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Abstract
We consider the voter model on Z, starting with all 1’s to the left of the origin and all 0’s to the
right of the origin. It is known that if the associated random walk kernel p(·) has zero mean
and a finite γ-th moment for any γ > 3, then the evolution of the boundaries of the interface
region between 1’s and 0’s converge in distribution to a standard Brownian motion (Bt)t≥0 under
diffusive scaling of space and time. This convergence fails when p(·) has an infinite γ-th moment
for any γ < 3, due to the loss of tightness caused by a few isolated 1’s appearing deep within
the regions of all 0’s (and vice versa) at exceptional times. In this note, we show that as long as
p(·) has a finite second moment, the measure-valued process induced by the rescaled voter model
configuration is tight, and converges weakly to the measure-valued process (1x<Bt

dx)t≥0.

1 Introduction

The voter model on Z is an interacting particle system with state space Ω := {0, 1}Z. At each time
t ≥ 0, we denote the state of the voter model by ηt := (ηt(x))x∈Z ∈ Ω, where ηt(x) ∈ {0,1}
encodes the opinion of the voter at site x at time t. Independently for each pair x , y ∈ Z, the
opinion at x is replaced by the opinion at y (also called resampling) with exponential rate p(y−x),
where p(·) := (p(x))x∈Z is the probability distribution of the increments of an irreducible random
walk on Z. Formally, the voter model has generator

(L f )(η) =
∑

x ,y∈Z
p(y − x)( f (ηx ,y)− f (η)), (1.1)

where η ∈ Ω, ηx ,y(z) = η(z) for all z 6= x and ηx ,y(x) = η(y), and f : {0,1}Z→ R depends only
on a finite number of coordinates. For classic results on the voter model, see [L85].
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We consider the voter model with the heavy-side initial configuration

η0(x) =

¨

1 if x ≤ 0,

0 if x ≥ 1.
(1.2)

For each t ≥ 0, we denote the positions of the leftmost 0 and the rightmost 1 respectively by

lt := inf{x ∈Z : ηt(x) = 0} and rt := sup{x ∈Z : ηt(x) = 1}.

The region between lt and rt is called the interface region, where the voter model configuration
ηt has a mixture of 0’s and 1’s. The voter model configuration viewed from the leftmost 0, i.e.,
η̃t(x) := ηt(lt + x) for x ∈N, is called the interface process, which is a Markov process with state
space {η̃ ∈ {0, 1}N :

∑

x∈N η̃(x)<∞}.
In [CD95], Cox and Durrett studied the interface process η̃t . They observed that η̃t is positive-
recurrent if and only if the distribution of the interface size rt − lt is tight over times t ≥ 0, which
they verified under the assumption that p(·) has a finite third moment, i.e.,

∑

x∈Z |x |
3p(x) <∞.

This tightness result was later extended by Belhaouari, Mountford and Valle [BMV07] to p(·) with
a finite second moment, which they showed to be optimal in the sense that tightness is lost if
∑

x∈Z |x |
γp(x) =∞ for some γ < 2. An alternative proof of the tightness of {rt− lt}t≥0, under the

finite second moment assumption on p(·), was given recently by Sturm and Swart in [SS08].
Assume without loss of generality that

∑

x∈Z x p(x) = 0, and σ2 :=
∑

x∈Z x2p(x) <∞. Cox and
Durrett [CD95] also observed that when {rt − lt}t≥0 is tight, the finite-dimensional distributions
of

� ltN2

σN

�

t≥0
and

� rtN2

σN

�

t≥0

converge to those of a standard Brownian motion (Bt)t≥0 as N → ∞. It is then natural to ask
whether (ltN2/σN , rtN2/σN)t≥0 converges in distribution to (Bt , Bt)t≥0 in path space, i.e., the
product space D([0,∞),R)2 where D([0,∞),R) is the space of càdlàg paths equipped with the
Skorohod topology. Such a path level convergence would imply that in the diffusive scaling limit,
the interface region becomes sharp uniformly on finite time intervals, and the motion of the inter-
face location converges weakly to a Brownian motion. This was established by Newman, Ravis-
hankar and Sun in [NRS05] under the assumption that p(·) has a finite fifth moment. It was later
extended by Belhaouar et al. [BMSV06] to all p(·) with a finite γ-th moment for some γ > 3.
It was also pointed out in [BMSV06] that if

∑

x∈Z |x |
γp(x) =∞ for some γ < 3, then the process

(ltN2/σN , rtN2/σN)t≥0 loses tightness in path space as N → ∞, because there exist exceptional
times when 1’s appear deep in the region of all 0’s (and vice versa) due to the heavy tail of
p(·). However, we expect such 1’s (and 0’s) to be rare and sparse when they do appear, because
{rt − lt}t≥0 remains tight as long as p(·) has a finite second moment. If we can suitably discount
such rare 1’s (and 0’s), then we should be able to recover the tightness of (ltN2/σN , rtN2/σN)t≥0 as
N →∞, and hence assert the weak convergence of the interface evolution to a Brownian motion.
One way to discount such rare 1’s and 0’s and to restore path level tightness is by suppressing the
resampling of voter model opinions involving sites x , y ∈ Z with |y − x | ≥ Nε, for some ε > 0
depending on p(·). This was the approach taken in [BMSV06, Theorem 1.3], which requires p(·)
to have a finite γ-th moment for some γ > 2.
In this note, we take an alternative approach to the convergence of the voter model interface evolu-
tion, which naturally discounts isolated 1’s and 0’s, and where finite second moment is the natural
assumption on p(·). More precisely, we consider the measure-valued process (µt)t≥0 induced by
the voter model configurations (ηt)t≥0, defined by

µt(·) :=
∑

x∈Z
ηt(x)δx(·). (1.3)
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The state space of (µt)t≥0 is M (R), the space of non-negative Radon measures on R equipped
with the vague topology, so that µn→ µ inM (R) if and only if

∫

f dµn→
∫

f dµ for all f ∈ Cc(R),
where Cc(R) denotes the space of continuous functions with compact support on R. For each
N > 1, we define the rescaled measure-valued process µN

t by
∫

f (x)µN
t (dx) :=

1

N

∫

f
� x

N

�

µtN2(dx) for all f ∈ Cc(R). (1.4)

Let D([0,∞),M (R)) denote the space of right-continuous paths in M (R) with left-hand limits,
equipped with the Skorohod topology.

Here is our main result.

Theorem 1.1. Assume that
∑

x∈Z x p(x) = 0 and σ2 :=
∑

x∈Z x2p(x) <∞. Then the distribution
of (µN

t )t≥0 on D([0,∞),M (R)) converges weakly to that of (νt)t≥0 := (1{x<σBt}dx)t≥0 as N →∞,
where (Bt)t≥0 is a standard Brownian motion.

Theorem 1.1 shows that as long as p(·) has a finite second moment, the voter model interface
evolution is tight in the measure-valued sense, and converges weakly to a sharp interface following
a Brownian path.

One may ask what type of measure-valued processes arise in the scaling limit if we take a sequence
of voter model initial configurations ηN

0 ∈ {0, 1}Z, such that µN
0 converges vaguely to a limiting

measure ν0(dx) = f0(x)dx for some f0 : R → [0,1]. The answer is that the limit should be the
so-called continuum-sites stepping-stone model with Brownian migration (CSMBM). See [Z03, Z08]
for the CSMBM on the real line and on the one-dimensional torus, and see the references therein
for results on continuum-sites stepping-stone models in general. In [Z03, Z08], the distribution of
the CSMBM was specified using a finite collection of dual coalescing Brownian motions running
backwards in time. With the aid of the so-called Brownian web (see e.g. [FINR04]), which con-
structs simultaneously coalescing Brownian motions starting from every point in space and time,
one can in fact give a graphical construction of the CSMBM in the same spirit as the graphical
construction of the voter model from the dual family of coalescing random walks (see e.g. [L85]).
Almost surely, for any time t > 0, the coalescing Brownian motions in the Brownian web starting
from every point in R at time t, running backwards in time, determine an ergodic locally finite
point configuration · · ·< x i < x i+1 < · · · on R, such that all coalescing Brownian motions starting
from (x i , x i+1) at time t coalesce into a single point yi at time 0, and yi < yi+1 for all i ∈ Z. The
configuration of the CSMBM at time t is then given by νt(dx) = ft(x)dx , where independently for
each i ∈ Z, ft = 1 on (x i , x i+1) with probability f0(yi), and ft = 0 on (x i , x i+1) with probability
1− f0(yi). Our proof of the tightness of {µN

· }N>1 in Theorem 1.1 is in fact independent of the
initial configuration η0, and hence applies in this more general setting as well. Proving conver-
gence of the finite-dimensional distributions of {µN

· }N>1 however requires more care. We will not
work out the details here and instead leave it open for the reader, since our main interest is the
convergence of the voter model interface in Theorem 1.1.

We remark that scaling limits of voter models in the measure valued setting have been considered
before. In dimension 1, if the voter model has a long range kernel with scale MN , space and time
are rescaled respectively by MN

p
N and N , then when MN/

p
N → ρ for some ρ > 0, the density

of 1’s is shown in [MT95] to converge to the solution of an SPDE; when MN/
p

N →∞, the voter
model is shown in [CDP00, Theorem 1.1] to converge to super-Brownian motion. As mentioned
in [CDP00], when MN/

p
N → 0, the scaling limit of the voter model is believed to be the CSMBM

described above. In dimensions 2 and higher, the voter model has been shown to converge to
super-Brownian motion, see e.g. [CDP00, BCG01].
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2 Proof

To prove Theorem 1.1, it suffices to show: (1) tightness of {(µN
t )t≥0}N>1 on D([0,∞),M (R)),

which is where the main technical difficulty lies; (2) convergence of the finite dimensional dis-
tributions of (µN

t )t≥0 to that of (νt)t≥0 := (1{x<σBt}dx)t≥0. We note that our tightness proof is
independent of the initial configuration η0 of the voter model.

2.1 Tightness

By Jakubowski’s tightness criterion (see e.g. [DA93, Theorem 3.6.3]), {(µN
t )t≥0}N>1 is tight on

D([0,∞),M (R)) if the following conditions are satisfied:

(J1) (Compact Containment) For each T > 0 and ε > 0, there exists a compact set KT,ε ⊂M (R)
such that for all N > 1,

P
�

µN
t ∈ KT,ε, ∀0≤ t ≤ T

�

≥ 1− ε; (2.1)

(J2) (Tightness of Evaluations) For each f ∈ C2
c (R), the space of twice continuously differen-

tiable real-valued functions on R with compact support, define

X N
t := X N

t ( f ) :=

∫

f (x)µN
t (dx) =

1

N

∑

x∈Z
f
� x

N

�

ηtN2(x). (2.2)

Then {(X N
t )t≥0}N>1 is tight on D([0,∞),R).

Condition (J1) is easily seen to hold, because for each N > 1 and t ≥ 0,

µN
t ([−m, m]) =

1

N

∑

x∈Z∩[−mN ,mN]

ηtN2(x)≤ 2m+ 1 for all m ∈N,

and K := {ν ∈M (R) : ν([−m, m])≤ 2m+ 1 ∀m ∈N} is a compact subset ofM (R).
We will verify (J2) by verifying Aldous’ tightness criterion (see e.g. [DA93, Theorem 3.6.4]) for
{(X N

t )t≥0}N>1 in D([0,∞),R), which reduces to the following conditions:

(A1) For each rational t ≥ 0, {X N
t }N>1 is tight in R;

(A2) For T > 0, let τN be stopping times bounded by T , and let δN ↓ 0 as N →∞. Then

lim
N→∞

P(|X N
τN+δN

− X N
τN
|> ε) = 0.

Remark 2.1. Before embarking on the verification of (A1)–(A2), we first briefly explain the main
technical difficulty in proving tightness. Typically, Aldous’ criterion is verified by verifying a cri-
terion of Joffe and Métivier (see e.g. [DA93, Theorem 3.6.6]), which requires bounds on the
so-called local coefficients of first and second order, given respectively by

αN
t := LN X N

t and βN
t := LN ((X N

t )
2)− 2X N

t α
N
t ,

where LN is the generator for the measure-valued process µN
t . The coefficients αN

t and βN
t en-

code the drift and quadratic variation of (X N
t )t≥0. For purposes of illustration, let us consider

µN
t obtained by diffusively rescaling the voter model ηN

t on the torus Z/(2NZ), identified with
[−N + 1, N] ∩Z, with ηN

0 (·) = 0 on [−N + 1,0] and ηN
0 (·) = 0 on [1, N]. Assume that p(·) is
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symmetric, and its projection pN (·) on the torus is used to define (ηN
t )t≥0. Take f ≡ 1 on the

continuum torus [−1,1] with −1 identified with 1. Then

X N
t = X N

t ( f ) =
1

N

∑

x∈[−N+1,N]∩Z

ηN
tN2(x)

is a martingale, and hence αN
t = 0 for all t ≥ 0. A simple calculation shows that

βN
t =

1

2

∑

x ,y∈[−N+1,N]∩Z

pN (y − x)1{ηN
tN2 (x)6=η

N
tN2 (y)},

which will be O(1) only if ηN
tN2 segregates into O(1) number of intervals with mostly all 1’s or all

0’s on each interval. Establishing such segregation of 0’s and 1’s is the main difficulty in proving
tightness, which Joffe and Metivier’s criterion does not help to simplify. Instead, we will proceed by
a direct verification of Aldous’ criterion, using the duality between the voter model and coalescing
random walks.

Proof of (A1)–(A2). Since f ∈ C2
c (R), X N

t is uniformly bounded for t ≥ 0 and N > 1, which
trivially implies (A1).
To prove (A2), we will use the well-known duality between the voter model and coalescing random
walks. More precisely, if we denote by {Y x ,t

s }x∈Z,t>0,s≤t a collection of coalescing random walks
starting from each x ∈ Z at each time t > 0, evolving backwards in time, each with increment
distribution p(·), then there exists a coupling between (ηt)t≥0 and {Y x ,t

s }x∈Z,t>0,s≤t (using the
so-called graphical construction) such that almost surely,

ηt(x) = η0(Y
x ,t

t ) for all x ∈Z and t > 0.

For more details, see e.g. [L85] or [CD95].
We start with a random walk estimate. Let W := (Ws)s≥0 be a continuous time random walk on Z
with jump rate 2 and jump kernel p∗(·), with p∗(x) = p(x)+p(−x)

2
for x ∈Z. Note that if W0 = x− y ,

then (Ws)0≤s≤t equals in law to (Y x ,t
s − Y y,t

s )0≤s≤t . Let

τ= inf{s ≥ 0 : Ws = 0}. (2.3)

Let Pz(·) and Ez[·] denote respectively probability and expectation for W with W0 = z ∈ Z. Then
for all 0≤ s ≤ t and a > 0, we have

P0(|Ws| ≥ a)≤
E[W 2

s ]

a2 =
2σ2s

a2 . (2.4)

Using this bound and the strong Markov property, for all z ∈Z and a, s > 0, we have

Pz(τ≤ s, |Ws| ≥ a) = Ez[1{τ≤s}P0(|Ws−τ| ≥ a)]

≤
2σ2

a2 Ez[1{τ≤s}(s−τ)]

≤
2σ2s

a2 Pz(τ≤ s).
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Therefore for a > σ
p

2s,

Pz(τ≤ s, |Ws|< a)≥
�

1−
2σ2s

a2

�

Pz(τ≤ s). (2.5)

On the other hand, for a < |z|, we have

Pz(|Ws|< a) = P0(|Ws − z|< a)≤ P0
�

|Ws| ≥ |z| − a
�

≤
2σ2s

(|z| − a)2
. (2.6)

Combining (2.5) and (2.6), and setting a = 4σ2s then gives

Pz(τ≤ s)≤
2σ2s

(|z| − a)2
.�

1−
2σ2s

a2

�

=
4σ2s

(|z| − 2σ
p

s)2
(2.7)

for all s > 0 and z ∈Z with |z|> 2σ
p

s.

Let T , τN and δN be as in (A2). Let M be such that the support of f is contained in [−M , M]. Fix
an δ > 0 small, and assume that N is large enough so that δN < δ. Let Eζ[·] denote expectation
with respect to the voter model (ηt)t≥0 with initial configuration η0 := ζ ∈ {0, 1}Z, and let Varζ(·)
denote the corresponding variance. Then for any ε > 0,

P(|X N
τN+δN

− X N
τN
|> ε) ≤

1

ε2E[(X
N
τN+δN

− X N
τN
)2] =

1

ε2E
�

E
ητN N2

�

(X N
δN
− X N

0 )
2��

≤
2

ε2E
h

�

�E
ητN N2

�

X N
δN
− X N

0

�

�

�

2
i

+
2

ε2E
�

VarητN N2 (X N
δN
)
�

, (2.8)

where in the equality we used the strong Markov property for (ηt)t≥0, and in the last inequality
we added and subtracted EητN N2 [X N

δN
] from X N

δN
− X N

0 and used (a+ b)2 ≤ 2(a2 + b2).
Fix any ζ ∈ {0,1}Z, and assume the coupling mentioned before between the voter model (ηt)t≥0
with η0 = ζ and the collection of coalescing random walks {Y x ,t

s }x∈Z,t>0,s≤t . Then

Varζ(X N
δN
) =

1

N2E
ζ
h�
∑

x∈Z
f
� x

N

�

ηN2δN
(x)
�2i

−
1

N2E
ζ
h
∑

x∈Z
f
� x

N

�

ηN2δN
(x)
i2

=
1

N2

∑

x ,y∈Z
f
� x

N

�

f
� y

N

��

Eζ
�

ηN2δN
(x)ηN2δN

(y)
�

−Eζ
�

ηN2δN
(x)
�

Eζ
�

ηN2δN
(y)
�

�

=
1

N2

∑

x ,y∈Z
f
� x

N

�

f
� y

N

��

E
�

ζ(Y x ,N2δN

N2δN
)ζ(Y y,N2δN

N2δN
)
�

−E
�

ζ(Y x ,N2δN

N2δN
)
�

E
�

ζ(Y y,N2δN

N2δN
)
�

�

≤
| f |2∞
N2

∑

x ,y∈[−MN ,MN]∩Z

P(τx ,y ≤ N2δN ) ≤ 4M | f |2∞u+
| f |2∞
N2

∑

x ,y∈[−MN ,MN]∩Z
|x−y|≥uN

P(τx ,y ≤ N2δN )

for any u> 0, where τx ,y := inf{s ≥ 0 : Y x ,N2δN
s −Y y,N2δN

s = 0} is the time of coalescence of Y x ,N2δN

and Y y,N2δN . Setting u= 4σδ
1
4 and applying (2.7) with s = N2δN and z = x− y with |x− y| ≥ uN

then gives
Varζ(X N

δN
)≤ C1δ

1
4 + C2δ

1
2 (2.9)

for some C1, C2 > 0 independent of ζ and all large N . This implies that the second term in (2.8) is
bounded by 2ε−2(C1δ

1
4 + C2δ

1
2 ). Since δ > 0 can be chosen arbitrarily small, this implies that the

second term in (2.8) tends to 0 as N →∞.
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To bound the first term in (2.8), let pt(·) denote the distribution of Y x ,t
t − x , which is the same for

all x ∈Z. Then for any ζ ∈ {0,1}Z,

�

�Eζ[X N
δN
− X N

0 ]
�

� =
�

�

�Eζ
h 1

N

∑

x∈Z
f
� x

N

�

ηN2δN
(x)
i

−
1

N

∑

x∈Z
f
� x

N

�

ζ(x)
�

�

�

=
1

N

�

�

�

∑

x∈Z
f
� x

N

�
∑

y∈Z
pN2δN

(y − x)ζ(y)−
∑

y∈Z
f
� y

N

�

ζ(y)
�

�

�

=
1

N

�

�

�

∑

x ,y∈Z
pN2δN

(y − x)
�

f
� x

N

�

− f
� y

N

��

ζ(y)
�

�

�

=
1

N

�

�

�

∑

x ,y∈Z
pN2δN

(y − x)
�

f ′
� y

N

� (x − y)
N

+ f
′′
(cN (x , y))

(x − y)2

2N2

�

ζ(y)
�

�

�

≤
1

N

∑

y∈Z

∑

x∈Z
| f ′′(cN (x , y))|pN2δN

(y − x)
(x − y)2

2N2 ,

where we have applied Taylor expansion to f ( x
N
), for some cN (x , y) between x

N
and y

N
, and in the

inequality we have used the fact that pN2δN
(·) has zero mean. Since | f ′′|∞ <∞, f ′′(cN (x , y)) 6= 0

only if either x
N

or y
N

is in the support of f , and pN2δN
(·) has second moment N2δNσ

2, we see that
the last term above is bounded C3δN for some C3 > 0 independent of ζ and N . This implies that
the first term in (2.8) also tends to 0 as N →∞. The proof of (A2) is then complete.

2.2 Convergence of finite-dimensional distributions

Let νt(dx) := 1{x<σBt}dx for a standard Brownian motion (Bt)t≥0. By [DV08, Prop. 11.1.VIII],
the weak convergence of µN

t to νt is equivalent to the weak convergence of X N
t ( f ) to X t( f ) :=

∫

f (x)νt(dx) for every f ∈ Cc(R). Similarly, for any 0 ≤ t1 < t2 · · · < tk, the weak convergence
of (µN

t1
, · · · ,µN

tk
) to (νt1

, · · · ,νtk
) is equivalent to the weak convergence of

(X N
t1
( f1), · · · , X N

tk
( fk)) =⇒N→∞

(X t1
( f1), · · · , X tk

( fk)) ∀ f1, · · · , fk ∈ Cc(R). (2.10)

Since a.s. |X t i
( fi)| ≤ | fi |1, (2.10) would follow from the convergence of the moments, i.e.,

E
h

k
∏

i=1

�

X N
t i
( fi)
�mi
i

−→
N→∞

E
h

k
∏

i=1

�

X t i
( fi)
�mi
i

∀m1, · · · , mk ∈N∪ {0}.

Therefore (2.10) will follow by showing that

E
h

k
∏

i=1

X N
t i
( fi)
i

−→
N→∞

E
h

k
∏

i=1

X t i
( fi)
i

∀ k ∈N, 0≤ t0 ≤ · · · ≤ tk, f1, · · · , fk ∈ Cc(R). (2.11)

By the duality between (ηt)t≥0 and the coalescing random walks {Y x ,t
s }x∈Z,t>0,s≤t , we have

E
h

k
∏

i=1

X N
t i
( fi)
i

=
1

N k
E
h

k
∏

i=1

�
∑

x i∈Z
fi

� x i

N

�

ηN2 t i
(x i)
�i

=
1

N k

∑

uN
1 ,uN

2 ,...uN
k ∈

Z

N

k
∏

i=1

fi(u
N
i )P

�

Y
NuN

i ,N2 t i

N2 t i
≤ 0 for all 1≤ i ≤ k

�

.
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Firstly we note that as N →∞, the sequence of measures 1
N k

∑

uN
1 ,...uN

k ∈
Z

N

∏k
i=1 fi(uN

i )δuN
i
(ui) con-

verges weakly to the finite measure
∏k

i=1 fi(ui)dui on Rk. Secondly, it was shown in [NRS05,
Section 5] that if (uN

i , t i)→ (ui , t i) for 1≤ i ≤ k, then

� 1

N
Y

NuN
1 ,N2 t1

sN2 , · · · ,
1

N
Y

NuN
k ,N2 tk

sN2

�

s≥0
=⇒
N→∞

(W u1,t1
s , · · · , W uk ,tk

s )s≥0,

where ⇒ denotes weak convergence, and (W ui ,t i
· )1≤i≤k is a collection of backwards coalescing

Brownian motions starting at (ui , t i)1≤i≤k, each with diffusion coefficient σ2. Only a finite second
moment is required for such a convergence (actually only discrete time random walks were con-
sidered in [NRS05], however the proof is easily seen to apply to continuous time random walks
as well). This implies that if (uN

i , t i)1≤i≤k → (ui , t i)1≤i≤k, then

P
�

Y
NuN

i ,N2 t i

N2 t i
≤ 0 for all 1≤ i ≤ k

�

−→
N→∞

P
�

W ui ,t i
t i

< 0 for all 1≤ i ≤ k
�

.

The above observations together imply that

E
h

k
∏

i=1

X N
t i
( fi)
i

−→
N→∞

∫

· · ·
∫

P
�

W ui ,t i
t i

< 0 for all 1≤ i ≤ k
�

k
∏

i=1

fi(ui)dui . (2.12)

We now recall that there is a natural coupling between forward and backward coalescing Brow-
nian motions (see [STW00] and the later formulation in terms of the Brownian web and its dual
in [FINR04, FINR06]). More specifically, there is a coupling between (σBt)t≥0 for a standard
Brownian motion (Bt)t≥0 running forward in time, and (W ui ,t i

· )1≤i≤k running backwards in time,
such that σB· does not cross any W ui ,t i

· . Therefore

P
�

W ui ,t i
t i

< 0 for all 1≤ i ≤ k
�

= P(ui < σBt i
for all 1≤ i ≤ k).

Substituting this identity into (2.12) gives precisely (2.11).
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