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Abstract

Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We
report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40 -
molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments
their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity
and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing
activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased
activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well
with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate
and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines
to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.
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Introduction

Stimulation of B cells through antigen specific B cell receptor

(BCR) leads to their activation, proliferation and differentiation to

antibody secreting plasma cells. Besides BCR, B cells also express

an array of molecules that assist in regulating both innate and

adaptive immune responses. Such examples include costimulatory

molecules involved in adaptive immunity and Toll like receptors

(TLRs) responsible for innate immunity [1,2]. It is well established

that co-engagement of BCR with these accessory molecules lead to

heightened B cell response. For example, synergism between BCR

and TLRs augments expression of NF-kB, MAPK p38, leading to

enhanced B cell activation, proliferation and differentiation [3–5].

Recently, many reports have highlighted the role of costimu-

latory molecules such as CD40, CD80 and CD86 in not only

influencing T cells but also B cells through bidirectional signaling

[6–8]. Among all costimulatory molecules expressed on B cells,

CD40 is extremely important due to its role in assisting the

activation, proliferation, differentiation, survival and generation of

memory B cells [9,10]. Further, studies on CD402/2 mice have

established that such B cells failed to proliferate and undergo

isotype switching [11–13].

TLRs, on the other hand, are germline encoded molecules that

are virtually expressed on all cells of immune system. They are a

family of Pattern Recognition Receptors (PRRs) that recognize

conserved motifs called Pathogen Associated Molecular Patterns

(PAMPs) on the surface of microbes [2]. Binding of PAMPs with

TLRs affects the functions of antigen presenting cells (APCs). For

example, signaling through TLRs leads to the expression of

costimulatory molecules on B cells, dendritic cells (DCs),

macrophages, etc. [14–16]. Most TLRs such as TLR-2, 3, 4, 7

and 9 have been implicated in modulating B cell response. Among

all TLRs, TLR-2 is considered quite critical molecule of innate

immunity that regulates humoral immunity [15,17–19].

Evidences indicate that B cells can also be activated through

alternative pathways independent of BCR [8,20,21]. Moreover,

nothing has been very precisely documented indicating the

concerted role of costimulatory molecules and TLRs in regulating

the activation of resting B (RB) cells. Hence, in the present study,

we investigated whether triggering through costimulatory mole-

cules can modulate the activity of B cells stimulated through

TLRs. For this, we tried various combinations of costimulatory

molecules CD40, CD80 and CD86 in conjunction with TLR-2,

TLR-4 and TLR-9. Interestingly, we observed that cross-linking of

CD40 significantly bolsters the activation, proliferation, differen-

tiation, calcium flux, antigen uptake and ability to help CD4 T

cells of TLR-2 stimulated RB cells.

Results

Signaling through CD40 augments proliferation of TLR-2
stimulated RB cells

First we examined whether signaling through TLR-2 can render

RB cells responsive to CD40 costimulation. This phenomenon was

seen in a dose-responsive manner in cells stimulated through both

TLR-2 and CD40 (TLR2.CD40) (Fig. 1). Maximum proliferation

was achieved with 100 ng/ml of TLR-2 agonist Pam2CSK4 when

used in combination with 0.5 mg of anti-CD40 Ab for triggering.

We also noticed that Pam2CSK4 alone (100 ng/ml), in the

absence of CD40 triggering also induced proliferation but the

magnitude was significantly (p,0.01) lesser when compared with
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TLR2.CD40 activated RB cells. Further, the extent of B cell

proliferation noticed with Pam2CSK4 (100 ng/ml) alone, could

be achieved with half the concentration (50 ng/ml) of Pam2CSK4

when acting in conjunction with CD40 signaling (Fig. 1). We

further substantiated this finding with microarray data (Table S1).

We found that TLR2.CD40 activated RB cells upregulated the

expression of genes encoding TNF receptor super family member

Tnfrsf13b, which plays an important role in B cell activation and

differentiation. Upregulated expression of Cd81 is also indicative

of augmented CD81 mediated CD19 signalosome activity, which

plays a key role in the regulation of B cell development, activation,

growth and motility. This complex reduces the threshold for B cell

activation via the BCR by bridging antigen specific and CD21-

mediated complement recognition [22]. In contrast, signaling

through TLR2.CD40 downregulated expression of caspase-3

which is involved in apoptosis. Downregulation was also observed

in gene Inpp5d, which is a phosphatidytlinositol phosphatase

involved in negative regulation of BCR signaling [23]. Consistent

with this, there was also decreased expression of gene encoding Fc-

gamma-RIIB (FCGR2B) receptor whose signals are mediated

through Inpp5d. FCGR2B plays a central role in terminating

signal transduction from activated immune complexes and acts as

a negative regulator of proliferation [24,25]. These observations

gave adequate convincing indications that costimulation through

CD40 can effectively induce the proliferation of TLR-2 stimulated

RB cells.

TLR2.CD40 stimulated RB cells display activation
phenotype

We next enquired whether the TLR2.CD40 stimulation of RB

cells results in augmented expression of costimulatory molecules

CD80, CD86 and CD40. Remarkably, the expression of CD40,

CD86 and CD80 was significantly enhanced (Fig. S1, A,B).

Similarly, enhancement in the expression of MHC and TLR-2

was also noticed (Fig. S1, C). We also observed an appreciable

improvement in the size and blast formation on CD40

costimulation of TLR-2 elicited RB cells (Fig. 2A). Further,

upregulation of the activation markers, such as CD21/35, CD23,

IgD, IgM, CD5 and CD19 was also noticed (Fig. 2B, Fig. S2 A)

[26–32]. We found that signaling through TLR2.CD40 not only

modulates the activation profile of the effector molecules (IgM,

IgD, CD5, CD23, CD19) but also leads to conglomeration of

other molecules (CD21/35), which are thought to play an

important role in linking innate and adaptive immunity (Fig. 2B,

Fig. S2 A). A moderate upregulation in the expression of CD5 (a

negative regulator of B cell activation) and dramatic increase in

CD19 expression (a positive regulator of B cell activation)

indicated a balance between two opposing phenomenon (tolerance

and activation) (Fig. 2B, Fig. S2 A). This event may be crucial in

maintaining cellular and physiological homeostasis. This observa-

tion was also supported by gene profiling of the molecules involved

in the B cell activation (Fig. 2C). We also noted a significant

increase in the gene expression of Cd23 (p = 0.002), Cd86

(p = 0.0002), Cd40 (p = 0.0039) and Cd19 (p = 0.003), indicating

an activated phenotype. We also found that TLR2.CD40 signaling

down regulates CD93 more significantly, as compared individu-

ally. Moreover, Cd25 and Cd69 are also augmented, giving an

indication of activated phenotype (Fig. 2C).

Activated B cells always exhibit 5–10 folds higher IgD than

IgM, but as the activation progresses, the expression profile shifts

more towards IgD [33,34]. We observed that TLR2.CD40

stimulated RB cells upregulated IgD and IgM expression (Fig. 2D,

Fig. S2 B) but the relative increase in IgD was far more as

compared to IgM. While IgD expression was enhanced (MFI:

12251) on stimulation with TLR2.CD40 as compared to CD40

alone (MFI: 4788) or TLR-2 alone (MFI: 7710) or unstimulated

controls (MFI: 4278); the expression of IgM lagged behind with

similar treatments (MFI: 8884, 5877, 6410, 4040 on treatment

with TLR2.CD40, CD40, TLR-2 and unstimulated controls,

respectively) (Fig. S2 B; left panel). Expression pattern of IgD and

IgM revealed that IgD progressed ahead of IgM expression, when

signals were delivered together (Fig. 2D). Further a reciprocal

relationship was observed in the genes encoding IgD and IgM

(Fig. S2 B; right panel). We found that the Igd gene expression is

lower in activated B cells as compared to Igm but the protein

expression is higher. These results indicated an intricate

relationship in the gene and protein expression of IgD and IgM

in activated B cells.

Figure 1. CD40 costimulation augments the proliferation of TLR-2 stimulated RB cells. RB cells were stimulated with anti-CD40 Ab and
Pam2CSK4 (TLR2.CD40) and cultured for 16 h. 3H thymidine (0.5 mCi/well) was added and proliferation was checked after 16 h by liquid scintillation
counting. Data indicate counts per min (cpm) and expressed as mean 6 SEM of triplicate wells. Results are representative of four independent
experiments. ‘*’, ‘**’, ‘***’ indicates p,0.05, p,0.01, p,0.001 respectively.
doi:10.1371/journal.pone.0020651.g001
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TLR2.CD40 signaling enhances calcium flux, ERK and Akt
in RB cells

We also demonstrated that RB cells stimulated via TLR2.CD40

displayed significantly enhanced fluorescence of Fluo-4 AM dye,

indicating augmented calcium flux (Fig. 2E). Further, we observed

substantial increase in phosphorylation of kinases such as ERK1/2

(Fig. 2F) and Akt (Fig. 2G). This also provides clue that

TLR2.CD40 signaling effectively recruit the adaptor proteins

responsible for generating signaling events necessary for phos-

phorylation and subsequent activation of cells. Overall, these

results are representative of a gross functional enhancement in the

activation status of RB cells and the difference observed is

statistically significant, as compared to controls.

Signaling through CD40 drives TLR-2 stimulated RB cell
differentiation to marginal zone precursors

To check the influence of TLR2.CD40 signaling on an early

differentiation of RB cells into long-lived and short-lived follicular

cells (FO-I, FO-II), marginal zone precursors (MZP) and marginal

zone (MZ) cells, we monitored the expression of CD19, IgD, IgM

and CD21/35 (Fig. 3, upper panel). Intriguingly, we found an

early (16 h) differentiation of MZP, which continued till 48 h

(Fig. 3, lower panel). The percentage of MZP cells enhanced

significantly (16 h: 40%; 24 h: 62%; 48 h: 78%) for all the time

periods. At any given time point, this was significantly higher than

unstimulated cells. Such augmented differentiation was not seen in

other B cell subsets like FO-I and FO-II. This observation holds

Figure 2. Signaling through CD40 bolsters the activation phenotype of the TLR-2 stimulated RB cells. (A) Signaling was delivered in RB
cells with Pam2CSK4 and anti-CD40 Ab for 16 h and formation of B cell blasts (left panel) was seen microscopically by bright field images (2061.66
magnification). Shown here are the representative images from 5–6 fields from each culture well. Change in forward scatter was assessed through
flow cytometry (right panel). X-axis depicts increase in size of B cells (forward scatter, FSC; 161000) on a linear scale. The FSC values in inset are
normalized with isotype-matched control. (B) Stimulated B cells were stained for the expression of B cell activation markers CD21/35, CD23, CD19,
IgM, IgD and CD5. Fold change in mean fluorescence intensity (MFI) was calculated with respect to unstimulated controls. Data are pooled from 3–6
independent experiments and expressed as average fold change (mean 6 SEM) in the expression with respect to unstimulated controls. (C)
Modulation in the expression of genes involved in B cell activation as analysed through microarray. Bars indicate fold change in geometric mean of
the gene expression. Data is representative of one of the biological replicate experiments. (D) Surface expression of IgD and IgM on stimulated RB
cells. Bars indicate average fold change (mean 6 SEM) in the expression of IgD and IgM. Data are pooled from 3–6 independent experiments and
expressed as average fold change (mean 6 SEM) in the expression with respect to unstimulated controls. (E) TLR2.CD40 stimulated RB cells were
loaded with Fluo-4 AM dye and calcium flux was measured over a period of 10 minutes. Shown here are representative dot plots from 3 independent
experiments. Values in the inset are the averaged geometric mean of MFI of Fluo-4 AM from three experiments with SEM. (F,G) TLR2.CD40 stimulated
cells were stained for intracellular phosphorylated ERK1/2 and Akt and analysed by flow cytometry. Shown here are plots from one of the three
independent experiments and values represent mean 6 SEM of fold change in expression with respect to unstimulated controls. . ‘*’, ‘**’, ‘***’
indicates p,0.05, p,0.01, p,0.001 respectively.
doi:10.1371/journal.pone.0020651.g002
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significance because MZ cells serve to bridge the innate and

adaptive immune response due to their capability to respond to

foreign Ags more rapidly than follicular B cells [35]. These results

further corroborated well with the gene expression data where we

noted significant upregulation in the genes responsible for B cell

activation and differentiation. We noticed upregulation in the

intensity of Stat5 gene responsible for B cell differentiation and

IgG gene rearrangement downstream of IL-7R. It also augmented

the display of positive regulators of B cell differentiation such as

Cxcr5 (Chemokine receptor 5), Hdac9 (Histone deacetylase

related protein), Gpr183 (G protein coupled receptor 183), Il2rg

(IL-2R gamma), Adam17 (ADAM metallopeptidase domain 17).

TLR2.CD40 triggering also lead to downregulation of negative

regulators of differentiation such as Bad, Bcl2, Xrcc4, Inpp5d etc.

(Table S3).Thus, these results clearly indicated that synchronized

signaling through TLR2.CD40 enhances the differentiation of RB

cells into marginal zone precursors and promote their develop-

mental process.

Figure 3. Signaling through TLR2.CD40 differentiates RB cells into marginal zone precursors. Signaling was delivered in RB cells with
Pam2CSK4 and anti-CD40 Ab for 16 h–48 h. Upper panel shows the gating scheme for defining different B cell subsets: FO-I (CD19+ IgDhi), FO-II
(CD19+ IgDhi IgMhi), MZP (CD19+ IgMhi IgDhi CD21/35hi) and MZ (CD19+ IgMhi). Lower panel shows contour diagrams of MZP in stimulated B cells
at different time durations. Values indicate the average change (mean 6 SEM) in percent population of CD21/35hi expressing B cells. Contours
represent one of the three independent experiments. ‘*’, ‘**’, ‘***’ indicates p,0.05, p,0.01, p,0.001 respectively.
doi:10.1371/journal.pone.0020651.g003
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Costimulation through CD40 enhances isotype secretion,
class switch recombination and AID expression in TLR-2
stimulated RB cells

It has been well documented that activation induced deaminase

(AID) is involved in somatic hypermutation (SHM), class switch

recombination (CSR) and somatic hyperconversion (SHC) in

germinal centre B cells [36–38]. Recently, it has also been

reported that AID activity is not just restricted to mature B cells;

rather it also acts on developing B cells. Moreover, the expression

of AID in B cells is not dependent on T cells but it can be

modulated by BCR and TLRs [39,40]. These findings intrigued us

to monitor whether concerted triggering through TLR2.CD40

modulate AID expression and enhance CSR and isotype secretion.

We found increased percentage of RB cells expressing AID

(Fig. 4A) and these cells exhibited an enhancement in IgG1/IgM

surface expression ratio (Fig. 4B) and secreted elevated levels of

IgM and IgG1 (Fig. 4C,D). These data further authenticate the

concept that signaling through TLR-2 and CD40 can influence

RB cells by promoting CSR by expanding the percentage of AID+

cells.

TLR2.CD40 signaling leads to enhanced antigen uptake
ability of RB cells

Next, we monitored whether triggering through TLR2.CD40

can influence the antigen uptake capability of B cells. Interestingly,

the confocal microscopy results demonstrated substantial improve-

ment in antigen uptake by B cells (Fig. 5A). Further, we did a

quantitative enzyme based colorimetric assay with soluble HRP as

an Ag. Concordant to the above results, HRP content was

significantly better in the B cells stimulated through TLR2.CD40

than controls (Fig. 5B). To demonstrate receptor-mediated

endocytosis, we used anti-mouse IgG-HRP Ab as an Ag to target

HRP through BCR. As expected, we observed enhanced uptake of

HRP (Fig. 5C). These findings signify that costimulation through

CD40 of TLR-2 primed RB cells enhances the antigen uptake

ability through both pinocytosis as well as receptor mediated

endocytosis.

We further supported these findings by microarray experiments

(Fig. 5D). Microarray analysis exhibited a profound increase in the

expression of Fnbp1 (p = 0.0004), Nme1 (p = 0.0003), Rab34

(p = 0.0021), Rab 5c (p = 0.00001) and Stab2 (p = 0.06) genes

(Fig. 5D, left panel). These genes play a crucial role in antigen

internalization and endocytosis [41–44]. Some of the receptor

proteins such as Msr1 (macrophage scavenger receptor1) and Fcgr

(Fc gamma receptors) were downregulated in such B cells (Fig. 5D,

right panel). This decline was, however, balanced by significant

upregulation of other genes such as Rab, thereby shifting the

equilibrium towards enhanced endocytosis.

TLR-2 stimulated RB cells acquire enhanced ability to
help T cells on CD40 costimulation

Next we addressed was whether TLR2.CD40 stimulated B cells

acquired enhanced ability to stimulate CD4 T cells. Significantly

(p,0.001) better proliferation, IL-2 and IFN-c release was

observed from the T cells co-cultured with TLR2.CD40

stimulated B cells (Fig. 6 A, B, C). Further, these CD4 T cells

Figure 4. CD40 costimulation of TLR-2 elicited RB cells augments the expression of AID, class switch recombination and IgG1/IgM
secretion. Signaling through TLR-2 and CD40 was delivered with Pam2CSK4 and anti-CD40 Ab respectively in RB cells. (A) Cells were stained for
expression of intracellular AID after 48 h of stimulation and data were analysed by flowcytometry. Values represent the percentage of cells expressing
AID. Histograms are representative of three different experiments. (B) Ratio of IgG1/IgM (index of CSR) was calculated on the basis of their surface
expression after 48 h of stimulation. Data are pooled from three independent experiments and expressed as mean 6 SD. (C) Secretion of IgM and
IgG1 was estimated by sandwich ELISA in the culture SNs after stimulating cells for 7 d. Data are expressed as mean 6 SEM from 2–3 independent
experiments. ‘*’, ‘**’, ‘***’ indicates p,0.05, p,0.01, p,0.001 respectively.
doi:10.1371/journal.pone.0020651.g004
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displayed activation phenotype as evidenced by the expression of

CD25hi, CD44hi, CD62Llo and CD69hi (Fig. S3,A). Moreover, a

closer look at the genes profiling responsible in T cell activation

revealed an augmented expression of Adora (adenosine receptor

needed for adenylyl cyclise activation), Il2ra (IL-2 receptor), Prkcq

(calcium dependent T cell activator) and downregulated Malt1 (for

Bcl-2 mediated NF kB activation of lymphocytes) (Fig. S3, B). This

indicated that TLR2.CD40 stimulated B cells exhibited enhance-

ment in the expression of receptors and mediators responsible for

T cell activation.

Discussion

Primary immune response is initiated by cognate interactions

between T cells and APCs like B cells, DCs and macrophages,

resulting in bidirectional signaling that modulate the function of

both the cells [6,8,21,45]. Various soluble mediators and cell

surface components direct this process. Elucidating role of

molecules involved in regulation of cell-cell interactions is crucial

for understanding the immunological processes and for improving

therapeutic strategies. Conventionally, role of BCR, IL-4 and

CD40 have been implicated in the initiation of sequence of events

leading to proliferation, activation and differentiation of B cells.

Binding of antigen to BCR relays survival signals and prevents

apoptosis. This interaction is also necessary to maintain optimal

pool of B cells in the peripheral circulation. Besides this classical

paradigm, evidences have started surfacing where B cells have

been shown to be modulated independent of BCR. For example,

signaling B cells through CD86 enhances their survival, prolifer-

ation and differentiation [6,21,46]. This poses a plausible existence

of an alternative mechanism where B cells can be stimulated in a

BCR independent manner.

Based on the above mentioned information, the present study

was designed to elucidate the alternative pathway of B cell

activation by engaging costimulatory molecules and TLRs. In

particular, we focused on costimulatory effect of CD40 on TLR-2

stimulated RB cells in bolstering their activation, maturation and

differentiation. Following six major findings have emerged in

context of B cells from this study (i) improvement in proliferation

and modulation of the expression of related genes; (ii) upregulation

of activation and maturation markers; (iii) enhanced calcium flux

and phosphorylation of ERK1/2 and Akt; (iv) increased ability to

pinocytose and endocytose antigen; (v) induction in class switch

recombination and enhanced immunoglobulin secretion; (vi)

improved ability to activate T cells.

The results of present study support the fact that B cells can be

activated not only through conventional pathway; but also through

alternative route employing TLRs and costimulatory molecules

[6,8,21,45,46]. Further, it also indicates that CD40 can effectively

induce the activation, proliferation and differentiation of RB cells

that have received first signal via TLR-2. We resolutely indicate

that TLR2.CD40 stimulated RB cells upregulates the expression

Figure 5. TLR-2 stimulated RB cells exhibits enhanced fluid phase pinocytosis and receptor mediated endocytosis on CD40
costimulation. RB cells were stimulated with Pam2CSK4 and anti-CD40 Ab for 16 h. (A) For confocal studies, cells were pulsed with BSA-FITC and
the extent of antigen uptake is depicted through ‘Z’ stacks of stimulated B cells with respect to controls. Pictures shown here are representative of
three independent experiments. Scale bar: 10 mm. (B, C) Stimulated B cells were pulsed with soluble HRP (B) or IgG-HRP (C) after stimulation and cells
were washed and lysed. HRP uptake was measured colorimetrically. Values were normalized using experimental blanks and control cells which were
maintained on ice. The data represents mean 6 SEM of three individual experiments. (D) Dendrograms showing modulations in the expression of
genes involved in endocytosis. Genes showing upregulation (upper panel) and downregulation (lower panel) were plotted with respect to control
(unstimulated; assigned value ‘0’). P values are indicated in the text. Scale bar: 22 to +2. ‘*’, ‘**’, ‘***’ indicates p,0.05, p,0.01, p,0.001 respectively.
doi:10.1371/journal.pone.0020651.g005
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of activation markers and also promote their maturation. Such

stimulated B cells preferentially differentiate into marginal zone

precursors, which are considered as ‘‘innate B cells’’ and may aid

in bridging innate and adaptive immunity. Interestingly, TLR-2

stimulated RB cells on CD40 costimulation acquire significantly

improved ability to engulf antigen through both pinocytosis and

receptor-mediated endocytosis and they acquire enhanced capac-

ity to help T cells; ensuing robust T cell activation. This

observation may have important implication since it can help in

designing vaccination strategies that can reduce the time threshold

of immune response required for activation of B cells; thereby can

clear the pathogens in shorter duration.

Although RB cells express basal level of costimulatory

molecules, yet their role has been implicated to act as APCs that

can present antigen to T cells and thereby induces their activation

[47]. Moreover, it has been discussed that for optimal activation of

cells, it is not necessary to have a dramatic difference in the levels

of costimulatory molecules [21]. We support this and argue that

Figure 6. TLR-2 stimulated RB cells acquire enhanced ability to help T cells on CD40 costimulation. Signaling in B cells was delivered
through TLR-2 and CD40 using Pam2CSK4 and anti-CD40 Ab respectively for 16 h. After stimulation, B cells were irradiated and co-cultured with
allogenic CD4 T cells. (A) After 48 h, 3H-thymidine was added in the cultures and proliferation was checked 16 h later by ß-scintillation counting. (B,
C) IL-2 was estimated 24 h later and IFN-c after 48 h in the supernatants of parallel co-cultures. Data expressed as mean 6 SEM of triplicate wells are
representative of two independent experiments.
doi:10.1371/journal.pone.0020651.g006
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not too much difference in the modulation of activation

parameters is needed by the cells to be functionally and

physiologically active, as evidenced by our data. In fact, strong

stimulation may lead to the activation of autoreactive T cells.

Hence we very carefully titrated the dose of both anti-CD40 Ab

and Pam2CSK4, and used suboptimal levels to combine their

effects.

Further, it has been decisively demonstrated that there exists a

phenomenon of bidirectional costimulation wherein B cells are

also activated through signals emanating from B cell-T cell

interaction [8,21]. Hence these findings suggest that apart from

BCR, there are other molecules which deliver positive signals for B

cell survival, proliferation and differentiation. We extrapolate these

findings and implicate new molecules that can further support this

phenomenon of bidirectional costimulation. CD40 is considered to

be an important molecule affecting B cell biology. On the other

hand, unlike TLR-4, the role of TLR-2 has not been much

elucidated specifically on RB cells. However, it has been implied

that TLR-2 deficiency impairs humoral immune responses in case

of bacterial infections [17]. We propose that there exists an

alternative pathway of BCR-independent signaling which can

have important implications in B cell biology. Whether this

pathway employs different downstream signaling adaptor mole-

cules or bypasses some of the downstream signaling molecules, are

some of the questions to be addressed further. Moreover, it seems

interesting to understand if BCR signaling can add to the

effectiveness of these signals.

In essence, we demonstrate very precisely in this study, how

adaptive signals originating from CD40 costimulatory molecules

and innate immune signals emerging from TLR-2 can synergis-

tically bolster the activity of RB cells. This further reinforces the

belief that molecules of innate and adaptive immunity partner with

each other in bridging these two arms of immunity; thereby

facilitating faster and better B cell response. In conclusion, this

study may help in designing vaccines and immunotherapies

involving CD40 and TLR-2 that can significantly boost B cell

response.

Materials and Methods

Mice
BALB/c, C57BL/6 and C3He mice (male or female, 4–6

weeks) were procured from National Institute of Pharmacological

Education and Research (NIPER, Mohali), National Institute of

Immunology (NII, New Delhi) and National Institute of Nutrition

(NIN, Hyderabad), India.

Ethics statement
All experiments were approved by the Institutional Animal

Ethics Committee of Institute of Microbial Technology and

performed according to the National Regulatory Guideline issued

by Committee for the Purpose of Supervision of Experiments on

Animals (No. 55/1999/CPCSEA), Ministry of Environment and

forest, Govt. of India.

Reagents
Resting B cells isolated from mouse splenocytes were cultured in

RPMI-1640 medium supplemented with FBS (10%), L-glutamine

(2 mM), penicillin (50 mg/ml), streptomycin (50 mg/ml), HEPES

(2.38 mg/ml), sodium bicarbonate (2.2 mg/ml) and 2-mercapto-

ethanol (0.05 mM) under standard conditions, as described

elsewhere [8]. B cell and CD4 T cell enrichment cocktails,

biotin-conjugated anti-mouse CD43 (S7), CD45R (B220, RA3-

6B2), CD40 (3/23), isotype control (IgG2ak,R35-95), MHC class I

(H-2D[d], 34-2-12), MHC class II (IAd, AMS-32.1) and CD23

(B3B4); FITC conjugated CD21/35 (7G6), CD25 (3C7), CD80

(16-10A1); PE-labeled anti-mouse IgD (11-26c.2a), CD69

(H1.2F3), CD8a (53-6.7), CD86 (GL1); PE-Cy5 conjugated CD5

(53-7.3) CD44 (IM7); PE-Cy7 coupled IgM (R6-60.2), APC or PE-

Cy5 conjugated streptavidin; APC labeled CD62L (MEL-14),

APC-Cy7 linked CD19 (1D3) and Pacific blue tagged CD45R

(B220, RA3-6B2), phosflow antibodies and reagents were

purchased from BD Biosciences (San Diego, USA). Alexa-647

coupled anti-mouse TLR-2 (T2.5) and FITC coupled anti- mouse

AID (eBio911) was procured from eBiosciences (San Diego, USA).

All ELISA reagents were purchased from BD Biosciences. All

other standard reagents were procured from Sigma unless

otherwise mentioned. TLR-2 ligand (Pam2CSK4) was obtained

from Invivogen (San Diego, USA). Fluo4-AM dye and pluronic

acid were procured from Invitrogen Molecular Probes (Carlsbad,

California 92008).

B cell isolation and stimulation
Resting B cells (RB) were isolated from mice splenocytes using

well established negative selection method. Briefly, single cell

suspensions of splenocytes were prepared and treated with B cell

enrichment cocktail supplemented with biotin-anti-CD43 Abs.

The cells were then treated with same volume of streptavidin-

magnetic beads and negatively selected on BD IMagnet. The

purity of RB cells obtained was .98% as depicted by flow

cytometry (CD45R+CD19+CD432CD42CD82). Purified RB

cells were incubated with biotin conjugated anti-CD40 and

isotype control Abs (IgG2a,k) (0.5 mg/106 cells) for 30 min on

ice followed by cross-linking with equivalent concentration of

streptavidin, under similar conditions. The cells were washed and

then plated in culture plates containing either medium alone or

medium containing Pam2CSK4. Suitable controls such as cells

alone, cells stimulated with anti-CD40 Abs or isotype matched

Abs, with streptavidin or with Pam2CSK4 alone were also kept in

all experiments.

B cell proliferation
Anti-CD40 Ab (0.5 mg/106 cells) stimulated RB cells (56104

cells/well) were incubated with different concentrations of

Pam2CSK4 (0–100 ng/ml) in 96 well U-bottom plates for

different time durations. Cells incubated with isotype matched

control Ab, Pam2CSK4, streptavidin and medium alone were

used as controls. After each stipulated time (4 h–48 h), radioactive

thymidine (0.5 mCi/well) (Amersham, Buckinghamshire, UK) was

incorporated in the cultures and incubated for 16 h. Later, plates

were harvested onto glass-fibre filter mats using a Tomtec-

Harvester-96 (Tomtec, Hamden, CT). Proliferation was measured

in terms of radioactive thymidine incorporation (counts per

minute, cpm) using ß-scintillation counter (Wallac-1450 Microbeta

Trilux, Perkin Elmer, Waltham, MA).

Flow cytometry analysis of B cell activation, maturation
and differentiation

RB cells (56104/well) were stimulated with anti-CD40 Ab

(0.5 mg/106 cells) with or without Pam2CSK4 (50 ng/ml), as

described, for specific durations (16 h–48 h). Cells were stained for

molecules that define B cell activation, differentiation and

maturation. Briefly, cells were harvested, washed and stained with

anti-mouse fluorochrome labeled anti-CD80, CD86, CD40,

CD21/35, CD5, IgD, IgM, CD93, CD19, TLR-2 Abs and their

respective isotype matched controls for 30 min at 4uC. When

staining with biotinylated Abs, cells were incubated with biotin
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conjugated Abs (CD23, MHC class I, MHC class II) for 30 min at

4uC followed by incubation with secondary reagents (streptavidin-PE-

Cy5/APC). Finally, cells were washed and fixed in 1% paraformal-

dehyde. The flow cytometry data were acquired using FACS Calibur

and FACS Aria II (BD Biosciences, San Jose, CA). Data were

analyzed by DIVA software (BD Biosciences, San Jose, CA).

Calcium flux assay
TLR2.CD40 stimulated RB cells were loaded with Fluo-4 AM

dye (5 mM) and pluronic acid (0.02%) in RPMI at 37uC for

30 min in dark in serum free media and washed extensively. The

cells were kept for 30 min dark at RT and the relative fluorescence

was analysed by flow cytometry. In each sample, unstimulated

controls were acquired for the first 60 seconds for baseline

acquisition, and subsequently stimulated samples were acquired

(total acquisition per sample was done for 10 min).

Phosflow analysis
RB cells were stimulated for 10 min at 37uC and cells were

stained for Phosflow analysis using manufacturer’s instructions

(BD Biosciences). Briefly, cells were fixed with pre-warmed lyse fix

buffer, washed, permeabilized and incubated with anti-ERK K or

anti-Akt antibodies for 30 min at RT in dark. Thereafter the cells

were washed again and analysed using BD FACS Calibur.

Antigen uptake assay
RB cells (26105/well) were stimulated with anti-CD40 Ab

(0.5 mg/106 cells) in the presence or absence of Pam2CSK4

(50 ng/ml) for 16 h. The cells were harvested, washed and then

pulsed with either free HRP (200 mg/ml) or anti-mouse IgG-HRP

Ab (1:100). Cells were incubated on ice for 15 min followed by

incubation in RPMI-FBS-5% at 37uC. Antigen was chased for 30–

60 min and uptake was arrested by adding chilled PBS and by

transferring cells on ice. Cells were washed extensively with ice

cold PBS-FBS-1% and then treated with pronase and washed once

again. The cells were lysed using 10 mM Tris-HCl and 0.05%

Triton X-100 for 30 min on ice, with intermittent vortexing.

Intracellular HRP was estimated colorimetrically in the cell lysates

using OPD-H2O2 chromogen-substrate system. Cells maintained

at 4uC, undigested with pronase and unlysed cells were kept as

controls. HRP activity in test samples was suitably normalized with

controls. For confocal analysis, RB cells (26105/well) were

stimulated as mentioned above. The cells were pulsed with soluble

BSA-FITC (50 mg/ml) and chased for 30 min. The cells were

washed extensively (46) with ice cold PBS and fixed with 4%

paraformaldehyde. The cells were washed and placed on poly-L-

lysine coated cover slips and imaged using Nikon A1 Confocal

Laser Microscope system. Z-stacks were taken and extent of

antigen internalization was monitored among experimental and

control samples. Analysis was done using Nikon NIS-C image

analysis software.

B cell help to T cells
RB cells (105/well) obtained from BALB/c were stimulated with

anti-CD40 Ab (0.5 mg/106 cells) and different concentrations of

Pam2CSK4 (0–100 ng/ml) for 16 h. The cells were harvested,

washed and gamma irradiated at 3000R and co-cultured with

MACS purified allogenic CD4 T cells (26105/well) isolated from

C3He mice. Parallel cultures were set for T cell proliferation,

cytokines and activation markers. T cell proliferation was

determined by incorporation of 3H-thymidine (0.5 mCi/well) after

48 h and was expressed in terms of radioactive thymidine

incorporation (counts per minute, cpm). For cytokine estimation,

supernatants from the experimental and control wells were

collected after 24 h for IL-2 and 48 h for IL-4 and IFN-c.

Cytokines were estimated by sandwich ELISA, following manu-

facturer’s instructions. The levels of cytokines were calculated

using serial dilutions (log2) of standard recombinant cytokines and

expressed as pg/ml. T cell activation markers were studied by flow

cytometry. Cells were harvested after 48 h, washed and stained for

the expression of CD25, CD69, CD44 and CD62L with their

respective Abs. Finally, cells were washed and fixed in 1%

paraformaldehyde and analysed by flow cytometry.

Isotype ELISA
RB cells (105/well) were stimulated with anti-CD40 Abs

(0.5 mg/106 cells) with or without Pam2CSK4 (50 ng/ml).

Supernatants (SN) were collected after 5–7 days and secretion of

IgM and IgG1 was determined by standard sandwich ELISA.

Briefly, SNs were added on anti-IgM or anti-IgG1 Abs coated

plates. IgM and IgG1 were captured by secondary biotinylated

anti-mouse IgM or IgG1 Abs, respectively, followed by avidin-

HRP/OPD-H2O2 for colorimetric estimation. Results expressed

as mg/ml of isotype antibody secreted were calculated using serial

dilutions (log2) of standard IgM and IgG1 for reference curves.

PI-Annexin Assay
RB cells (56104/well) were stimulated with anti-CD40 Ab

(0.5 mg/106 cells) in the presence and absence of Pam2CSK4

(50 ng/ml) for 48 h at 37uC in 200 ml of RPMI-FBS-10%. The

cells were harvested, washed and resuspended in binding buffer

[0.01 M HEPES (pH 7.4), 0.14 M NaCl, 2.5 mM CaCl2]. FITC

conjugated Annexin V antibody (5 ml per tube) and 5 ml of

propidium iodide (50 mg/ml) were added to the cells. The cells

were incubated in dark for 15 min at RT. Thereafter, binding

buffer (400 ml) was added and cells were acquired immediately

using BD FACS Calibur flowcytometer.

Intracellular AID staining
Resting B cells (26105/well) were stimulated with anti-CD40

Ab in the presence and absence of Pam2CSK4 (50 ng/ml) for

48 h at 37uC in 200 ml of RPMI-FBS-10%. The cells were

harvested, washed and surface staining was done for IgG1 and

IgM. The cells were washed and fixed with 4% paraformaldehyde.

The cells were gently vortexed, washed and permeabilized with

1 ml of IX permeabilization buffer for 30 minutes at 4uC. Anti-

mouse AID-FITC antibody was added and incubated for 4 hours

in dark at 4uC. Finally the cells were washed with FACS buffer

and AID expression was analysed by flow cytometry.

RNA isolation
RB cells (1.56107 cells/combination) were stimulated with and

without anti-CD40 Abs (0.5 mg/106 cells) and cultured for 4 h in

the presence and absence of Pam2CSK4 (50 ng/ml). Cells were

harvested and washed 26with PBS. RNA isolation was performed

using Qiagen Rneasy Minikit as per the manufacturer’s instruc-

tions. RNA concentration and purity was determined at an optical

density ratio of 260/280 using the NanodropH ND-1000

spectrophotometer (NanoDrop Technologies, Wilmington, DE)

and the integrity of total RNA was verified on an Agilent 2100

Bioanalyzer using the RNA 6000 Nano LabChip (Agilent

Technologies). RNA was stored at 280uC until use.

Microarray analysis
Microarray was performed by Genotypic Technology Pvt. Ltd.

(www.genotypic.co.in). The samples for gene expression were

CD40 and TLR-2 Activate Resting B Cells

PLoS ONE | www.plosone.org 9 June 2011 | Volume 6 | Issue 6 | e20651



labeled using Agilent Quick-Amp labelling kit (p/n5190-0442).

The labeled cRNA samples were hybridized on to a Genotypic

designed Custom Whole Genome Mouse 8660k (AMADID No:

26986). 800 ng of Cy3-labeled samples were fragmented and

hybridized. Fragmentation of labeled cRNA and hybridization

were done using the gene expression hybridization kit of Agilent.

Hybridization was carried out in Agilent’s Surehyb Chambers at

65uC for 16 h. The hybridized slides were washed using Agilent

gene expression wash buffers and scanned using the Agilent

Microarray Scanner G2505C at 3 m resolution. Data extraction

from images was done using Feature Extraction Software v

10.5.1.1 of Agilent. Feature extracted data were analyzed using

GeneSpring GX v 11 software from Agilent. Genes were classified

based on the functional category and pathways using Gene-

SpringGX Software and Genotypic Biointerpreter-Biological

Analysis Software.

Statistics
Data were analyzed by Student’s ‘t’ test, non-parametric Mann-

Whitney two tailed test and repeated measure ANOVA with post

Student-Newman-Keuls multiple comparisons test by Graph Pad

InStat 3 software. ‘p’ values are denoted with respect to

unstimulated controls.

Supporting Information

Figure S1 TLR-2 stimulated RB cells upregulates the
expression of costimulatory molecules MHC molecules
and TLR-2 on CD40 triggering. Signaling was delivered in

RB cells with Pam2CSK4 and anti-CD40 Ab for 16 h and the

expression of CD40, CD86 and CD80 was assessed by

flowcytometry using respective fluorochrome conjugated Abs.

Flowcytometry plots (A) are representative of one of the three

experiments. The values in the inset illustrate the mean

fluorescence intensity (MFI) normalized with isotype-matched

control. Bar diagrams (B) represent average fold change (mean 6

SEM) with respect to unstimulated controls from three indepen-

dent experiments. ‘*’, ‘**’, ‘***’ indicates p,0.05, p,0.01,

p,0.001 respectively. The expression of MHC-I, MHC-II and

TLR-2 on TLR2.CD40 stimulated RB cell were analysed by

flowcytometry (C). The values represent MFI of respective

molecules normalized with isotype matched controls. Data are

representative of four independent experiments.

(TIF)

Figure S2 (A) The expression of B cell activation markers

CD21/35, CD23, IgD, IgM, CD5 and CD19 were analysed by

multicolour flowcytometry. The values represent MFI of respective

molecules normalized with isotype matched controls. Data are

representative of four independent experiments. (B) Left panel

indicates the simultaneous expression of IgD and IgM on RB cells

when triggered through TLR2.CD40. Expression was analysed by

flowcytometry and values are indicated in the main text. The right

panel indicates the fold change in the expression of genes encoding

IgD and IgM with respect to unstimulated controls analyzed

through microarray.

(TIF)

Figure S3 (A) Signaling in B cells was delivered through TLR-2

and CD40 using Pam2CSK4 and anti-CD40 Ab respectively for

16 h. After stimulation, B cells were irradiated and co-cultured

with allogenic CD4 T cells. Cells were harvested after 48 h and

expression of activation markers was studied by flow cytometry

using fluorochrome tagged anti-mouse CD25, CD69, CD62L and

CD44 Abs. Shown here are representative contour diagrams from

two independent experiments. (B) RB cells were harvested from

cultures and microarray analysis was performed for modulation in

expression of genes involved in T cell activation and TCR

signaling. Geometric mean of the fold change in the expression of

genes was calculated. Genes showing upregulation and downreg-

ulation were plotted with respect to control (unstimulated; assigned

value ‘0’). Values represent geometric mean of fold change of

replicate samples. ‘*’, ‘**’, ‘***’ indicates p,0.05, p,0.01,

p,0.001 respectively.

(TIF)

Table S1 (A) Modulation in the expression of genes involved in

B cell proliferation. RB cells were stimulated with anti-CD40 Ab

and Pam2CSK4 for 4 h and RNA was isolated for microarray

analysis. The different colour codes indicate degree of change in

the genes expression (yellow: no change with respect to

unstimulated controls; red: up regulation; green: down regulation).

The values indicate geometric mean of fold change of biological

replicate samples. Statistical analysis is done using One Way

ANOVA and a ‘p’ value for each sample is given next to its

corresponding geometric mean.

(TIF)

Table S2 Change in the expression of gene profile
involved in calcium pathway. The table depicts modulation

in the gene expression with different colour codes (yellow: no

change with respect to unstimulated controls, red: up regulation,

green: down regulation). The values indicate geometric mean of

fold change of replicate samples. Statistical analysis was done using

One Way ANOVA and ‘p’ values for each sample are given next

to its corresponding geometric mean.

(TIF)

Table S3 Change in the expression of gene profile
involved in RB cell activation and differentiation. The

table depicts modulation in the gene expression with different

colour codes (yellow: no change with respect to unstimulated

controls, red: up regulation, green: down regulation). The values

indicate geometric mean of fold change of replicate samples.

Statistical analysis was done using One Way ANOVA and ‘p’

values for each sample are given next to its corresponding

geometric mean.

(TIF)
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