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ABSTRACT

Topic distillation is the process of finding authoritative Web
pages and comprehensive “hubs” which reciprocally endorse
each other and are relevant to a given query. Hyperlink-
based topic distillation has been traditionally applied to
a macroscopic Web model where documents are nodes in
a directed graph and hyperlinks are edges. Macroscopic
models miss valuable clues such as banners, navigation pan-
els, and template-based inclusions, which are embedded in
HTML pages using markup tags. Consequently, results of
macroscopic distillation algorithms have been deteriorating
in quality as Web pages are becoming more complex. We
propose a uniform fine-grained model for the Web in which
pages are represented by their tag trees (also called their
Document Object Models or DOMs) and these DOM trees
are interconnected by ordinary hyperlinks. Surprisingly,
macroscopic distillation algorithms do not work in the fine-
grained scenario. We present a new algorithm suitable for
the fine-grained model. It can dis-aggregate hubs into co-
herent regions by segmenting their DOM trees. Mutual
endorsement between hubs and authorities involve these re-
gions, rather than single nodes representing complete hubs.
Anecdotes and measurements using a 28-query, 366000-doc-
ument benchmark suite, used in earlier topic distillation
research, reveal two benefits from the new algorithm: distil-
lation quality improves, and a by-product of distillation is
the ability to extract relevant snippets from hubs which are
only partially relevant to the query.

Keywords: Topic distillation, Document Object Model,
segmentation, Minimum Description Length principle.

1 Introduction

Kleinberg’s Hyperlink Induced Topic Search (HITS) [14]
and the PageRank algorithm [3] underlying Google have
revolutionized ranking technology for Web search engines.
PageRank evaluates the “prestige score” of a page as roughly
proportional to the sum of prestige scores of pages citing it
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using hyperlinks. HITS also identifies collections of resource
links or “hubs” densely coupled to authoritative pages on a
topic. The model of the Web underlying these and related
systems is a directed graph with pages (HTML files) as
nodes and hyperlinks as edges.
Since those papers were published, the Web has been

evolving in fascinating ways, apart from just getting larger.
Web pages are changing from static files to dynamic views
generated from complex templates and backing semi-struc-
tured databases. A variety of hypertext-specific idioms such
as navigation panels, advertisement banners, link exchanges,
and Web-rings, have been emerging.
There is also a migration of Web content from syntac-

tic HTML markups towards richly tagged, semi-structured
XML documents (http://www.w3.org/XML/) interconnected
at the XML element level by semantically rich links (see,
e.g., the XLink proposal at http://www.w3.org/TR/xlink/).
These refinements are welcome steps to implementing what
Berners-Lee and others call the semantic Web (http://www.
w3.org/1999/04/13-tbl.html), but result in document, file,
and site boundaries losing their traditional significance.
Continual experiments performed by several researchers

[2, 15] reveal a steady deterioration of distillation quality
through the last few years. In our experience, poor results
are frequently traced to the following causes:

• Links have become more frequent and “noisy” from
the perspective of the query, such as in banners, navi-
gation panels, and advertisements. Noisy links do not
carry human editorial endorsement, a basic assump-
tion in topic distillation.

• Hubs may be “mixed”, meaning only a portion of
the hub may be relevant to the query. Macroscopic
distillation algorithms treat whole pages as atomic, in-
divisible nodes with no internal structure. This leads
to false reinforcements and resulting contamination of
the query responses.

Thanks in part to the visibility of Google, content cre-
ators are well aware of hyperlink-based ranking technology.
One reaction has been the proliferation of nepotistic “clique
attacks”—a collection of sites linking to each other with-
out semantic reason, e.g. http://www.411fun.com, http://
www.411fashion.com and http://www.411-loans.com. (Fig-
ures 8 and 9 provide some examples.) Some examples look
suspiciously like a conscious attempt to spam search engines
that use link analysis. Interestingly, in most cases, the visual
presentation clearly marks noisy links which surfers rarely
follow, but macroscopic algorithms are unable to exploit it.
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<html>
<head>
<title>Portals</title>
</head>
<body>
<ul>
<li>
<a href=“…”>Yahoo</a>
</li>
<li>
<a href=“…”>Lycos</a>
</li>
</ul>
</body>
</html>

html

head body

title ul

li li

a a

Figure 1: In the fine-grained model, DOMs for individual pages
are trees interconnected by ordinary hyperlinks. Each triangle is
the DOM tree corresponding to one HTML page. Green boxes
represent text.

Many had hoped that HITS-like algorithms would put
an end to spamming, but clearly the situation is more like
an ongoing arms-race. Google combines link-based ranking
with page text and anchor text in undisclosed ways, and
keeps tweaking the combination, but suffers an occasional
embarrassment1.
Distillation has always been observed to work well for

“broad” topics (for which there exist well-connected rele-
vant Web subgraphs and “pure” hubs) and not too well for
“narrow” topics, because w.r.t. narrow topics most hubs are
mixed and have too many irrelevant links. Mixed hubs and
the arbitrariness of page boundaries have been known to
produce glitches in the Clever system [6]: there has been
no reliable way to classify hubs as mixed or pure. If a
fine-grained model can suitably dis-aggregate mixed hubs,
distillation should become applicable to narrow queries too.
Yet another motivation for the fine-grained model comes

from the proliferation of mobile clients such as cell-phones
and PDAs with small or no screens. Even on a conventional
Web browser, scrolling through search results for promising
responses, then scrolling through those responses to satisfy
a specific information need are tedious steps. The tedium is
worse on mobile clients. Search engines that need to serve
mobile clients must be able to pinpoint narrow sections of
pages and sites that address a specific information need, and
limit the amount of extra matter sent back to the client [4].

1.1 Our contributions

We initiate a study of topic distillation with a fine-grained
model of the Web, built using the Document Object Model
(DOM) of HTML pages. The DOM can model reasonably
clean HTML, support XML documents that adhere to rigid
schema definitions, and embed free text in a natural way.
In our model, HTML pages are represented by their DOMs
and these DOM trees are interconnected by ordinary hyper-
links (figure 1). The sometimes artificial distinction between
Web-level, site-level, page-level, and intra-page structures
is thereby blurred. Surprisingly, macroscopic distillation
algorithms perform poorly in the fine-grained setting; we
demonstrate this using analysis and anecdotes. Our main
technical contribution is a new fine-grained distillation al-

1http://searchenginewatch.com/sereport/99/11-google.html
(local copy GoogleDrEvil.html) and http://searchenginewatch.com/
sereport/01/02-bush.html (local copy GoogleBush.html) provide some
samples.
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Figure 2: This work in the context of HITS and related research.

gorithm which can identify mixed hubs and segment their
corresponding DOM trees into maximal subtrees which are
“coherent” w.r.t. the query, i.e., each is almost completely
relevant or completely irrelevant. The segmentation algo-
rithm uses the Minimum Description Length (MDL) princi-
ple [16] from Information Theory [9]. Rather than collapse
these diverse hub subtrees into one node, the new algo-
rithm allocates a node for each subtree. This intermediate
level of detail, between the macroscopic and the fine-grained
model, is essential to the success of our algorithm. We
report on experiments with 28 queries involving over 366000
Web pages. This benchmark has been used in previous
research on resource compilation and topic distillation [5,
2, 6]. Our experience is that the fine-grained model and
algorithm significantly improve the quality of distillation,
and are capable of extracting DOM subtrees from mixed
hubs that are relevant to the query.
We note that in this study we have carefully and delib-

erately isolated the model from possible influences of text
analysis. By controlling our experimental environment to
not use text, we push HITS-like ideas to the limit, evaluating
exactly the value added by information present in DOM
structures. In ongoing work, we have added textual support
to our framework and obtained even better results [7].

1.2 Benefits and applications

Apart from offering a more faithful model of Web content,
our approach enables solutions to the following problems.
Better topic distillation: We show less tendency for topic
drift and contamination when the fine-grained model is used.
Web search using devices with small or no screen:
The ability to identify page snippets relevant to a query is
attractive to search services suitable for mobile clients.
Focused crawling: Identification of relevant DOM sub-
trees can be used to better guide a focused crawler’s link
expansion [8].
Annotation extraction: Experiments with a previous macro-
scopic distillation algorithm (Clever [6]) revealed that volun-
teers preferred Clever to Yahoo! only when Yahoo!’s manual
site annotations were removed in a blind test. Our work may
improve on current techniques for automatic annotation ex-
traction [1] by first collecting candidate hub page fragments
and then subjecting the text therein to further segmentation
techniques.
Data preparation for linguistic analysis: Information
extraction is a natural next step after resource discovery. It
is easier to build extractors based on statistical and linguistic
models if the domain or subject matter of the input docu-
ments is suitably segmented [12], as is effected by our hub
subtree extraction technique, which is a natural successor to
resource discovery, and a precursor to linguistic analysis.
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1.3 Outline of the paper

In §2.1 we review HITS and related algorithms. This section
can be skipped by a reader who is familiar with HITS-related
literature. In §2.2 we illustrate some recent and growing
threats to the continued success of macroscopic distillation
algorithms. We show why the fine-grained model does not
work with traditional HITS-like approaches in §3, and then
propose our framework in §4. We report on experimental
results in §5 and conclude in §6 with some comments on
ongoing and future work.

2 Preliminaries

We review the HITS family of algorithms and discuss how
they were continually enhanced to address evolving Web
content.

2.1 Review of HITS and related systems

The HITS algorithm [14] started with a query q which was
sent to a text search engine. The returned set of pages Rq

was fetched from the Web, together with any pages having a
link to any page in Rq, as well as any page cited in some page
of Rq using a hyperlink. Links that connected pages on the
sameWeb server (based on canonical host name match) were
dropped from consideration because they were often seen to
serve only a navigational purpose, or were “nepotistic” in
nature.
Suppose the resulting graph is Gq = (Vq, Eq). We will

drop the subscript q where clear from context. Each node v
in V is assigned two scores: the hub score h(v) and the au-
thority score a(v), initialized to any positive number. Next
the HITS algorithm alternately updates a and h as follows:
a(v) =

∑
(u,v)∈E

h(u) and h(u) =
∑

(u,v)∈E
a(v), making

sure after each iteration to scale a and h so that
∑

v
h(v) =∑

v
a(v) = 1, until the ranking of nodes by a and h stabilize

(see figure 3).
If E is represented in the adjacency matrix format (i.e.,

E[i, j] = 1 if there is an edge (i, j) and 0 otherwise) then the
above operation can be written simply as a = ET h and h =
Ea, interspersed with scaling to set |h|1 = |a|1 = 1. The
HITS algorithm effectively uses power iterations [11] to find
a, the principal eigenvector of ET E; and h, the principal
eigenvector of EET . Pages with large a are popular or
authoritative sources of information; pages with large h are
good collections of links.
A key feature of HITS is how endorsement or popularity

diffuses to siblings. If (u, v) and (u, w) are edges and some-
how a(v) becomes large, then in the next iteration h(u) will
increase, and in the following iteration, a(w) will increase.
We will describe this as “v’s authority diffuses to w through
the hub u.” This is how sibling nodes reinforce each other’s
authority scores. We will revisit this property later in §3.
Google has no notion of hubs. Roughly speaking, each

page v has a single “prestige” score p(v) called its PageRank
[3] which is defined as proportional to

∑
(u,v)∈E

p(u), the

sum of prestige scores of pages u that cite v. Some conjec-
ture that the prestige model is adequate for the living Web,
because good hubs readily acquire high prestige as well. Our
work establishes the value of a bipartite model like HITS,
and indeed, the value of an asymmetric model where hubs
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Figure 3: (a) HITS, a macroscopic topic distillation algorithm
with uniform edge weights; (b) The B&H algorithm, apart from
using non-uniform edge weights, discards pages in the expanded
set which are too dissimilar to the rootset pages to prevent topic
drift. Documents are represented as vectors with each component
representing one token or word [17].

are analyzed quite differently from authorities. Therefore
we will not discuss prestige-based models any further.

2.2 The impact of the evolving Web on
hyperlink analysis

Elegant as the HITS model is, it does not adequately capture
various idioms of Web content. We discuss here a slew of
follow-up work that sought to address these issues.
Kleinberg dropped links within the same Web-site from

consideration because these were often found to be naviga-
tional, “nepotistic” and noisy. Shortly after HITS was pub-
lished, Bharat and Henzinger (B&H [2]) found that nepo-
tism was not limited to same-site links. In many trials with
HITS, they found two distinct sites s1 and s2, where s1

hosted a number of pages u linking to a page v on s2, driving
up a(v) beyond what may be considered fair. B&H proposed
a simple and effective fix for such “site-pair” nepotism: if k
pages on s1 point to v, let the weight of each of these links
be 1/k, so that they add up to one, assuming a site (not a
page) is worth one unit of voting power.
Later work in the Clever system [6] used a small edge

weight for same-site links and a larger weight for other links,
but these weights were tuned empirically by evaluating the
results on specific queries.
Another issue with HITS were “mixed hubs” or pages

u that included a collection of links of which only a subset
was relevant to a query. Because HITS modeled u as a single
node with a single h score, high authority scores could diffuse
from relevant links to less relevant links. E.g., responses to
the query movie awards sometimes drifted into the neigh-
boring, more densely linked domain of movie companies.
Later versions of Clever tried to address the issue in

two ways. First, links within a fixed number of tokens of
query terms were assigned a large edge weight (the width
of the “activation window” was tuned by trial-and-error).
Second, hubs which were “too long” were segmented at a few
prominent boundaries (such as <UL> or <HR>) into “pagelets”
with their own scores. The boundaries were chosen using a
static set of rules depending on the markup tags on those
pages alone.
To avoid drift, B&H also computed a vector space rep-

resentation [17] of documents in the response set (shown in
Figure 3) and then dropped pages that were judged to be
“outliers” using a suitable threshold of (cosine) similarity to
the vector space centroid. B&H is effective for improving
precision, but may reduce recall if mixed hubs are pruned
because of small similarity to the root set centroid. This
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Figure 4: Clever uses a slightly more detailed page model than
HITS. Hyperlinks near query terms are given heavier weights.
Such links are shown as thicker lines.

may in turn distort hub and authority scores and hence the
desired ranking. Losing a few hubs may not be a problem
for broad queries but could be serious for narrower queries.
As resource discovery and topic distillation become more

commonplace, we believe the quest will be for every addi-
tional resource than can possibly be harvested, not merely
the ones that “leap out at the surfer.” Our goal should
therefore be to extract relevant links and annotations even
from pages which are partially or largely irrelevant.

3 Generalizing hyperlinks to
interconnected DOMs

HTML documents have always embedded many sources of
information (other that text) which have been largely ig-
nored in previous distillation research. Markups are one
such source. From a well-formed HTML document, it ought
to be possible to extract a tree structure called the Doc-
ument Object Model (DOM). In real life HTML is rarely
well formed, but using a few simple patches, it is possible
to generate reasonably accurate DOMs. For XML sources
adhering to a published DTD, a DOM is precise and well
defined.
For simplicity, we shall work with a greatly pared-down

version of the DOM for HTML pages. We will discard all
text, and only retain those paths in the DOM tree that lead
from the root to a leaf which is an <A...> element with an
HREF leading to another page.
Hyperlinks always originate from leaf DOM elements,

typically deep in the DOM tree of the source document. If
same-site links are ignored, very few macro-level hyperlinks
target an internal node in a DOM tree (using the “#” mod-
ifier in the URL). To simplify our model (and experiments)
we will assume that the target of a hyperlink is always the
root node of a DOM tree. In our experiments we found very
few URLs to be otherwise.
A first-cut approach (which one may call MicroHITS)

would be to use the fine-grained graph directly in the HITS
algorithm. One may even generalize “same-site” to “same-
DOM” and use B&H-like edge-weights. This approach turns
out to work rather poorly.
To appreciate why, consider two simple example graphs

shown in Figure 5 and their associated eigenvectors. The
first graph is for the macro setting. Expanding out a ←
ET Ea we get

a(2)← a(2) + a(3) and
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Figure 5: A straight-forward application of HITS-like algorithms
to a DOM graph may result in some internal DOM nodes blocking
the diffusion of authority across siblings.

a(3)← a(2) + a(3),

which demonstrates the mutual reinforcement. In the sec-
ond example nodes numbered 3 and 4 are part of one DOM
tree. This time, we get

a(2)← 2a(2) + a(4) and

a(4)← a(2) + a(4),

but there is no coupling between a(2) and a(5), which we
would expect at the macroscopic level. Node 4 (marked
red) effectively blocks the authority from diffusing between
nodes 2 and 5.
One may hope that bigger DOM trees and multiple paths

to authorities might alleviate the problem, but the above
example really depicts a basic problem. The success of HITS
depends critically on reinforcement among bipartite cores
(see figure 5) which may be destroyed by the introduction
of fine-grained nodes.

4 Proposed model and algorithm

At this point the dilemma is clear: by collapsing hubs into
one node, macroscopic distillation algorithms lose valuable
detail, but the more faithful fine-grained model prevents
bipartite reinforcement.
In this section we present our new model and distillation

algorithm that resolves the dilemma. Informally, our model
of hub generation enables our algorithm to find a cut or
frontier across each hub’s DOM tree. Subtrees attached
to these cuts are made individual nodes in the distillation
graph. Thus the hub score of the entire page is dis-aggregated
at this intermediate level. The frontiers are not computed
one time as a function of the page alone, neither do they
remain unchanged during the HITS iterations. The frontiers
are determined by the current estimates of the hub scores of
the leaf HREF nodes.
We will first describe the hub segmentation technique

and then use it in a modified iterative distillation algorithm.

4.1 Scoring internal micro-hub nodes

Macroscopic distillation algorithms rank and report com-
plete hub pages, even if they are only partially relevant. In
this section we address the problem of estimating the hub
score of each DOM node in the fine-grained graph, given an
estimate of authority scores. Because inter-page hyperlinks
originate in leaf DOM nodes and target root nodes of DOM
trees, we will also assume that only those DOM nodes that
are document roots can have an authority score.
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At the end of the h ← Ea substep of MicroHITS, leaf
DOM nodes get a hub score. Because leaf nodes point to
exactly one page via an HREF, the hub score is exactly the
authority score of the target page. Macroscopic distillation
algorithms in effect aggregate all the leaf hub scores for a
page into one hub score for the entire page. Reporting leaf
hub scores in descending order would be useless, because
they would simply follow the authority ranking and fail to
identify good hub aggregates.
Instead of the total hub score, one may consider the

density of hub scores in a subtree, which may be defined as
the total hub score in the subtree divided by the number of
HREF leaves. The maximum density will be achieved by the
leaf node that links to the best authority. In our experience
small subtrees with small number of leaves dominate the
top ranks, again under-aggregating hub scores and pitting
ancestor scores against descendant scores.

4.1.1 A generative model for hubs

To help us find suitable frontiers along which we can aggre-
gate hub scores, we propose the following generative model
for hubs.
Imagine that the Web has stopped changing and with

respect to a fixed query, all Web pages have been manually
rated for their worth as hubs. From these hub scores, one
may estimate that the hub scores have been generated from
a distribution Θ0. (E.g., Θ0 may represent an exponential
distribution with mean 0.005.) If the author of a hub page
sampled URLs at random to link to, the distribution of hub
scores at the leaves of the page would approach the global
distribution provided enough samples were taken.
However, authors differ in their choice of URLs. Hub

authors are not aware of all URLs relevant to a given query
or their relative authority; otherwise all hubs authored on
a topic would be complete and identical, and therefore all
but one would be pointless to author. (Here we momentarily
ignore the value added by annotations and commentaries on
hub pages.)
Therefore, the distribution of hub scores for pages com-

posed by a specific author will be different from Θ0. (E.g.,
the author’s personal average of hub scores may be 0.002,
distributed exponentially.) Moreover, the authors of mixed
hubs deliberately choose to dedicate not the entire page, but
only a fragment or subtree of it, to URLs that are relevant
to the given query. (As an extreme case a subtree could be
a single HREF.)
We can regard the hub generation process as a progres-

sive specialization of the hub score distribution starting from
the global distribution. For simplicity, assume all document
roots are attached to a “super-root” which corresponds to
the global distribution Θ0. As the author works down the
DOM tree, “corrections” are applied to the score distribu-
tion at nodes on the path.
At some suitable depth, the author fixes the score dis-

tribution and generates links to pages so that hub scores
follow that distribution. This does not mean that there are
no interesting DOM subtrees below this depth. The model
merely posits that up to some depth, DOM structure is in-
dicative of systematic choices of score distributions, whereas
beyond that depth variation is statistical.
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Figure 6: Our fine-grained model of Web linkage which unifies
hyperlinks and DOM structure.

4.1.2 Discovering DOM frontiers from generated
hubs

During topic distillation we observe pages which are the
outcome of the generative process described above, and our
goal is to discover the “best” frontier at which the score
distributions were likely to have been fixed.
A balancing act is involved here: one may choose a

large and redundant frontier near the leaves and model the
many small, homogeneous subtrees (each with a different
distribution Θw) attached to that frontier accurately, or one
may choose a short frontier near the root with a few subtrees
which are harder to model because they contain diverse hub
scores. The balancing act requires a common currency to
compare the cost of the frontier with the cost of modeling
hub score data beneath the frontier.
This is a standard problem in segmentation, clustering,

and model estimation. A particularly successful approach to
optimizing the trade-off is to use the Minimum Description
Length (MDL) principle [16]. MDL provides a recipe for
bringing the cost of model corrections to the same units as
the cost for representing data w.r.t a model, and postulates
that “learning” is equivalent to minimizing the sum total of
model and data encoding costs.

Data encoding cost: First we consider the cost of en-
coding all the h-values at the leaves of a subtree rooted at
node w. Specifically, let the distribution associated with w
be Θw. The set of HREF leaf nodes in the subtree rooted at
node w is denoted Lw, and the set of hub scores at these
leaves is denoted Hw. As part of the solution we will need
to evaluate the number of bits needed to encode h-values in
Hw using the model Θw. There are efficient codes which can
achieve a data encoding length close to Shannon’s entropy-
based lower bound [9] of

−
∑

h∈Hw

log PrΘw (h) bits, (1)

where PrΘw (h) is the probability of hub score h w.r.t. a
distribution represented by Θw. (E.g., Θw may include the
mean and variance of a normal distribution.) We will use
this lower bound as an approximation to our data encoding
cost. (This would work if the h-values followed a discrete
probability distribution, which is not the case with hub
scores. We will come back to this issue in §4.2.)
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Model encoding cost: Next we consider the model en-
coding cost. Consider node v in the DOM tree. We will
assume that Θ0 is known to all, and use the path from the
global root to v to inductively encode each node w.r.t its
parent. Suppose we want to specialize the distribution Θv of
some v away from Θu, the distribution of its parent u. The
cost for specifying this change is given by the well-known
Kullback-Leibler (KL) distance [9] KL(Θu; Θv), expressed
as

KL(Θu; Θv) =
∑

x

PrΘu(x) log
PrΘu(x)

PrΘv (x)
. (2)

Intuitively, this is the cost of encoding the distribution Θv

w.r.t. a reference distribution Θu. E.g., if X is a binary ran-
dom variable and its probabilities of being zero and one are
(.2, .8) under Θ1 and (.4, .6) under Θ2, then KL(Θ2; Θ1) =
.4 log .4

.2
+ .6 log .6

.8
. Unlike in the case of entropy, the sum

can be taken to an integral in the limit for a continuous
variable x. Clearly for Θu = Θv, the KL distance is zero;
it can also be shown that this is a necessary condition, and
that the KL distance is asymmetric in general but always
non-negative.
If Θu is specialized to Θv and Θv is specialized to Θw,

the cost is additive, i.e., KL(Θu; Θv) + KL(Θv; Θw). We
will denote the cost of such a path as KL(Θu; Θv; Θw).
Moreover, the model encoding cost of v starting from the
global root model will be denoted KL(Θ0; . . . ; Θv).

Combined optimization problem: Given the model at
the parent node Θu and the observed data Hv, we should
choose Θv so as to minimize the sum of the KL distance and
data encoding cost:

KL(Θv; Θu)−
∑

h∈Hv

log PrΘv (h). (3)

If Θv is expressed parametrically, this will involve an opti-
mization over those parameters.
With the above set-up, we are looking for a cut or fron-

tier F across the tree, and for each v ∈ F , a Θv, such that

∑
v∈F

(
KL(Θ0; . . . ; Θv)−

∑
h∈Hv

log PrΘv (h)

)
(4)

is minimized. The first part expresses the total model en-
coding cost of all nodes v on the frontier F starting from
the global root distribution. The second part corresponds
to the data encoding cost for the set of hub scores Hv at
the leaves of the subtrees rooted at the nodes v. Figure 6
illustrates the two costs.

4.2 Practical considerations

The formulation above is impractical for a number of rea-
sons. There is a reduction from the knapsack problem to
the frontier-finding problem. Dynamic programming can be
used to give close approximations [13, 18], but with tens of
thousands of macro-level pages, each with hundreds of DOM
nodes, something even simpler is needed. We describe the
simplifications we had to make to control the complexity of
our algorithm.
We use the obvious greedy expansion strategy. We ini-

tialize our frontier with the global root and keep picking
a node u from the frontier to see if expanding it to its

immediate children {v} will result in a reduction in code
length, if so we replace u by its children, and continue until
no further improvement is possible. We compare two costs
locally at each u:

• The cost of encoding all the data in Hu with respect
to model Θu.

• The cost of expanding u to its children, i.e.,∑
v

KL(Θu; Θv), plus the cost of encoding the sub-
trees Hv with respect to Θv.

If the latter cost is less, we expand u, otherwise, we prune
it, meaning that u becomes a frontier node.
Another issue is with optimizing the model Θv. Usually,

closed form solutions are rare and numerical optimization
must be resorted to; again impractical in our setting.
In practice, if Hv is moderately large, the data encoding

cost tends to be larger than the model cost. In such cases, a
simple approximation which works quite well is to first min-
imize the data encoding cost for Hv by picking parameter
values for Θv that maximize the probability of the observed
data (the “maximum likelihood” or ML parameters), thus
fix Θv, then evaluate KL(Θu; Θv).
(As an example, if a coin tossed n times turns up heads

k times, the ML parameter for bias is simply k/n, but if
a uniform Θu = U(0, 1) is chosen, the mean of Θv shifts
slightly to (k + 1)/(n + 2) which is a negligible change for
moderately large k and n.)
Non-parametric evaluation of the KL distance is compli-

cated, and often entails density estimates. We experimented
with two parametric distributions: the Gaussian and expo-
nential distributions for which the KL distance has closed
form expressions. We finally picked the exponential distribu-
tion because it fit the observed hub score distribution more
closely.
If Θ represents an exponential distribution with mean µ

and probability density f(x) = (1/µ) exp(−x/µ), then

KL(Θ1; Θ2) = log
µ2

µ1
+

(
µ1

µ2
− 1
)

, (5)

where µi corresponds to Θi (i = 1, 2).
The next issue is how to measure data encoding cost

for continuous variables. There is a notion of the relative
entropy of a continuous distribution which generalizes dis-
crete entropy, but the relative entropy can be negative and
is useful primarily for comparing the information content in
two signal sources. Therefore we need to discretize the hub
scores.
A common approach to discretizing real values is to scale

the smallest value to one, in effect allocating log(hmax/hmin)
bits per value. This poses a problem in our case. Con-
sider the larger graph in figure 5. If h is initialized to
(1, 1, 1, 1, 1)T , after the first few multiplications by EET

which represents the linear transformation

(h(1), . . . , h(5))T → (h(1) + h(3), 0, h(1) + 2h(3), h(4), 0)T ,

we get (2, 0, 3, 1, 0)T , (5, 0, 8, 1, 0)T , (13, 0, 21, 1, 0)T , and
(34, 0, 55, 1, 0)T . Even if we disregard the zeroes, the ratio
of the largest to the smallest positive component of h grows
without bound. As scaling is employed to prevent overflow,
h(4) decays towards zero. This makes the log(hmax/hmin)
strategy useless.
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A reasonable compromise is possible by noting that the
user is not interested in the precision of all the hub scores.
E.g., reporting the top α fraction of positive hub scores to
within a small multiplicative error of ε is quite enough. We
used α = 0.8 and ε = 0.05 in our experiments.

4.3 Distillation using segmented hubs

In this section we will embed the segmentation algorithm
discussed in the previous section into the edge-weighted B&H
algorithm. (Unlike the full B&H algorithm, we do no text
analysis at this stage. We continue to call the edge-weighted
version of HITS as “B&H” for simplicity.)
The main modification will be the insertion of a call

to the segmentation algorithm after the h ← Ea step and
before the complementary step a ← ET h. It is also a
reasonable assumption that the best frontier will segment
each hub non-trivially, i.e., below its DOM root. Therefore
we can invoke the segmentation routine separately on each
page. Let the segmentation algorithm described previously
be invoked as

F ← segment(u)

where u is the DOM tree root of a page and F is the returned
frontier for that page. Here is the pseudo-code for one
iteration:

h← Ea
for each document DOM root u

F ← segment(u)
for each frontier node v ∈ F

h(v)←∑
w∈Lv

h(w)

for each w ∈ Lv

h(w)← h(v)
reset h(v)← 0

a← ET h
normalize a so that

∑
u

a(u) = 1.

For convenience we can skip the hub normalization and only
normalize authorities every complete cycle; this does not
affect ranking.
The reader will observe that this is not a linear relax-

ation as was the case with HITS, Clever, or B&H, because
segmentmay lead us to aggregate and redistribute different
sets of hub scores in different iterations, based on the current
leaf hub scores. (Also note that if F were fixed for each page
for all time, the system would still be linear and therefore
guaranteed to converge.) Although convergence results for
non-linear dynamical systems are rare [10], in our experi-
ments we never found convergence to be a problem (see §5).
However, we do have to take care with the initial values

of a and h, unlike in the linear relaxation situation where
any positive value will do. Assume that the first iteration
step transfers weights from authorities to hubs, and consider
how we can initialize the authority scores. In contrast to
HITS, we cannot start with all a(v) = 1. Why not? Because
both good and bad authorities will get this score, resulting in
many hub DOM subtrees looking more uniformly promising
than they should. This will lead the segment algorithm
to prune the frontier too eagerly, resulting in potentially
excessive authority diffusion, as in HITS.
We propose a more conservative initialization policy. Sim-

ilar to B&H, we assume that the textual content of the root-
set documents returned by the text search engine is more

reliably relevant than the radius-1 neighbors included for
distillation. Therefore we start our algorithm by assigning
only root-set authority scores to one. Of course, once the
iterations start, this does not prevent authority from diffus-
ing over to siblings, but the diffusion is controlled by hub
segmentation.
There is one other way in which we bias our algorithm

to be conservative w.r.t. authority diffusion. If a DOM node
has only one child with a positive hub score, or if there is a
tie in the cost of expanding vs. pruning, we expand the node,
thereby pushing the frontier down and preventing the leaf
hub score from spreading out to possibly irrelevant outlinks.
Taken together, these two policies may be a little too

conservative, sometimes preventing desirable authority dif-
fusion and bringing our algorithm closer to MicroHITS than
we would like. For example, the graph being distilled may
be such that page u has one DOM subtree clearly (to a
human reading the text) dedicated to motorcycles, but only
one link target v is in the expanded set. In ongoing work
we are integrating text analysis into our fine-grained model
to avoid such pitfalls [7].

5 Experiments and results

We used the 28 queries used in the Clever studies [5, 6] and
by B&H [2] (shown in Figure 7). For each, RagingSearch
returned at most 500 responses in the root set. These 500×
28 pages were fetched and all their outlinks included in our
database as well. RagingSearch and HotBot were used to
get as many inlinks to the root set as possible; these were
also included in our database. This resulted in about 488000
raw URLs.
After normalizing URLs and eliminating duplicates, ap-

proximately 366000 page fetches succeeded. We used the
w3c command-line page fetching tool from http://www.w3c.

org for its reliable timeout mechanism. We then scanned
all these pages and filled a global (macro-)link table with
2105271 non-local links, i.e., links between pages not on the
same hostname (as a lowercase string without port number).
We then proceeded to parse the documents into their

DOMs in order to populate a different set of tables that
represented the DOM nodes and the micro-links between
them. We used the javax.swing.text.html.parser pack-
age and built a custom pared-down DOM generator on top of
the SAX scanner provided. The total number of micro-links
was 9838653, and the total number of micro-nodes likewise
increased.
Out of the two million non-local links, less than 1% had

targets that were not the root of the DOM tree of a page.
Thus our introduction of the asymmetry in handling hubs
and authorities seems to be not a great distortion of reality.
Even though our experiments were performed on a 700

MHz Pentium Xeon processor with 512MB RAM and 60GB
of disk, handling this scale of operation required some care
and compromise. In particular, to cut down the micro-graph
to only about 10 million edges, we deleted all DOM paths
that did not lead to an <A...>...</A> element. Otherwise,
we estimated that the number of micro-links would be at
least two orders of magnitude larger2.

2In our ongoing work we are having to address this issue as we are
also analyzing text.
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# Query Drift Mixed
1 ‘‘affirmative action’’ large
2 alcoholism •
3 ‘‘amusement park*’’ small •
4 architecture •
5 bicycling
6 blues
7 ‘‘classical guitar’’ small •
8 cheese •
9 cruises

10 ‘‘computer vision’’
11 ‘‘field hockey’’
12 gardening •
13 ‘‘graphic design’’ large
14 ‘‘Gulf war’’ large
15 HIV •
16 ‘‘lyme disease’’ small •
17 ‘‘mutual fund*’’ small
18 ‘‘parallel architecture’’ •
19 ‘‘rock climbing’’ large
20 +recycling +can* •
21 +stamp +collecting
22 Shakespeare •
23 sushi small •
24 telecommuting large
25 +Thailand +tourism large
26 ‘‘table tennis’’ small
27 ‘‘vintage cars’’ small •
28 +Zen +buddhism large

Figure 7: The set of 28 broad queries used for comparing B&H
(without text analysis) and our system. The second column shows
the extent of drift in the B&H response. The third column shows
if mixed hubs were found within the top 50 hubs reported.

Figure 7 shows the 28 queries used by the Clever study
and by B&H. As indicated before, our baseline was B&H
with edge-weighting but without text-based outlier elimina-
tion, which we will simply call “B&H”. We did not have any
arbitrary cut-off for the number of in-links used as we did not
know which to discard and which to keep. As B&H noted,
edge-weighting improved results significantly, but without
text analysis is not adequate to prevent drift. Of the 28
queries, half show drift to some extent. We discuss a few
cases.
“Affirmative action” is understandably dominated by

lists of US universities because they publicize their support
for the same. Less intuitive was the drift into the world
of software, until we found http://206.243.171.145/7927.
html in the root set which presents a dialup networking soft-
ware called Affirmative Action, and links to many popular
freeware sites (figure 8). By itself, this page would not
survive the link-based ranking, but the clique of software
sites leads B&H astray.
Another example was “amusement parks” where B&H

fell prey to multi-host nepotism in spite of edge-weighting. A
densely connected conglomerate including the relevant start-
ing point http://www.411fun.com/THEMEPARKS/ (figure 9)
formed a multi-site nepotistic cluster and misled macro-
scopic algorithms.
In both these cases there were ample clues in the DOM

structure alone (leave alone text) that authority diffusion
should be suppressed. We obtained several cases of reduced
drift using our technique. (In ongoing work we are getting
the improvement evaluated by volunteers.) One striking
example was for the query “amusement parks” where our
algorithm prevented http://www.411... from taking over
the show (see figure 10; complete results are in AP-macro.

html and AP-micro.html).

Figure 8: The part of this HTML page that contains the query
affirmative action is not very popular, but adjoining DOM
subtrees (upper right corner) create a dense network of software
sites and mislead macroscopic distillation algorithms. Dotted red
lines are drawn by hand.

Figure 9: The 411 “clique attack” comprises a set of sibling sites
with different hostnames and a wide variety of topics linking to
each other. A human can easily avoid paying attention to the
sibling sites but macroscopic distillation will get misled. Dotted
red lines are drawn by hand.

Figure 7 also shows that for almost half the queries, we
found excellent examples of mixed hubs within the top 50
hubs reported. Given the abundance of hubs on these topics,
we had anticipated that the best hubs would be “pure”.
While this was to some extent true, we found quite a few
mixed hubs too. Our system automatically highlighted the
most relevant DOM subtree; we present some examples in
figure 11 and urge the reader to sample the annotated hubs
packaged with the HTML version of this paper.

Macroscopic Fine-grained
http://www.411boating.com
http://www.411jobs.com
http://www.411insure.com
http://www.411hitech.com
http://www.411freestuff.com
http://www.411commerce.com
http://www.411-realestate.com
http://www.411worldtravel.com
http://www.411worldsports.com
http://www.411photography.com

http://www.kennywood.com
http://www.beachboardwalk.com
http://www.sixflags.com
http://www.cedarpoint.com
http://www.pgathrills.com
http://www.pki.com
http://www.valleyfair.com
http://www.silverwood4fun.com
http://www.knotts.com
http://www.thegreatescape.com
http://www.dutchwonderland.com

Figure 10: The fine-grained algorithm is less susceptible to clique
attacks. The query here is amusement parks.
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Figure 11: Two samples of mixed hub annotations: amusement
parks amidst roller-coaster manufacturers and sushi amidst
international cuisine.

Query Annotated file
alcoholism AL1.html
Amusement parks AP1.html
Architecture AR1.html
Classical guitar CG1.html
HIV HI1.html
Shakespeare SH1.html
Sushi SU1.html

We verified that our smoothing algorithm was perform-
ing non-trivial work: it was not merely locating top-scoring
authorities and highlighting them. Within the highlighted
regions, we typically found as many unvisited links as links
already rated as authorities. In ongoing work we are using
these new links for enhanced focused crawling.
A key concern for us was whether the smoothing it-

erations will converge or not. Because the sites of hub
aggregation are data-dependent, the transform was non-
linear, and we could not give a proof of convergence. In
practice we faced no problems with convergence; figure 12
is typical of all queries.
This raised another concern: was the smoothing subrou-

tine doing anything dynamic and useful, or was convergence
due to its picking the same sites for hub aggregation every
time? In figures 13 and 14 we plot relative numbers of
nodes pruned vs. expanded against the number of itera-
tions. Queries which do not have a tendency to drift look
like figure 13. Initially, both numbers are small. As the
system bootstraps into controlled authority diffusion, more
candidate hubs are pruned, i.e., accepted in their entirety.
Diffused authority scores in turn lead to fewer nodes get-
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Figure 12: In spite of the non-linear nature of our relaxation
algorithm, convergence is quick in practice. A typical chart of
average change to authority scores is shown against successive
iterations.

ting expanded. For queries with a strong tendency to drift
(figure 14), the number of nodes expanded does not drop
as low as in low-drift situations. For all the 28 queries, the
respective counts stabilize within 10–20 iterations.
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Figure 13: Our micro-hub smoothing technique is highly
adaptive: the number of nodes pruned vs. expanded changes
dramatically across iterations, but stabilizes within 10–20 iter-
ations. There is also a controlled induction of new nodes into
the response set owing to authority diffusion via relevant DOM
subtrees (query: bicycling).
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Figure 14: For some queries for which B&H showed high drift,
our algorithm continues to expand a relatively larger number of
nodes in an attempt to suppress drift (query: affirmative action).

Finally, we checked how close we were to B&H ranking.
We expected our ranking to be correlated with theirs, but
verified that there are meaningful exceptions. Figure 15
show a scatter plot of authority scores. It illustrates that
we systematically under-rate authorities compared to B&H
(the axes have incomparable scale; the leading straight line
should be interpreted as y = x). This is a natural outcome
of eliminating pseudo-authorities that gain prominence in
B&H via mixed hubs.
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Figure 15: Our ranking is correlated to B&H, but not identical;
we tend to systematically under-rate authorities compared to
B&H.

6 Conclusion and future work

We have presented a fine-grained approach to topic distil-
lation that integrates document substructure (in the form
of the Document Object Model) with regular hyperlinks.
Plugging in the fine-grained graph in place of the usual
coarse-grained graph does not work because the fine-grained
graph may not have the bipartite cores so vital to the success
of macroscopic distillation algorithms. We propose a new
technique for aggregating and propagating micro-hub scores
at a level determined by the Minimum Description Length
principle applied to the DOM tree with hub scores at the
leaves. We show that the resulting procedure still converges
in practice, reduces drift, and is moreover capable of iden-
tifying and extracting regions (DOM subtrees) relevant to
the query out of a broader hub or a hub with additional
less-relevant contents and links.
In ongoing work, apart from completing a detailed user

study (as in the Clever project), we are exploring three more
ideas. First, our algorithm depends on DOM branch points
to be able to separate relevant hub fragments from irrelevant
ones. We have seen some pages with a long sequence of
URLs without any helpful DOM structure such as <LI>

providing natural segment candidates. Second, we need to
bring back some of the text analysis techniques that have
improved HITS and integrate them with our model. Third,
we are measuring if the link localization done by our system
can help in faster resource discovery.
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