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Abstract

Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well
for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in
various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are
not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of
senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein
encoding genes in tomato using suppression subtractive hybridization (SSH) approach. These genes comprise of various
components of signal transduction, cellular metabolism, reactive oxygen species (ROS), ethylene signalling, apoptosis and
DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol
treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and
induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr) suggest that geraniol-
mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during
tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process.
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Introduction

Plants produce a large variety of phytochemicals with special-

ized/secondary functions. Among these terpenes constitute the

largest and most diverse class of plant specialized metabolites with

more than 40,000 structural variants in nature [1]. In contrast to

terpenes with primary roles in plant growth and development as

pigment and hormone components, many specialized terpenes are

involved in plant’s interaction with the environment [2]. A diverse

array of volatile terpenes are emitted from plants to the

environment for mediating chemical communications between

plants and other organisms during pollination, seed dispersal and

defence response, by attracting/repelling a variety of organisms

[3–6]. The involvement of volatile terpenes in mediating plant-

plant interactions has also been proposed [7–10].

Besides their ecological roles, plant-derived terpenes have a

multitude of pharmaceutical and industrial applications as

flavours, fragrances, antioxidants, anti-malarial and anti-cancer

drugs etc [1]. However their availability, in most cases, is limited to

the natural source, where they are synthesised and accumulated in

specialized tissue types like glandular trichomes, possibly for the

autotoxicity avoidance [11]. As many of them are phytotoxic,

successful metabolic engineering of the terpenes not only requires

an in-depth understanding of the biosynthetic pathway, but also

how these compounds affect the physiology of the plants [12].

Monoterpenes by far represent the majority of the plant origin

volatile terpenes. These C10-isoprenoids are synthesized in plants

by various types of monoterpene synthases from geranyl diphos-

phate (GDP) and/or neryl diphosphate [13]. Several reports

indicated that monoterpenes have the ability to play role in plant

defense and apoptosis-like cell death [14–20]. It has been shown

that plant responds to the monoterpene volatiles myrcene and

ocimene by substantial changes in transcriptome [21].

Geraniol is an acyclic monoterpene alcohol emitted from the

flowers of many species, notably roses [22,23]. It is also present in

vegetative tissues of many herbs and likely to be synthesized from

GDP [24,25]. Geraniol is also a key precursor of other volatile

compounds such as geranial, neral, nerol, citronellol, geranyl

acetate and citronellol acetate [26]. It has been noticed that

geraniol induces apoptosis-like cell death, including DNA and

nuclei fragmentation in cultured shoot primordia of Matricaria

chamomilla [27]. In cultured soybean cells and shoot primordia of
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M. chamomilla, up-regulation of glutathione S- transferase (GST)

and transcription factors of ethylene response element binding

protein (EREBP) and WRKY families was noticed after geraniol

treatment [28,29]. Moreover, geraniol exerts in vitro and in vivo

antitumor activity against murine leukemia, hepatoma, and

melanoma cells [30–32]. Geraniol binds and inhibits the activity

of 3-hydroxy-3-methylglutaryl-CoA reductase and subsequently

reduces the cell growth [33]. Taken together, these reports suggest

that monoterpenes, including geraniol have the ability to induce

physiological changes in cancer cells and plants. However, the

regulatory networks and metabolic pathways governing the

cellular responses to monoterpene are not completely elucidated.

Here, we have identified a large number of geraniol-responsive

genes and described the geraniol-induced physiological and

molecular events in tomato.

Results and Discussion

Geraniol and its Derivatives Induce Senescence in
Tomato
To know how plants respond to monoterpene, tomato plants

were treated with geraniol and its derivatives geranyl acetate, citral

(comprises of two geometric isomers, geranial and neral) and b-
citronellol (Figure 1) [26]. For the treatment, 15-days old tomato

seedlings and 45-days old plants were either exposed to

monoterpene vapour or roots of the seedlings were placed into

different concentrations of monoterpene solution (50 mM to

10 mM) as described in Materials and Methods. To maintain an

atmosphere rich in monoterpene vapour, 45-days old potted plants

were entirely covered with polypropylene bag (12 inches616

inches) and a cotton ball (1.5 cm in diameter) containing 5–20 ml
of monoterpene compound was placed inside the bag. However,

monoterpene vapour treatment of seedlings was carried out by

germinating seeds in 200 ml glass culture vessel

(62.4 mm695.8 mm) for 15 days and then keeping the cotton

ball within the vessel with tighten cap. As shown in Figure 2A,

monoterpene vapour treatment resulted in induction of senescence

in both tomato seedlings and plants. This effect on seedlings/

plants was found to be dose-dependent. The leaves of the

seedlings/plants were green and healthy in the absence of

monoterpene treatment, however, when exposed to monoterpene

vapour they became chlorotic, suggesting damage of chloroplast

and loss of chlorophyll. Among the monoterpenes, geranyl acetate

and citral were found to exert more lethal effect to seedlings/plants

compared to geraniol and b-citronellol. Trypan blue staining and

the measurement of electrolyte leakage rate were used as the

indicators of cell death during senescence in monoterpene-treated

plants. Leaves of the monoterpene-treated plants acquired more

intense staining and showed higher rate of electrolyte leakage in

comparison to control plants (Figure 2A, B), which is an indicator

of cell membrane damage.

The exposure of roots to different concentration of monoter-

pene caused phytotoxicity in seedlings (Figure 3, S1). In the

presence of 10 mM geraniol, seedlings started losing vigor and

viability within 2 hr of incubation and the effect was aggravated

thereafter; whereas at low concentrations delayed effect was

noticed (Figure 3). Seedlings were also treated with 100 mM

ethanol to know whether the cell death/senescence was due to the

dehydration properties of alcohol, since geraniol is a monoterpene

alcohol. However, ethanol-treated seedlings showed no visible

changes; thus, the loss of seedlings vigor after geraniol treatment

may be because of its cell death/senescence-inducing properties.

Similar to geraniol, its derivatives were also phytotoxic to seedlings

(Figure S1). In contrast to the vapour treatments where variable

degree of sensitivity to different monoterpenes was exhibited by

seedlings/plants (Figure 2), the effects of treatment with different

monoterpenes solution were more or less comparable with slight

early seedling death recorded in geraniol treatment compared to

other monoterpenes (Figure 3). This may be due to the differential

penetration of monoterpene vapours through the leaf surface.

Altogether, these observations indicate that geraniol and its

derivatives are the inducer of cell death/senescence.

Cloning and Expression Profiling of Geraniol Responsive
Transcripts
To eliminate damaged or unwanted cells, plants undergo highly

regulated cell death process which may result in tissue/organ

senescence [34]. Programmed cell death is critical for plant growth

and development as well as response to environmental stresses. In

contrast to animal, the regulatory and molecular mechanisms of

programmed cell death are not well understood in plants. The

knowledge gained from the monoterpene induced cell death/

senescence may be applied to some extent to understand the

natural programmed cell death process at the molecular level.

Backed by many observations, identification of geraniol-

responsive genes became imperative to gain insights into

geraniol-induced molecular responses in plants. Expressed se-

quence tags (ESTs) have developed into a powerful tool for the

identification of the differentially expressed genes [35,36]. To

clone the tomato transcripts expressed in response to geraniol

treatment, suppression subtractive hybridization (SSH) technology

was used because of its high efficiency in enriching low expressing

genes and normalization of targeted fragments. SSH library was

generated from tomato seedlings treated with 10 mM geraniol for

30 min vs. control (20% DMSO treatment for 30 min). Although,

geraniol treatment in both solution and vapour form caused visible

changes in seedlings (Figure 2, 3), former method was preferred for

the construction of SSH library because of the quick response of

the seedlings to the geraniol treatment in solution compared to

vapour form. The treatment with 10 mM geraniol resulted visible

changes on seedlings vigour at ,90 min of exposure. Therefore,

transcript analysis was carried out with seedlings exposed to

geraniol for 30 min to eliminate the undesired effect of general

toxicity response. Both control and geraniol-treated seedlings

looked normal after 30 min of exposure with geraniol. This

particular experimental approach enabled us to target the

transcripts which are geraniol-responsive. A total of 1765

individual geraniol-responsive ESTs were cloned and the sequenc-

es were deposited in the GenBank database (Table S1). Analysis of

the ESTs revealed a total of 1136 unigenes: 778 singletons and 358

contigs. Similarity search (BLASTX) against the tomato genome

database [ITAG release 2.3 predicted proteins (SL2.40); www.

solgenomics.net] identified 892 protein encoding genes (Table S2).

The unigene sequences were also functionally categorized based

on the biological process, cellular component and molecular

function (Figure 4A–C) using a Gene Ontology (GO) scheme

(www.agbase.msstate.edu). Majority of the transcripts were

predicted to be associated with plastid (45.15%), cytosol

(33.01%), plasma membrane (16.9%), nucleus (13.99%), ribosome

(13.73%) and vacuole (13.02%); suggesting that these cellular

compartments play important role in mediating geraniol-induced

cell death/senescence. Some of the gene families upregulated by

geraniol include the heat shock proteins (HSPs), chaperonins, 14-3-3

proteins, pectinesterases, peroxidases, thioredoxins, aquaporins, expansins,

NAM-like proteins, C2H2-type zinc finger proteins, ERF and WRKY family

transcription factors.

In order to confirm geraniol-induced expression of the

transcripts, 50 unigenes which are senescence and/or stress-
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related were selected from the SSH library for qRT-PCR analysis

(Figure 5). Tomato seedlings were treated with 10 mM geraniol

for 10, 20 and 30 min and cDNAs were prepared for qRT-PCR

analysis. Among the 50 unigenes, 36 exhibited more than 3- fold

higher relative expression after geraniol treatment. Rest of the

unigenes (14) showed at least 1.5- fold up-regulation in geraniol-

treated seedlings. Few early responsive genes showed high level of

expression within 10 min of geraniol treatment. Some of them

belong to transcriptional regulators e.g. NAM-like protein, C2H2-type

zinc finger protein, scarecrow-like protein, bZIP DNA binding protein,

transcriptional activator CBF1 and transcription factor C2H2. Functional

characterization of these geraniol-responsive genes will lead to a

better understanding of the underlying molecular mechanism of

cell death/senescence process.

Geraniol-responsive Metabolic and Regulatory Genes
A number of geraniol-responsive genes are related to glycolysis

and tricarboxylic acid (TCA) cycle (Table S2). These are fructose

1,6 bisphosphate aldolases, glyceraldehyde-3-phosphate dehydrogenases, triose-

phosphate isomerases, isocitrate lyase and succinate dehydrogenase. During

cell death/senescence a high rate of respiration may be required

for the continuous supply of energy to sustain the degradation of

cellular structure. Up-regulation of respiration related genes

during natural senescence process is also known [37–39]. Several

metabolic genes and transporters were also present in the SSH

library (Table S2). These include glutamate dehydrogenase, alcohol

dehydrogenases, lipoxygenase, phytoene synthase 2, S-adenosylmethionine

decarboxylases, carboxylesterase, aquaporins, ABC transporter and protein

transport SEC13-like protein. Previous reports also suggested that

these genes are involved in senescence-related process [40–46].

Some candidate geraniol-responsive regulatory genes are

mitogen-activated protein kinase kinase kinase (MAP3K), mitogen-activated

protein kinase (MPK3), CBL-interacting serine/threonine-protein kinase

(CIPK), C2H2-type zinc finger proteins, NAM-like proteins, regulatory

associated protein of TOR (RAPTOR), extra-large G-protein, XLG, GRAS

family transcription factors such as scarecrow-like protein and GRAS4,

bZIP, WRKY and ERF family transcription factors, transcriptional activator

CBF1, CCR4 associated factor 1-related protein, 14-3-3 proteins and

calmodulin-binding protein similar to ATCAMBP25 (Table S2).

Homologs of these regulatory genes are known to play important

role in plant growth and development, stress response, cell death

and senescence by serving as the signal transduction components

and/or by controlling transcription and translation [39,47–57].

These data suggest that geraniol treatment activates plasma

membrane transport function, MAP kinase signalling cascade and

several transcription factors. These ultimately lead to changes in

cellular metabolism required for the progression and completion of

cell death/senescence.

Effects of Geraniol on Protein Fate and Cell Wall
Metabolism
Post-translational modifications and folding of proteins and the

regulated degradation process play crucial role in mediating

cellular responses to various developmental and environmental

changes. Previously, the expression of heat shock proteins (HSPs)

and chaperonins which generally participate in protein folding has

been correlated with the natural senescence process [37,39]. The

identification of several HSPs and chaperonins in the SSH library

suggests that the protection of some proteins is necessary for the

progression of geraniol-induced cell death/senescence (Table S2).

The presence of some transcripts related to 26S proteasomal

protein degradation such as, 26S proteasome subunits alpha 6,

alpha 7, RPN5b, AAA-ATPase subunit RPT4a and ubiquitin-

conjugating enzyme 9 was also noticed in SSH library (Table S2).

26S proteasome is the eukaryotic protein degradation system

responsible for the protein turnover, which plays an important role

in the precise removal of short-lived regulatory proteins such as

transcription factors [58]. Thus, it could be speculated that the

activation of 26S proteasome pathway is required during geraniol-

induced cell death/senescence. Few proteases such as, subtilisin-

like proteases, pre-pro-cysteine proteinase, serine carboxypepti-

dase, serine-type endopeptidase, aminopeptidase, serine protease

and aspartic-type endopeptidases were found to be geraniol-

responsive (Table S2). Proteases are implicated in various plant

processes including senescence-associated cell death, protein

turnover during biotic and abiotic stresses and storage protein

utilization during seed germination [59,60]. During senescence,

these proteases may be associated with the turnover and

remobilization of cellular materials out of the senescing tissues to

the actively growing tissues. Geraniol-induced expression of

Figure 1. Monoterpenes used to study the plant responses. Geraniol can be metabolized into geranyl acetate, b-citronellol, geranial and neral
by the action endogenous plant enzymes. The geometric isomers geranial and neral are known as trans-citral (citral-A) and cis-citral (citral-B),
respectively.
doi:10.1371/journal.pone.0076029.g001
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transcriptional regulators and genes involved in protein modifica-

tions and degradation points towards the existence of both

transcriptional and post-transcriptional regulation of cell death/

senescence process.

Cell wall of plants undergoes precise changes in metabolism

during growth and development and senescence-related processes.

Some geraniol-responsive genes which are related to cell wall

metabolism are polygalacturonase, xyloglucan endotransglucosylase-hydro-

lases, b-D-glucan exohydrolase, endo-1,4-b-glucanases, b-galactosidase,
glucan endo-1,3-b-glucosidases, pectin methylesterases, b-fructofuranosidases,
pectinesterases, b-mannosidase and expansions (Table S2). These data

suggest that cell wall cellulose, hemicellulose and pectin polysac-

charides are targeted for degradation during geraniol-induced cell

death/senescence.

Role of Reactive Oxygen Species and Ethylene in Geraniol
Mediated Senescence
Cell death/senescence processes are oxidative phenomena

involving ROS such as, H2O2 and superoxide anion [34,61].

Geraniol-treated seedlings accumulated elevated level of H2O2 as

compared to control seedlings, suggesting the involvement of ROS

in geraniol-mediated cell death/senescence process (Figure 6).

Geraniol-induced expression of the ROS synthesizing enzyme

NADPH oxidase (RBOHC) may be a mechanism to build up

oxidative burst during geraniol-induced cell death/senescence

(Table S2). ROS scavenging enzymes and antioxidants which are

the early markers of oxidative stress were also geraniol inducible:

peroxidases, ascorbate peroxidase, glutathione peroxidases, GST,

catalases, Mn superoxide dismutase, thioredoxins and peroxir-

edoxin were identified in SSH library (Table S2). ROS can

promote the oxidative deterioration process in such a way that it

affects the cellular functions required for the cell death/

senescence. Thus, cellular antioxidant activities may be important

to keep the ROS level under control.

Apoptosis-like cell death and DNA damage response are the

events of plant senescence process which is regulated by ethylene

[62,63]. BAG-domain protein 1/regulator of cell death, apoptosis inhibitory

protein 5 (API5) and putative senescence-associated protein were found to

be geraniol-responsive (Table S2). These genes were previously

linked with apoptosis-like cell death and senescence [64–66].

Moreover, genes which are associated with DNA-damage repair/

tolerance were identified in the SSH library (Table S2). These are

DNA-DAMAGE REPAIR/TOLERATION 100, (DRT100) and DNA

photolyase. Genes which are involved in the synthesis of methionine

(methionine synthase and cystathionine gamma-synthase) and S-adenosyl-

methionine (S-adenosylmethionine synthase), the precursors of ethylene,

were also found to be geraniol-responsive (Table S2). Further-

more, ethylene-regulated genes such as ethylene insensitive 3 (EIN3)-

Figure 2. Monoterpene-induced physiological changes in
tomato. (A) Development of necrosis in leaves of 45-days old tomato
plants and 15-days old tomato seedlings-treated with monoterpene
volatiles geraniol, geranyl acetate, citral and b-citronellol. Photographs
were taken at 48 and 72 hr after volatile treatments to tomato seedlings
and plants, respectively. Trypan blue staining of the leaves, taken from
48 hr monoterpene volatile-treated plants, was carried out to
determine the extent of cell death. (B) The electrolyte leakage rate
from the leaves was measured at 12 hr after treatment of tomato plants
with monoterpene volatiles. Data are mean 6 SEM (n= 3).
doi:10.1371/journal.pone.0076029.g002

Figure 3. Phytotoxic effect of geraniol on tomato seedlings.
Seedlings were fed with MS medium containing 50 mM to 10 mM
geraniol, 20% DMSO and 100 mM ethanol. Seedlings treated with
geraniol showed rapid loss of vigor and viability.
doi:10.1371/journal.pone.0076029.g003

Monoterpene-Induced Senescence in Tomato
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like protein, ethylene response factors (ERFs) were identified to be

geraniol-responsive (Table S2). Hence, geraniol-responsive ex-

pression of ethylene-related genes suggests the involvement of

ethylene in geraniol induced cell death/senescence. Therefore, the

Figure 4. Functional categorization of geraniol-responsive transcripts based on Gene Ontology (GO) biological process (A), cellular
component (B) and molecular function (C).
doi:10.1371/journal.pone.0076029.g004
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involvement of ethylene was tested by analysing the geraniol-

induced cell death/senescence in an ethylene receptor mutant

(Never ripe, Nr) which is known to have defect in ethylene perception

[67]. Delayed onset of seedling death in Nr mutant seedlings as

compared to wild type confirmed the role of ethylene (Figure S2).

Geraniol Acts in Ethylene Dependent and Independent
Ways
The geraniol-responsive expression of S-adenosylmethionine

biosynthesis and ethylene signalling genes (Table S2) and delayed

onset of cell death/senescence in Nr mutant seedlings (Figure S2)

led us to examine the expression of geraniol-regulated genes in Nr.

Expression analysis, in this mutant revealed that the transcript

level of some genes was elevated after the geraniol treatment

(Figure 7). Although ethylene signalling genes were upregulated in

wild type seedlings after geraniol treatment (Table S2), the

geraniol-induced expression of these genes in ethylene receptor

mutant seedlings suggests that the effect of geraniol in cell death/

senescence may not be completely dependent on ethylene. These

observations point towards the existence of both ethylene

dependent and independent pathways for the geraniol-induced

cell death/senescence process. Ethylene independent pathway

may comprise of genes which show induced expression during

natural senescence process (Figure 8); however, their geraniol-

regulation was mostly unaffected by Nr mutation (Figure 7). These

genes include NAM-like protein, C2H2-type zinc finger protein, putative

scarecrow protein, BAG-domain protein 1/regulator of cell death, CCR4

Figure 5. Expression profiles of geraniol-responsive transcripts. Tomato seedlings were treated with 10 mM geraniol and qRT-PCR analysis
was carried out for 50 genes selected from SSH library. Data are mean (n = 3). Tomato actin was used as endogenous control.
doi:10.1371/journal.pone.0076029.g005

Figure 6. H2O2 concentration measured in tomato seedlings
after treatment with geraniol. Seedlings were placed in MS media
containing geraniol (50 mM to 10 mM) or 20% DMSO (control). Data are
mean 6 SEM (n= 3).
doi:10.1371/journal.pone.0076029.g006

Monoterpene-Induced Senescence in Tomato
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associated factor 1-related protein, bZIP DNA-binding protein and

transcriptional activator CBF1.

Geraniol-regulated Genes Exhibit Induced Expression at
the Onset of Natural Organ Senescence
We next tested whether the genes identified to be geraniol-

responsive are also involved in natural senescence of plant organs.

Fruit senescence process has received considerable experimental

attention to identify the ways to optimize the fruit quality. Based

on the putative function of the geraniol-responsive genes, an

overlapping gene expression pattern between fruit senescence and

geraniol-induced cell death/senescence could be predicted.

Several geraniol-responsive transcripts which belong to regulatory

components, cell wall modification, metabolism, transport and

ethylene response could be associated with the fruit senescence

during ripening process (Figure 4; Table S2). In order to know

whether geraniol-responsive genes are associated with natural

organ senescence, their expression during tomato fruit ripening

was determined by qRT-PCR analysis (Figure 8A, B). For this,

geraniol-regulated genes (Figure 5) whose role in fruit ripening is

unknown to date were selected for the analysis, alongwith some

ripening-related genes as reference. Ripening-specific expression

of transcriptional regulators such as, NAM-like protein, C2H2-type

zinc finger protein, GRAS family scarecrow-like protein, bZIP DNA

binding protein and transcriptional activator CBF1 was noticed. Some of

the other genes which showed induced expression during tomato

ripening include ABA 89 hydroxylase, pathogenesis-related protein PR5,

few transporters (aquaporin, ABC transporter and plasma membrane

intrinsic protein PIP2) and regulator of cell death (BAG-domain protein

1) and mRNA stability (CCR4 associated factor 1). Taken together,

significant overlap in gene expression suggests that the geraniol-

induced cell death/senescence and fruit ripening associated

senescence may share some common regulators.

Conclusions
Monoterpenes are among the most commonly produced volatile

secondary metabolites in plants which elicit responses in a wide

range of organisms. Some monoterpenes are also emerging as

promising therapeutic agents. Although, geraniol was previously

associated with apoptosis-like cell death/senescence in plants and

cancer cell lines, a comprehensive analysis of the geraniol-

responsive transcripts has not been reported till date. Therefore,

we took the advantage of SSH approach and identified 892

candidate geraniol-responsive genes in tomato. The involvement

of ROS and ethylene during the geraniol-mediated cell death/

senescence has been proposed. The data also suggests that

continuous demand for energy during senescence process may

be met through upregulation of glycolysis and tricarboxylic acid

(TCA) pathway. The geraniol induced senescence is possibly

regulated at the transcriptional as well as post-transcriptional levels

because differential expression of several transcriptional regulators

and protein modifications-related genes was observed. The data

presented here also indicates significant overlap in gene expression

associated with geraniol-induced cell death/senescence and fruit

ripening associated senescence. A number of ripening-specific and

geraniol-responsive novel genes have been identified. Functional

characterization of such genes will be of particular interest to

explore some previously unknown regulators of fruit ripening and/

or senescence. Taken together, these results advance our

understanding of cell death/senescence process and suggest that

geraniol can serve as inducer of cell death/senescence.

Materials and Methods

Plant Materials and Growth Conditions
Tomato (cv. Pusa Ruby) seeds were obtained from the National

Seeds Corporation Ltd., New Delhi. Nr mutant used in the study

was procured from the Tomato Genetics Resource Center,

University of California at Davis and was in Ailsa Craig

background. Seeds were germinated in pre-sterilized soil and later

transplanted in pots containing soil, agropeat and vermiculite

(2:1:1). Plants were grown in a growth chamber with ,25/22uC

Figure 7. Induced expression of geraniol-responsive genes in
ethylene receptor mutant (Nr) seedlings after geraniol treat-
ment. Transcript level of geraniol-responsive genes at 30 min of
treatment with 10 mM geraniol, relative to 0 hr. Data are mean 6 SEM
(n = 3). G8- NAM-like protein (GH203680), G11- xyloglucan endotransglu-
cosylase-hydrolase (GH205301), G13- C2H2-type zinc finger protein
(GH203536), G14- putative scarecrow protein (GH204307), G33- bZIP
DNA-binding protein (GH203992), G35- ABA 89-hydroxylase (GH204050),
G44- BAG-domain protein 1/regulator of cell death (GH204276), G46-
CCR4 associated factor 1-related protein (GH204364), G47- lipoxygenase
(GH204408), G48- transcriptional activator CBF1 (GH204429).
doi:10.1371/journal.pone.0076029.g007

Figure 8. Up-regulation of geraniol-responsive genes at the
onset of fruit senescence. (A) Tomato fruits used in this study:
mature green (MG), breaker (BR), pink (P) and red ripe (RR). (B)
Transcript level of 25 geraniol-responsive genes was determined in
different ripening stages of fruits by qRT-PCR analysis. Tomato actin was
used as endogenous control. Data are mean (n = 3).
doi:10.1371/journal.pone.0076029.g008

Monoterpene-Induced Senescence in Tomato
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day/night temperature, ,65% relative humidity and 16/8 hr

light/dark regimen. For the analysis, fruits were harvested at the

mature green (MG), breaker (BR), pink (P) and red ripe (RR)

stages after tagging the flowers at anthesis. Fruits after ,40 days of

anthesis were considered mature green (the surface of the tomato

was completely green, the shade of the colour varied from light to

dark), MG+4 days as breaker stage, B+2 days as pink and P+3 days
as red ripe stage.

Monoterpene Vapour Treatment
For monoterpene vapour treatment, tomato plants (45-days old)

grown under controlled condition of the growth chamber (as

mentioned above) were entirely closed in polypropylene bag (12

inches616 inches) containing different amounts (5 ml, 10 ml and
20 ml) of monoterpenes (geraniol, citral, geranyl acetate and b-
citronellol) shocked in equal size (1.5 cm in diameter) of cotton

balls (Figure S3A). Second leaf was taken for photograph, trypan

blue staining and electrolyte leakage analysis. For treatment of

seedling, seeds were germinated in 200 ml glass culture vessels

(62.4 mm695.8 mm) with MS media and 15-days old seedling

were treated with monoterpene vapour by placing cotton ball

shocked in monoterpene solution within the vessel and tightening

with the cap (Figure S3B). The monoterpenes obtained from

Sigma-Aldrich were of high purity: geraniol (98%), citral (95%),

geranyl acetate (98%) and b-citronellol (99%).

Monoterpene Treatment in Solution
Fifteen days old tomato seedlings, germinated and grown in MS

medium (pH 5.760.1) were used for geraniol, geranyl acetate,

citral and b-citronellol (Sigma-Aldrich) treatments. Seedlings were

transferred to liquid MS media containing 50 mM to 10 mM

monoterpene in 20% dimethyl sulfoxide (DMSO). As these

monoterpenes are not soluble in water, 20% DMSO was used

as solvent to achieve a uniform solution. Control experiment was

carried out by transferring seedlings to liquid MS media with/

without 20% DMSO or 100 mM ethanol. Seedling placed on MS

media with/without 100 mM ethanol looked normal even after 24

hours of incubation. However, seedlings started deteriorating if

incubated for longer time (.12 hrs) with MS media containing

20% DMSO. Thus, suppression subtractive hybridization and

gene expression experiments were carried out with 10 mM

geraniol and treatment was completed within 30 minutes to avoid

any undesired effect of DMSO. After the specified time of

treatment, seedlings were harvested, frozen immediately in liquid

nitrogen and stored at 280uC.

Trypan Blue Staining
Cell death was estimated by trypan blue staining. Leaves from

monoterpene-treated plants were harvested and immediately

submerged in lactic acid-glycerol-phenol-trypan blue solution

(0.25 mg/ml trypan blue in H2O) prepared in 1:1:1:1 ratio. Then

samples were heated over boiling water for 2 min and left at room

temperature over night. After multiple exchanges of destaining

solution (lactic acid-glycerol-phenol-water in 1:1:1:1 ratio), the

samples were visualized using a multizoom microscope (Nikon

AZ100).

Determination of Electrolyte Leakage Rate
Electrolyte leakage was assayed by estimating the ion leaching

from the leaves into ultra pure MilliQ water. Leaves discs of equal

dimension (10 mm) and number (4) were prepared from the

second leaf of monoterpene-treated plants and placed into 10 ml

of MilliQ water in two sets. The first set was kept at room

temperature for 2 h and its conductivity (C1) was recorded using a

conductivity meter. The second set was autoclaved and its

conductivity (C2) was recorded and relative electrolyte leakage

[(C1/C2)x 100] was calculated. The experiments were carried out

in triplicate.

Construction of Subtraction cDNA Library
SSH library was generated according to the instruction manual

of PCR-Select cDNA Substraction kit (Clontech). PolyA+ RNA

was isolated from total RNA using Dynabeads mRNA purification

kit (Invitrogen) and 2 mg of purified polyA+ RNA was reverse

transcribed using AMV reverse transcriptase. In order to produce

a cDNA library representative of geraniol-induced genes, double-

stranded cDNA sample from tomato seedlings-treated with

10 mM geraniol in 20% DMSO for 30 min was used as the

tester while seedlings-treated with 20% DMSO for 30 min was

used as the driver. Both tester and driver cDNAs were digested

with RsaI for producing blunt ends cDNAs. Two population of

adapter ligated tester cDNA sample were prepared and two

rounds of hybridization between driver and adaptor linked tester

were performed to remove common or non-induced sequences.

Tester specific cDNAs were then PCR amplified (Advantage 2

PCR kit, Clontech). PCR products were ligated into the pGEM-T

Easy vector (Promega) and transformed into E. coli (DH5a) for
propagation. Recombinant clones were selected based on blue-

white selection on LB agar plate containing 50 mg/ml ampicillin

and grown in 96-well plates with 2X YT media at 37uC for

plasmid isolation and glycerol stock preparation.

Sequencing and Analysis of ESTs
In order to obtain the sequence of ESTs, plasmid DNAs were

isolated from the individual recombinant clones following the

Perfectprep Plasmid 96 Vac kit according to the manufacturer’s

instructions (5PRIME). Purified plasmid DNAs were analyzed on

0.8% agarose gel before going for sequencing. Plasmid DNAs were

single-pass sequenced using the Big Dye terminator kit (Applied

Biosystems, CA) with M13 forward and reverse primers, in a ABI

Prism 3700 DNA analyzer (Applied biosystems, CA). A total of

2300 independent recombinant clones were randomly picked and

after single pass sequencing, 1987 individual sequences were

obtained. Among these, 222 sequences were discarded due to low

quality, short sequence length (,100 bp), organelle source and

vector sequence. Remaining, 1765 high quality EST sequences

(Table S1) were assembled into contigs [68]. Functional annota-

tion of the unigenes (contigs and singletons) was carried by

homology search against tomato genome database (www.

solgenomics.net), non-redundant protein database of NCBI using

BLASTX program (www.ncbi.nlm.nih.gov) and by following the

Gene Ontology scheme (www.agbase.msstate.edu).

RNA Isolation and Quantitative RT-PCR
RNA was isolated according to the LiCl precipitation method

[69] and purified using RNeasy Mini Kit (Qiagen). Three different

tomato fruits or ten seedlings were taken for each group. RNA

quality was checked by running 1.2% agarose gel and by

determining the A260/280 ratio. Five microgram of total RNAs,

quantified using a nanodrop (ND 1000, Thermo Scientific) were

reverse transcribed using superscript II (Invitrogen) at 42uC for

50 min in 20 ml reaction volume following the manufacture’s

instructions. cDNAs were diluted three times before using in the

quantitative real-time PCR reaction (10 ml reaction volume)

containing 5 ml 2X SYBR green mixture (Applied Biosystems),

1.5 ml of diluted cDNA and 500 nM of each forward and reverse

gene specific primers. Quantitative RT-PCR was performed using
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One Step Real Time RT-PCR (step one v1.0) or 7900 HT Fast

Real Time PCR (SDS 2.3/RQ Manager 1.2) of Applied

Biosystems. Gene specific primers were designed using Primer

Express version 3.0 (Applied Biosystems). List of genes and

oligonucleotide primers used are shown in Table S3. Melting

curves were analyzed at the dissociation step to examine the

specificity of amplification. Relative gene expression was analyzed

using the 22DDCq method.

Determination of H2O2 Level
H2O2 was extracted and quantified from tomato seedlings as

described previously [70]. In brief, tissue was homogenised in 3 ml

of ice cold 0.01 M phosphate buffer (pH 7.0) and homogenate was

centrifuged at 15000 rpm for 15 min at 4uC. Further, 500 ml of
the clear homogenate was added to 1.5 ml of 0.01 M phosphate

buffer (pH 7.0). Then, 2 ml of 5% potassium dichromate and

glacial acetic acid (1:3, v/v) was added to the mixture. The

absorbance was read at 570 nm against the reagent blank without

sample extract in a Shimadzu UV 2550 uv viz spectrophotometer.

The quantity of H2O2 was determined based on a standard curved

(Y=0.004X, R2= 0.9972) generated using 10 to 100 mmol of

H2O2.

Supporting Information

Figure S1 Effect of citral, geranyl acetate and b-
citronellol treatment on seedling vigor of wild type
tomato Pusa Ruby.
(TIF)

Figure S2 Effect of gerainol treatment on seedling vigor
of wild type tomato Ailsa Craig (A) and Never Ripe (Nr)

mutant (B). Delayed seedling death was observed in Nr mutant

as compared to wild type.

(TIF)

Figure S3 Closed environment used for the treatment of
45-days old tomato plantlets (A) and 15-days old
seedlings (B).

(TIF)

Table S1 GenBank accession numbers of ESTs.

(DOC)

Table S2 List of geraniol-responsive tomato unigenes
(contigs and singletons).

(DOC)

Table S3 List of primers used for quantitative RT-PCR
analysis.

(DOC)
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