; it was 15% smaller in the center than at the
chain’s end.

We manipulated a single particle with two counter-
propagating laser beams. Laser light exerts a radiation
pressure on a particle, with a magnitude proportional to
the laser intensity [20,21]. The intensity of one laser beam
was modulated by a scanning mirror that periodically
blocked a portion of the beam, yielding a sinusoidal
intensity I2 � c�1	 sin�2�ft�
. The opposite laser had
no modulation, I1 � c, so that the net force applied to a
particle was sinusoidal (Fig. 1).

We characterized the confinement by measuring the
motion of a single particle, manipulated in the x or y
direction using lasers and in the vertical direction by
modulating the electrode voltage. The resonance frequen-
cies of a single particle in the confining potential were
0.1, 3, and 15 Hz in the x, y, and vertical directions,
respectively. The motion was harmonic in all three direc-
tions. The confinement in the vertical direction was strong
enough to prevent any vertical buckling of the chain. By
measuring the resonance curve for motion in the y direc-
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tion, we determined the damping rate for a single particle
�E � 3:5� 0:3 s�1. After these tests with a single par-
ticle, we introduced more particles to form a 1D chain.
Using the vertical resonance method [11], we verified that
Q was independent of the particle number N.

Waves were excited locally by manipulating a single
particle near the chain’s center using a sinusoidal force.
Waves propagated away from that location. Because the
particle was manipulated in the y direction, its motion
coupled mostly into the transverse optical mode, al-
though a longitudinal wave with an amplitude smaller
by a factor of 10 was also excited. The wave amplitude
was small to avoid nonlinearities.

One might expect that, in a 1D chain with a finite
length, only standing waves would be allowed. How-
ever, we show in our experimental results that there was
no significant reflected wave from the chain’s end, due to
gas damping.

To image the particles, we illuminated them with a
HeNe laser sheet and viewed with a video camera at
29.97 frames per second. The field of view, 13�
10 mm2, included only the central portion of the chain.
Particle positions were measured in each frame with
subpixel spatial resolution by intensity weighting, and
particle velocities were calculated.

To measure the dispersion relation, we calculated the
wave number k � kr 	 iki associated with each excitation
frequency using a Fourier transformation of particles’
velocities. The frequency ! is real because the wave
was excited externally at a specific frequency. As the
wave propagates, it is damped, so that k has an imaginary
part. Calculating a wave’s phase as a function of x (Fig. 2)
and fitting to a straight line yields kr. Similarly, fitting the
amplitude to an exponential curve yields ki.

Our chief experimental result is the dispersion relation
of the transverse optical mode (Fig. 3). Results are shown
255003-2
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for three different chain lengths, with N � 10, 19, and
28. For the central portion of the chain, where the wave
was detected, a � 1:2, 0:8, and 0.72 mm. These values
were calculated from the first peak of the pair correlation
function and correspond to � � 1:4, 1:0, and 0:84, re-
spectively. The dispersion relations for both the trans-
verse optical and longitudinal waves in Fig. 3 were
prepared from the y and x components of particle veloci-
ties, respectively.

The dispersion relation depends on �. For small �, i.e.,
large N, the dispersion relation’s curve is steeper, and
damping is weaker. We note that for small � the interpar-
ticle forces are larger.

We verified that, unlike the longitudinal mode, the
transverse optical mode has a negative dispersion. The
wave number decreases with an increasing of frequency,
as seen in Fig. 3(a). The transverse optical mode is mostly
constrained to a frequency band, between 11 and 21 s�1

for N � 28. Similar results were reported in Ref. [17], in
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FIG. 3. Experimental dispersion relation. In the real part (a),
! decreases with kr for the transverse optical wave. In the
imaginary part (b), damping is smallest in a central frequency
band. The dispersion relation depends on N because a and � are
smaller for larger N.
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an experiment such as ours, except that the charge varied
with time. We find that outside this band, the damping
is larger.

Backward waves are characterized by phase and group
velocities that are oppositely directed, and we see from
Fig. 2 that this is so for the transverse optical mode. The
group velocity is always directed away from the excita-
tion region. For the transverse optical mode, the phase
velocity is directed toward the excitation region, as in-
dicated by a phase angle that decreases with distance
from the excitation region. In contrast, the longitudinal
wave has a phase angle that increases with distance,
indicating that it is a forward mode.

Before reaching the chain’s end, waves were mostly
damped down to the level of the random motion, i.e., a
rms velocity of 0:1 mm=s. Thus, any wave reflection at
the chain’s end will be insignificant.

A molecular dynamics simulation was performed
using the experimental parameters. The particle’s equa-
tion of motion was m�rri � �r�

P
�ij 	�ext

i � � �Em _rri 	
FyL, with a binary Yukawa interparticle interaction
�ij � Q2e�rij=
D=4��0rij, confining potential �ext

i �
m�!2

xx
2
i 	!2

yy
2
i �=2, gas drag �Em _rri, and laser radiation

pressure force FyL � f0 cos!t. Here ri � �xi; yi� is mea-
sured from the center of the chain, and rij is an inter-
particle distance. We chose the value of !x to yield the
same interparticle distance as in the experiment, and for
!y we used the experimental value. The amplitude f0 of
the laser radiation pressure force was chosen to yield the
same wave amplitude, at the excitation location, as in the
experiment. As in the experiment, we found a dispersion
relation, shown with triangles in Fig. 4.

We also present a theoretical dispersion relation for
linear wave in a chain at zero temperature. The theory
has the same assumptions as in the simulation, except that
it assumes the following: the chain is infinite in the x
direction and has a uniform interparticle distance; the
interparticle force is linearized with respect to distance;
in converting the equation of motion to a wave equation
and then a dispersion relation, it is not necessary to
specify the source of energy as, for example, our laser
radiation pressure; and the transverse mode does not
couple with the longitudinal and vertical modes. This
yields a dispersion relation for the transverse optical
mode, having two equations that can be solved for kr
and ki, for a specified real frequency !:

!2 �!2
CM�2

X10

l�1

!2
0;l�1	 l��e�l��1� coslkra coshlkia�;

! � 2
X10

l�1

!2
0;l�

�1
E �1	 l��e�l� sinlkra sinhlkia;

where !0;l � �Q2=4��0ma3l3�1=2. We find that this dis-
persion relation depends significantly on the presence of
damping, as discussed below.
255003-3



5

15

25

experiment

theory ν
E

= 3.5 s-1

simulation

theory ν
E

= 0.0 s-1

ω
 (s

-1
)

real part k
r

5

15

25

0 1 2 3

theory

simulation
experiment

ω
 (s

-1
)

k
r
a or k

i
a

imaginary part k
i

ω
CM

ω
L

ω
CM

ω
L

FIG. 4. Comparison of dispersion relations. In the experiment
and simulation, N � 28. In the theory, � � 0:84, the same as in
the central portion of the chains in the experiment and simu-
lation. In the absence of gas damping, the wave is evanescent
outside the band !L <!<!CM.
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In the absence of gas damping, this wave is allowed
only in a frequency band between two cutoff frequencies,
!L and!CM, as shown in Fig. 4 with �E � 0. Outside this
band the wave is evanescent, with an imaginary k. At! �
!CM, all particles move together, corresponding to the
sloshing mode. At ! � !L, neighboring particles oscil-
late out of phase, corresponding to a standing wave.

With damping, the wave propagates beyond the fre-
quency band that is allowed in the absence of damping.
Outside this band, the wave is more heavily damped, and
the real part has a steep slope.

Comparing the dispersion relations from theory and
simulation (Fig. 4), we found that they agree, for both the
real and imaginary parts. This agreement indicates that
the assumptions of the theory that differ from the simu-
lation (infinite chain with uniform spacing) do not pro-
foundly affect the dispersion relation. They also agree
with the experiment, so that we conclude the theory’s
assumptions are adequate; these include a Yukawa poten-
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tial, parabolic confinement, uniform spacing, and the
uncoupling of motions in y and z directions.

Finally, we discuss how the roles of the external con-
fining potential and the repulsive interparticle potential
cause the wave to be backward. The external confining
force has a y component, and it restores a particle toward
its equilibrium position at y � 0. When k � 0, all par-
ticles move together in a sloshing mode. When k � 0,
neighboring particles have different values of y, so that
their repulsive interparticle force vector has a y compo-
nent that is oppositely directed to the restoring force. As a
result, the net restoring force is reduced as k is increased.
This weaker net force results in a slower oscillation, i.e., a
smaller !. Thus, ! decreases with k, and the wave is
backward. If the interparticle force were not repulsive, the
wave would not be backward [8,9].
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