
Bidirectional Expansion For Keyword Search

on Graph Databases

Varun Kacholia ∗ Shashank Pandit ∗ Soumen Chakrabarti S. Sudarshan

Rushi Desai ∗ Hrishikesh Karambelkar ∗

Indian Institute of Technology, Bombay
varunk@acm.org shashank+@cs.cmu.edu {soumen,sudarsha,hrishi}@cse.iitb.ac.in rushi@desai.name

Abstract

Relational, XML and HTML data can be rep-
resented as graphs with entities as nodes and
relationships as edges. Text is associated with
nodes and possibly edges. Keyword search
on such graphs has received much attention
lately. A central problem in this scenario
is to efficiently extract from the data graph a
small number of the “best” answer trees. A
Backward Expanding search, starting at nodes
matching keywords and working up toward
confluent roots, is commonly used for predom-
inantly text-driven queries. But it can per-
form poorly if some keywords match many
nodes, or some node has very large degree.

In this paper we propose a new search algo-
rithm, Bidirectional Search, which improves
on Backward Expanding search by allowing
forward search from potential roots towards
leaves. To exploit this flexibility, we devise a
novel search frontier prioritization technique
based on spreading activation. We present a
performance study on real data, establishing
that Bidirectional Search significantly outper-
forms Backward Expanding search.

1 Introduction

Keyword search over graph-structured textual data
has attracted quite some interest in the database com-
munity lately. Graphs where nodes (and possibly
edges) have associated text are a convenient “com-
mon denominator” representation for relational data

∗ Work done while at IIT Bombay. Current affiliations of
first two and last two authors are U. C. Berkeley, C.M.U., Mi-
crosoft and Oracle, Bangalore, respectively

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

(where nodes are tuples and links are induced by for-
eign keys), semistructured XML data (where nodes
are elements and links represent element containment,
keyrefs, and IDREFs), and Web data (where nodes can
be whole pages or DOM elements and links can rep-
resent HREFs or DOM element containment). This
common representation enables novel systems for het-
erogeneous data integration and search.

Systems for “schema-agnostic” keyword search on
databases, such as DBXplorer [1], BANKS [3] and
Discover [9], model a response as a tree connecting
nodes (tuples) that contain the different keywords in a
query (or more generally, nodes that satisfy specified
conditions). Here “schema-agnostic” means that the
queries need not use any schema information (although
the evaluation system can exploit schema informa-
tion). For example, the query “Gray transaction”
on a graph derived from DBLP may find Gray match-
ing an author node, transaction matching a paper
node, and an answer would be the connecting path;
with more than two keywords, the answer would be a
connecting tree. The tree model has also been used to
find connected Web pages, that together contain the
keywords in a query [10].

As in Web search, graph search systems must define
a measure of relevance or merit for each response. Re-
sponses must be presented in relevance order. Ideally,
the query processor must efficiently generate only a
few responses that have the greatest relevance scores.
A variety of notions of response, relevance measures
and search algorithms have been proposed for graph
search.

DBXplorer and Discover use the number of edges
in a tree as a measure of its quality, preferring trees
with fewer edges. However, this measure is coarse
grained: for example, it cannot favor a highly cited pa-
per on transactions by Gray over a less-known paper.
Both DBXplorer and Discover can be extended to as-
sociate weights with edges based only on the database
schema, but do not consider node weights or edge
weights that are not determined by the schema alone,
which are required to fully exploit the generality of
graph search.

XRank [7] assigns a specific Pagerank-like [4]

505

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291592099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

prestige to individual nodes, but depends on tree-
structured XML for efficient query execution. There
are many scenarios where data forms arbitrary graphs,
and cannot be meaningfully modeled by tree structures
or even DAG structures; the XRank index structure
(and other common XML index structures) cannot be
used in such scenarios. ObjectRank [2] also assigns
a Pagerank-like [4] score to each node, but does not
score answer subgraphs as response units.

In contrast, the Backward expanding strategy used
in BANKS [3] can deal with the general model. In
brief, it does a best-first search from each node match-
ing a keyword; whenever it finds a node that has
been reached from each keyword, it outputs an an-
swer tree. However, Backward expanding search may
perform poorly w.r.t. both time and space in case a
query keyword matches a very large number of nodes
(e.g. if it matches a “metadata node” such as a ta-
ble or column name in the original relational data), or
if it encounters a node with a very large fan-in (e.g.
the “paper appeared in conference” relation in DBLP
leads to “conference” nodes with large degree).

Our Contributions: We introduce a new search al-
gorithm, which we call Bidirectional Search, for
schema-agnostic text search on graphs. Note that the
graph on which search occurs may be explicitly repre-
sented (as in BANKS) or may be implicitly present in
the database, as in DBXplorer and Discover. Our
search algorithm can be used in either case.

Unlike backward expanding strategies, which can
only explore paths backward from keyword nodes to-
ward the roots of answer trees, the Bidirectional algo-
rithm can explore paths forward from nodes that are
potential roots of answer trees, toward other keyword
nodes. For example, if transaction matches a large
number of nodes, while Gray matches fewer nodes,
it may be profitable to search backward from nodes
matching Gray toward potential answer roots, and
then forward to find nodes that match transaction.
This is equivalent to a join order (with indexed nested
loops join) which favors starting from the relation with
fewer tuples and probing the one with more tuples.

In information retrieval, it is standard to intersect
inverted lists starting with the smallest one [15]. This
can be regarded as a special case of our algorithm.

Spreading activation: A key innovation needed
to contain and exploit the flexibility of simultaneous
backward and forward expansion is a novel frontier
prioritization scheme based on spreading activation
(roughly speaking, Pagerank with decay). The pri-
oritization technique allows preferential expansion of
paths that have less branching; our experiments show
that this can provide large benefits in many cases.

Our prioritization mechanism can be extended to
implement other useful features. For example, we can
enforce constraints using edge types to restrict search
to specified search paths, or to prioritize certain paths

over others.
If we visualize answer tree generation as computing

a join, the Bidirectional search algorithm, in effect,
chooses a join order dynamically and incrementally on
a per-tuple basis. In contrast, the Backward expand-
ing search algorithm can be visualized as having a fixed
join order.
Experiments: We have implemented the Bidirec-
tional search algorithm as part of the BANKS system,
and present a performance study comparing it with
the Backward expanding search [3].

Our prototype, tested on DBLP1, IMDB2, and a
subset of US Patents3, shows that Bidirectional search
can execute at interactive speeds over large graphs
with over 20 million nodes and edges, on an ordi-
nary desktop PC. Our study shows that Bidirectional
Search outperforms Backward Expanding Search by a
large margin across a variety of scenarios.

The rest of this paper is organized as follows. Sec-
tion 2 outlines our data, query and response models.
Section 3 outlines the Backward expanding search al-
gorithm presented in [3]. Section 4 describes our Bidi-
rectional search algorithm. Section 5 describes our
performance study. Section 6 describes related work.
We make concluding remarks in Section 7.

2 Data, Query and Responses

In this section, we briefly outline the graph model of
data, and the answer tree model that our graph search
algorithms focus on.

2.1 Graph Data Model

We model the database as a weighted directed graph
in which nodes are entities and edges are relationships.
A node may represent a tuple or row in a database,
or an XML element. An edge may represent a foreign
key/primary key relationship, element containment, or
IDREF links in XML.

For example, in the graph model used in several
systems (such as DBXplorer, BANKS, Discover and
ObjectRank) for each row r in a database that we
need to represent, the data graph has a corresponding
node ur. We will speak interchangeably of a tuple and
the corresponding node in the graph. For each pair of
tuples r1 and r2 such that there is a foreign key from
r1 to r2, the graph contains an edge from ur1

to ur2
. In

DBXplorer and Discover, the edges are undirected.
Directionality is natural in many applications: the

strength of connections between two nodes is not nec-
essarily symmetric. In BANKS [3], edge directionality
was introduced avoid meaningless short paths through
“hubs”. Consider the data graph of DBLP, which has
a (metadata) node called conference, connected to a
node for each conference, which are then connected

1http://www.informatik.uni-trier.de/~ley/db/
2http://www.imdb.com/
3http://www.uspto.gov/main/patents.htm

506

to papers published in those conferences. The path
through the conference node is a relatively meaning-
less (compared to an authored-by edge from paper to
author, say) “shortcut” path which can make papers
look more similar than they are. To deal with this,
edges are treated as directed; the paper has a reference
to the conference node, so a directed edge is created
from the paper to the conference node.

On the other hand, to admit interesting response
graphs, the model must allow paths to traverse edges
“backwards”. For example, if paper u co-cites v and
w, there is no directed path between v and w, but we
often wish to report such subgraphs. To handle this
situation, given an edge u → v in the original database
graph, BANKS creates a “backward edge” v → u, with
a weight dependent on the number of edges incident on
v. Backward edges from “hubs” with many incident
edges would have a high weight, thereby resulting in a
low relevance score for meaningless shortcuts through
such hubs. In the conference example, given that many
papers refer to a particular conference, and many con-
ferences refer to the conference node, the backward
edges from these nodes would have large weight, and
thus a low relevance.

2.2 Query and Response Models

In its simplest form, a query is a set of keywords. Let
the query consist of n terms t1, t2, . . . , tn. For each
search term ti in the query, let Si be the set of nodes
that match the search term ti. A node matches a term
if the corresponding tuple contains the term; if a term
matches a relation name, all tuples in the relation are
assumed to match the term. In the directed graph
model of [3], a response or answer to a keyword query is
a minimal rooted directed tree, embedded in the data
graph, and containing at least one node from each Si.
In undirected graph models such as DBXplorer and
Discover, the answer tree is not directed.

Intuitively, the paths connecting the keyword nodes
(i.e., nodes with keyword(s)) explain how the keywords
are related in the database.

2.3 Response Ranking

In addition to edge weights, the ranking of an answer
may also depend on a notion of node prestige. As
with Pagerank, not all nodes are equal in status; for
example, users expect the query recovery on DBLP
to rank first the most popular papers about recovery,
as judged by their link neighborhood, including cita-
tions. A method of computing node prestige based on
indegree is defined in [3], while [2] defines global and
per-keyword node prestige scores for each node. Node
prestige scores can be assumed to be precomputed for
our purpose, although they could potentially be com-
puted on-the-fly. We do not address the issue of how
to compute node prestige here.

The overall score of an answer must then be de-
fined by (a) a specification of the overall edge-score of

the tree based on individual edge weights, and (b) a
specification of the overall node-prestige-score of the
tree, obtained by combining individual node prestige
scores, and finally, (c) a specification for combining the
tree edge-score with the node-prestige-score to get the
overall score for the answer tree.

The focus of this paper is on the search algorithms,
rather than on the ranking technique. For concrete-
ness, we outline the specification used in our BANKS
code; see [3] for details.

• The weights of forward edges (in the direction of
foreign keys, etc.) are defined by the schema, and
default to 1.

• If the graph had a forward edge u → v with
weight wuv, we create a backward edge v → u
with weight wvu = wuv log2(1+indegree(v)). This
discourages spurious shortcuts.

• We define a score s(T, ti) for an answer tree T
with respect to keyword ti as the sum of the edge
weights on the path from the root of T to the leaf
containing keyword ti.

• We define the aggregate edge-score E of an answer
tree T as4

∑
i s(T, ti).

• The prestige of each node is determined using a
biased version of the Pagerank [4] random walk,
similar to the computation of global ObjectRank
[2], except that, in our case, the probability of
following an edge is inversely proportional to its
edge weight taken from the data graph instead of
the schema graph.

• We define the tree node prestige N as the sum
of the node prestiges of the leaf nodes and the
answer root.

• We define the overall tree score as ENλ where
λ helps adjust the importance of edge and node
scores. As a default, we use λ = 0.2, a choice
found to work well [3].

We have chosen a response-ranking specification
guided by recent literature, but clearly, other defini-
tions of answer tree scores are possible. Comparison
of alternatives must involve large-scale user studies,
which is scanty in current literature and would be valu-
able as future work.

Our search algorithm works on arbitrary directed
weighted graphs, and is not affected by how the edges
and edge weights are defined, or on the exact technique
for computing answer scores. However, our prioritiza-
tion functions do need to take these into account, as
do functions that compute upper bounds on the score
of future answers (so that answers with a higher score
can be output without waiting further). We address
this issue later, in Sections 4.3 and 4.5.

4This step differs from the formula in [3], which adds up the
scores of all edges in a tree. The current version is simpler to
deal with and we found it gives results of equivalent quality.

507

3 Backward Expanding Search

Before we present our Bidirectional search algorithm,
we present the Backward expanding search algorithm
of [3] (which we sometimes call Backward search, for
brevity). Backward expanding search is based on Di-
jkstra’s single source shortest path algorithm. Given
a set of keywords, it first finds, for each keyword term
ti, the set of nodes Si that match ti; the nodes in Si

are called keyword nodes. To facilitate this a single
index is built on values from selected string-valued at-
tributes from multiple tables. The index maps from
keywords to (table-name, tuple-id) pairs.

Let the query be given by a set of keywords K =
(t1, t2, ...tn) and set Si denote the set of nodes match-
ing keyword ti. Thus S = S1 ∪ S2 ∪ . . . ∪ Sn is the set
of relevant nodes for the query. The Backward search
creates |S| iterators; each iterator executes a the sin-
gle source shortest path algorithm starting with one of
the nodes in S as source. When a getnext() function
is called on an iterator, it restarts from the state saved
on the last getnext() call, and runs a step of the Dijk-
stra algorithm; that is, it finds the minimum distance
node m on the frontier, expands the frontier to include
all nodes connected to m, saves the fronter in its state,
and returns m.

Unlike the normal shortest path algorithm, each it-
erator traverses the graph edges in “reverse direction”,
using edges pointing toward the node being expanded
rather that edges pointing away from it. The idea is
to find a common vertex from which a forward path
exists to at least one node in each set Si. Such paths
will define a rooted directed tree with the common ver-
tex as the root and containing all the keyword nodes5.
The tree thus formed is an answer tree. Since the iter-
ators traverse edges in the “backward” direction, the
algorithm is called the Backward expanding search al-
gorithm.

At each iteration of the algorithm, one of the it-
erators is picked for further expansion. The iterator
picked is the one whose next vertex to be visited has
the shortest path to the source vertex of the itera-
tor (the distance measure can be extended to include
node weights of the nodes matching keywords). A list
of all the vertices visited is maintained for each itera-
tor. Consider a set of iterators containing one iterator
from each set Si. If the intersection of their visited
vertex lists is non-empty, then each vertex in the in-
tersection defines a tree rooted at the vertex, with a
path to at least one node from each set Si. A result-
ing tree is an answer tree only if the root of the tree
has more than one child. If the root of a tree T has
only one child, and all the keywords are present in the
non-root nodes, then the tree formed by removing the
root node is also present in the result set and has a
higher relevance score. Such a non-minimal tree T is

5Each leaf node must contain at least one keyword and the
non-leaf nodes may contain keywords.

therefore discarded.

4 Bidirectional Expanding Search

In this section we motivate and describe our new al-
gorithm for generating answer responses to keyword
queries on graphs, which we call Bidirectional expand-
ing search (or Bidirectional search, for brevity).

Note that the problem of finding answer trees is NP-
hard, since the well known Steiner tree problem for
undirected graphs can be easily reduced to the prob-
lem of finding answer trees [3]. In fact, even polyno-
mial (approximation) algorithms that require an ex-
amination of the entire graph would not be desirable
for finding answer trees, since the overall graph may
be very large, whereas answer trees can potentially be
found by examining a small part of the graph. The
goal of Backward expanding search as well as of our
Bidirectional search is to generate answers while ex-
amining as small a fraction of the graph as possible.

4.1 Motivation for Bidirectional Search

The Backward search algorithm would explore an un-
necessarily large number of graph nodes in the follow-
ing scenarios:

• The query contains a frequently occurring term:
In the Backward algorithm one iterator is asso-
ciated with every keyword node. The algorithm
would generate a large number of iterators if a
keyword matches a large number of nodes. This
could happen in case of frequently occurring terms
(e.g.. database in the DBLP database, John in
the IMDB database) or if the keyword matches a
relation name (which selects all tuples belonging
to the relation).

• An iterator reaches a node with large fan-in: An
iterator may need to explore a large number of
nodes if it hits a node with a very large fan-in
(e.g.. a department node in a university database
which has a large number of student nodes con-
nected to it).

We call the nodes that are already hit by an iterator
but whose neighbors are yet to be explored by the
iterator as the fringe nodes and the set of fringe nodes
of an iterator as the iterator frontier. A node with a
large fan-in results in a large increase in the frontier
size.

In the above scenarios, the Backward search algo-
rithm may explore a large portion of the graph before
finding the relevant answers and this may result in a
long search time; we give some empirical evidence of
this in the experimental evaluation section (Section 5).

Our first approach to the problem was to create it-
erators only for keywords not “frequently occurring”,
and additionally explore forward paths from potential
roots to the “frequent” keywords (see Figure 1). Every
node reached by an iterator in the Backward search

508

Keyword 1 Keyword 2

Backward search

Backward search hurts
performance as large number
of nodes match keyword2

How about searching in forward direction?

Figure 1: Need for forward search

algorithm is a potential root. If we follow forward
paths from them, we may hit the frequent keyword
nodes faster and hence find answers quickly. However,
it is hard to decide on cutoffs that define which key-
words are “frequent.” Moreover, if the iterator reaches
a node v with a large indegree, it would still explore a
large number of nodes that have an edge to v.

Keyword search engines always intersect inverted
lists starting with the rarest word [15] and some other
pruning strategies based on word rareness are also
used. While inverted lists are “flat” sets of document
IDs, our situation is more complex because we can
transitively expand neighbors to neighbors of neigh-
bors, etc.

The two key ideas behind our Bidirectional expand-
ing search algorithm are:

• Starting forward searches from potential roots

• A spreading activation model to prioritize nodes
on the fringe, whereby nodes on an iterator with
a small fringe would get a higher priority, and
among nodes within a single iterator, those in less
bushy subtrees would get a higher priority. Prior-
itization additionally takes answer relevance into
account, and is described in Section 4.3, after de-
scribing the search algorithm in Section 4.2.

Discouraging backward search from large fringes
avoids potentially wasteful expansion, yet we are able
to connect up to their corresponding keyword nodes
by means of forward search from potential roots with
higher activation. Our performance results (Section 5)
demonstrate the benefits of this approach.

4.2 The Bidirectional Search Algorithm

Let the query be given by a set of keywords K =
(t1, t2, ...tn) and set Si denote the set of nodes match-
ing keyword ti. The Bidirectional search algorithm
attempts to find best rooted directed trees connecting
at least one node from each Si.

Before we present the Bidirectional search algo-
rithm, we outline key differences from the Backward
search algorithm:

• We merge all the single source shortest path iter-
ators from the Backward search algorithm into a
single iterator and call it the incoming iterator.

K Set of Keywords t1, t2, ... tn

Si Set of nodes matching keyword ti

S
⋃

i
Si

Qin A priority queue of nodes in backward ex-
panding fringe

Qout A priority queue of nodes in forward expand-
ing fringe

Xin Set of nodes expanded for incoming paths
Xout Set of nodes expanded for outgoing paths

Pv Set of nodes u such that edge (u, v) has been
explored

spu,i Node to follow from u for best path to ti

distu,i Length of best known path from u to a node
in Si

au,i Activation at node u from keyword ti

au Overall activation of node u
depthu depth of node u from keyword nodes

Figure 2: Notation used in Bidirectional Algorithm

• We use spreading activation (Section 4.3) to pri-
oritize the search. For the incoming iterator, the
next node to be expanded is the one with the
highest activation. Activation is a kind of “scent”
spread from keyword nodes, and edge weights are
taken into account when spreading the activation,
so the activation score reflects the edge weight as
well as the spreading of the search fringe.

• We concurrently run another iterator which we
call the outgoing iterator. This iterator follows
forward edges starting from all the nodes explored
by the incoming iterator.

Figure 2 shows the data structures used by the al-
gorithm. Each iterator has two queues, one for the set
of nodes to be expanded further and one for the set
of already expanded nodes. For the incoming iterator,
these are Qin and Xin respectively. For the outgo-
ing iterator, these are Qout and Xout respectively. For
every node u explored so far, either in outgoing or in
incoming search, we keep track of the best known path
from u to any node in Si. Specifically, for every key-
word term ti we maintain the child node spu,i that u
should follow to reach a node in Si in the best known
path. We also maintain distu,i, the length of the best
known path from u to a node in Si, and the activation
au,i that ti spreads to u (explained later).

The term reached-ancestor of a node u refers to an-
cestors (i.e. nodes that have a path to u) that have
been reached earlier (i.e. are in one of Qin, Qout, Xin

or Xout).
The pseudo-code for the algorithm is shown in Fig-

ure 3. The two key data structures used by the algo-
rithm are the incoming iterator Qin and the outgoing
iterator Qout; we describe the intuition behind the two
iterators below.

At each step of the algorithm, among the incom-
ing and outgoing iterators, the one having the node
with highest priority is scheduled for exploration. Ex-

509

Bidir-Exp-Search()
1 Qin ← S; Qout ← φ;Xin = φ; Xout ← φ;
2 ∀u ∈ S : Pu ← φ, depthu = 0;∀i,∀u ∈ S : spu,i ←∞;
3 ∀i,∀u ∈ S : if u ∈ Si, distu,i ← 0 else distu,i ←∞

4 while Qin or Qout are non-empty
5 switch

6 case Qin has node with highest activation :
7 Pop best v from Qin and insert in Xin

8 if is-Complete(v) then EMIT(v)
9 if depthv < dmax then

10 ∀u ∈ incoming[v]
11 ExploreEdge(u, v)
12 if u /∈ Xin insert it into Qin

13 with depth depthv + 1
14 if v /∈ Xout insert it into Qout

15 case Qout has node with highest activation :
16 Pop best u from Qout and
17 insert in Xout

18 if is-Complete(u) then EMIT(u)
19 if depthu < dmax then

20 ∀v ∈ outgoing[u]
21 ExploreEdge(u, v)
22 if v /∈ Xout insert it into Qout

23 with depth depth(u) + 1

ExploreEdge(u, v)
1 for each keyword i
2 if u has a better path to ti via v then

3 spu,i ← v; update distu,i with this new dist
4 Attach(u, i)
5 if is-Complete(u) then EMIT(u)
6 if v spreads more activation to u from ti then

7 update au,i with this new activation
8 Activate(u, i)

Attach(v, k)
1 update priority of v if it is present in Qin

2 Propagate change in cost distvk

3 to all its reached-ancestors in best first manner

Activate(v, k)
1 update priority of v if it is present in Qin

2 Propagate change in activation avk

3 to all its reached-ancestors in best first manner

Emit(u)
1 construct result tree rooted at u
2 and add it to result heap

Is-Complete(u)
1 for i = 1 to N
2 if distu,i ==∞ return false; /* No path to ti*/
3 return true;

Figure 3: Bidirectional expanding search

ploring a node v in Qin (resp. Qout) is done as fol-
lows: incoming (resp. outgoing) edges are traversed
to propagate keyword-distance information from v to
adjacent nodes, and the node moved from Qin to Xin

(resp. Qout to Xout). Additionally, if the node is found
to have been reached from all keywords it is “emitted”
to an output queue. Answers are output from the out-
put queue when the algorithm decides that no answers

with higher scores will be generated in future.
The distance of a node u from the keyword nodes

(i.e. the number of edges from the nearest keyword
node, as determined when it is first inserted into Qin

or Qout) is stored in depthu. A depth value cutoff dmax

is used to prevent generation of answers that would be
unintuitive due to excessive path lengths, and ensures
termination; in our experiments, we used a generous
default of dmax = 8.

4.2.1 Incoming Iterator

Unlike Backward expanding search, which runs multi-
ple iterators, one from each node matching a keyword,
in Bidirectional search we run only one iterator to ex-
plore backward paths from the keyword nodes. Note
that, unlike the Backward search algorithm, the iter-
ator is not a shortest path iterator since we do not
order the nodes to be expanded solely on the basis of
the distance from the origin; the nodes are ordered by
a prioritization mechanism described later. Each node
is present only once in the single backward path it-
erator, and popped from it only once; in contrast, in
Backward expanding search, each node may be present
in multiple iterators, since there is an iterator for each
node matching each keyword. The benefit of having a
single iterator is that the amount of information to be
maintained is sharply reduced.

However, there are two issues to be addressed. It is
possible for a node v to be popped after it is reached
from one keyword node, say t1; when a node is popped,
its incoming edges from other nodes u are explored.
Later on we may find that the node is reached from
another keyword node t2. At this stage, we have to
traverse its incoming edges again to update distances
to t2 from all nodes u that have an incoming edge to
v; in fact, this has to be done recursively, to update
distances to t2 from already reached ancestors of u.
Procedure ATTACH(u, i) carries out this task (in our
example, i = 2). In fact, since we prioritize using fac-
tors other than distance from the keyword node, it is
possible that after finding one path from v to a key-
word ti, we may later find a shorter path; the distance
update propagation has to be done each time a shorter
path is found. Although such repeated propagation
could potentially increase execution time, our perfor-
mance results show that the benefits of prioritization
outweigh the costs.

The second issue is that, in order to minimize space,
we store only the shortest path spu, and distance
distu,i from each node u to the closest node among
those that match keyword ti. In contrast, Backward
expanding search keeps shortest paths to each term
that matches ti. This optimization reduces space and
time cost, but at the potential cost of changing the
answer set slightly, although in practice this effect ap-
pears to be negligible – we revisit this issue in Sec-
tion 4.6.

The nodes u in Qin are the nodes on the frontier of

510

the incoming iterator, and Qin is ordered on the acti-
vation au of these nodes; the higher the activation of a
node, the higher its scheduling priority. The Bidirec-
tional search procedure starts by inserting all keyword
nodes u ∈ S where S =

⋃
∀i Si into the incoming iter-

ator Qin with an initial activation. For each keyword
node, this seed activation is spread to the nodes that
are reached in backward direction starting from this
keyword node. The exact formulae for calculating the
seed activation and for propagating activation can be
decided depending on the answer ranking technique,
and we discuss them further in Section 4.3.

4.2.2 Outgoing iterator

The outgoing iterator expands nodes in the forward
direction from potential answer roots. Every node
reached by the incoming iterator is treated as a po-
tential answer root. For each root, the outgoing itera-
tor maintains shortest forward paths to each keyword;
some of these would have been found earlier by back-
ward search on the incoming iterator, others may be
found during forward search on the outgoing iterator.

When we explore forward paths from node u, for
every adjacent node v such that there is an edge from
u to v, we check for each keyword term ti if there is
a better path from u to ti through v. If it exists, we
update spu,i, distu,i and au,i. A change in these values
must be propagated to the ancestors of u. For this
purpose, with every node u we maintain a list of its
explored parent nodes Pu and update it every time an
edge is explored. After exploring all edges, we check
if v has been previously expanded in forward search
(i.e. is in Qout or was in Qout; “was” can be checked
by seeing if it is in Xout); if not we insert it in Qout.

As in the incoming iterator, nodes in Qout are on
the frontier of the outgoing iterator and the queue is
ordered on the total activation au of each node u. Ac-
tivation is spread from each node u to all nodes v such
that there is a forward edge from u to v.

4.2.3 Generating Results

Each time we update the path lengths from a node
to a keyword ti, we check if the node has paths to
all the other keywords. In that case, we build the
corresponding answer tree and insert it into the Out-
putHeap. The OutputHeap buffers and reorders an-
swers since they may not be generated in relevance
score order. In addition to the fact that some answers
with a lower edge score may be generated after an-
swers with a higher edge score, the node prestige of
the root and leaf nodes also affects the relevance an-
swer score. Results are output from the OutputHeap
when we determine that no better result can be gen-
erated, as described in Section 4.5. It is also possible
for the same tree to appear in more than one result,
but with different roots. Such duplicates with lower
score are discarded when they are inserted into the
OutputHeap.

4.3 Activation Initialization and Spreading

As mentioned earlier, the Bidirectional search algo-
rithm can work with different ways of defining the ini-
tial activation of nodes as well as with different ways
of spreading activation. For concreteness we specify
here formulas that are tailored to the answer ranking
model described in Section 2.3. The overall tree score
depends on both an edge score and on the node pres-
tige, and both need to be taken into account when
defining activation to prioritize search.

Nodes matching keywords, are added to the incom-
ing iterator Qin with initial activation computed as:

au,i =
nodePrestige(u)

|Si|
, ∀u ∈ Si (1)

where Si is the nest of nodes that match keyword ti.
Thus, if the keyword node has high prestige, that node
will have a higher priority for expansion. But if a
keyword matches a large number of nodes, the nodes
will have a lower priority.

The activations from different keywords are com-
puted separately to separate the priority contribution
from each keyword. When we spread activation from
a node, we use an attenuation factor µ; each node v
spreads a fraction µ of the received activation to its
neighbours, and retains the remaining 1 − µ fraction.
As a default we set µ = 0.5. The fraction µ of the
received activation is divided amongst the neighbors
as described below.

For the incoming iterator, the activation from key-
word ti is spread to nodes uj such that there is an edge
uj → v, Amongst these nodes, activation is divided in
inverse proportion to the weight of the edge uj → v
(respectively, v → uj). This ensures that the activa-
tion priority reflects the path length from uj to the
keyword node; trees containing nodes that are farther
away are likely to have a lower score.

For the outgoing iterator, activation from keyword
ti is spread to nodes uj such that there is an edge
v → uj, again divided in inverse proportion to the
edge weights v → uj. This ensures that nodes that
are closer to the potential root get higher activation,
since tree scores will be worse if they include nodes
that are farther away.

When a node u receives activation from a keyword
ti from multiple edges, we define au,i as the maximum
of the received activations. This reflects the fact that
trees are scored by the shortest path from the root
to each keyword. With scoring models that aggregate
scores along multiple paths (as is done in [2]), we could
use other ways of combining the activation, such as
adding them up6.

6This extension is implemented in the BANKS system and
supports a form of queries which we call “near queries”. For lack
of space we cannot describe it further here, but the interested
reader can try it out on the BANKS web site http://www.cse.
iitb.ac.in/banks.

511

Writes

1001

Database

Paper

106 105 103104

Writes
150

249 248 151

Author
101

102Author

James

250

John

Figure 4: Bidirectional Search Example

The overall of activation a node is then defined as
the sum of its activations from each keyword. Specifi-
cally, for a node u the overall activation au is defined
as:

au =

n∑

i=0

au,i

This reflects the fact that if a node is close to mul-
tiple keywords, it is worth prioritizing the node, since
connections to fewer keywords are left to be found.

4.4 Bidirectional Search Example

A sample graph and query is shown in Figure 4. The
user wants to find out “Database” papers co-authored
by “James” and “John”. “Database” is a frequent
keyword and has a large origin set while “James” and
“John” match singleton nodes. It should be noted that
node #102 has a large fan-in as “John” has authored
many papers. For simplicity lets assume all node pres-
tiges and edge weights to be unity. Backward ex-
panding search would explore at least 151 nodes (and
touch 250 nodes) before generating the result rooted
at node #100.

Bidirectional search would start from nodes #101
and #102 (as nodes #1..100 have a lower activa-
tion due to large origin set). Expanding #101 would
add #250 (with approximately the same activation)
to the incoming queue while #102 would add 48
nodes (#103 .. #150) with a lower activation (∼
ActivationOf(#101)/48). This would result in the
exploration of #250 followed by #100. Finally, #100
would be expanded by the outgoing iterator to hit
#150 producing the desired result. Hence, Bidirec-
tional search would explore only 4 nodes (and touch
about 150 nodes) before generating the result rooted
at 100.

4.5 Producing Top-k Result Trees

As mentioned in Section 4.2.3, answers are placed in
an output buffer when they are generated since they
may not be generated exactly in relevance score order.
At each iteration of Bidirectional search, we compute
an upper bound on relevance of the the next result
that can be generated, and use the bound to output
all buffered answers with a higher relevance.

The upper bound is computed as follows. For each
keyword, we maintain the minimum path length mi

among all nodes in the backward search trees for key-
word i; that is, all nodes whose path length to a node
containing keyword ki is less than mi have already
been generated. As a coarser approximation, we can
use the minimum path length among all nodes in Qin

as a lower bound for all the mis. The best possi-
ble tree edge score for any answer node not yet seen
would be defined by an edge score aggregation function
h(m1, m2, . . . , mk) where k is the number of keywords;
for the ranking function in Section 2.3, the edge score
aggregation function h simply adds up its inputs.7

However, every node that we have already seen is
also a potential answer node; for each such node, we
already know the distance to some of the keywords
ki; we use these scores along with the bound mi for
the remaining keywords to compute their best possi-
ble score. Combining these bounds with the maximum
node prestige, we can get an upper bound ub on rele-
vance score of any answer that has not yet been gen-
erated. (The upper bound computation is similar to
that used in the NRA algorithm of [5].) Any answer
with relevance score greater than or equal to ub can
then be output.

As a looser heuristic, we can output any an-
swers whose tree edge score is greater than the score
h(m1, m2, . . . , mk) described above; if there are mul-
tiple such answers they are sorted by their relevance
score and output. This may output some answers out
of order, since (a) some nodes seen already (but which
have not yet been reached from all keywords) may yet
have a score higher than this bound, and (b) the above
heuristic ignores node prestige. However, the heuristic
is cheaper to implement, and outputs answers faster,
and the recall/precision measurements (Section 5.7)
show that answers were output in the correct order on
almost all queries we tested.

4.6 Single Iterator vs. Multiple Iterators

Bidirectional search maintains a single iterator across
all keywords, recording for each node n the shortest
path from n to a node containing keyword ti, for each
i. In contrast, Backward search maintains multiple
iterators, recording the shortest path from each node
n to each node nj containing keyword ti. Using a
single iterator reduces the cost of search significantly.
However, because of using a single iterator as above,
Bidirectional search does not generate multiple trees
with the same root,unlike Backward search. Even if a
tree Tk rooted at n cannot be generated as a result, a
rotation of Tk would be generated, albeit with a differ-

7The edge score combination function used in [3] is of a
slightly different form, since it adds up the weights of answer
tree edges, rather than combining scores with respect to each
keyword. For such an edge scoring function, we can still heuris-
tically use a bounding function that adds up the mi’s, although
the result would not be an accurate bound.

512

ent score (the rotation would be rooted at one of the
other nodes of Tk, with edges pointing from the root
toward the leaves). In our experiments, we found that
such alternative trees were indeed generated.

To separate the effect of using a single iterator from
the other effects of Bidirectional search, we created a
version of backward search which we call single iter-

ator backward search or SI-backward search. This is
identical to Backward search except that it uses only
one merged backward iterator, just like Bidirectional
search. However, it does not use a forward iterator,
and its backward iterator is prioritized only by dis-
tance from the keyword, as in the original backward
search, without any spreading activation component.
To avoid ambiguity, we shall call the original version of
Backward search as multiple-iterator Backward search
(MI-backward search).

5 Experimental Evaluation

In this section we study the quality of answers and the
execution time of Bidirectional search with respect to
two versions of Backward expanding search, and the
Sparse algorithm from [8]. Differences from other key-
word search algorithms, which make them incompara-
ble, are explained in Section 6.

We used a single processor 2.4 GHz P4 HT ma-
chine with 1GB of RAM, running Linux, for our ex-
periments. We have experimented with three datasets
- the complete DBLP database, IMDB (the Inter-
net Movie Database), and a subset of the US Patent
database. The complete DBLP database has about
300,000 authors and 500,000 papers resulting in about
2 million nodes and 9 million edges. IMDB database
has a similar size while the US Patent databases is even
larger and has 4 million nodes and 15 million edges.

5.1 Implementation Details

We used an in-memory representation of the graph,
and wrote all our code using Java, using JDBC to com-
municate with the database. Note that the in-memory
graph structure is really only an index, and does not
contain actual data. Only small node identifiers are
used in the in-memory graph, while attribute values
are present only in the tuples that remain resident on
the disk. With our compact array-based representa-
tion, the overall space requirement is 16×|V |+8×|E|
bytes for a graph with V vertices and E edges. Graphs
with tens of millions of edges/vertices can thus easily
fit in memory. We believe that the requirement that
the graph fit in (virtual) memory will not be an issue
for all but a few extreme applications.8

The node prestige calculation for the data sizes we
tested takes about a minute. Our implementation cur-
rently does not handle updates, but it is straightfor-
ward to maintain the graph skeleton, given a log of

8We note that ObjectRank [2] also uses a similar in-memory
structure to create its indices.

updates to the source data. Node prestige can be re-
computed periodically, since it is not essential to keep
it up to date.

We used the default values noted earlier in the paper
for all parameters (such as µ, λ and dmax).

5.2 Measures of Performance

We use three metrics for comparison: the nodes ex-

plored (i.e. popped from Qin or Qout and processed)
and the nodes touched by the two algorithms, (i.e. in-
serted in Qin or Qout), and the time taken. The nodes
explored indicate how effective the algorithm was in
deciding what paths to explore, whereas the nodes
touched indicates how many fringe (neighbour) nodes
were seen from nodes that were explored.

For all the performance metrics, we use the last rel-
evant result (or the tenth relevant result in case there
are more than ten relevant results) as the point of mea-
surement. Answer relevance was judged manually; the
top 20 to 30 results of Backward and Bidirectional
search were examined to find relevant answers (for the
queries in Section 5.4, we executed SQL queries to find
relevant answers).

By default, the time taken indicates the time to
output the last relevant result. In addition to the time
to output, another metric is the time to generate the
last relevant answer. The answer may be output sig-
nificantly later than when it was generated, since the
system has to wait till it decides that no answer with
higher score can be generated later. Thus the gener-
ation time ratio tells us the effectiveness of our pri-
oritization techniques, whereas the output time ratios
also take into account secondary effects that affect the
score upper bounds.

For comparison with the Sparse algorithm of [8] we
manually generated all “candidate networks” (i.e., join
trees) smaller than the relevant ones, and ran each
query several times to get a warm cache before mea-
suring time taken, so IO time does not distort the re-
sults. Indices were created on all join columns. The
time shown is a lower bound since we do not evalu-
ate larger candidate networks, whereas Bidirectional
search has to try longer paths to get answer bounds
that allow it to output answers.

5.3 Results on Sample Queries

Figure 5 shows some of our queries, along with the
number of nodes matching each keyword, the num-
ber of relevant answers generated and the size of the
relevant answer trees. The queries labeled DQi were
executed on DBLP, the IQi queries were executed on
IMDB and the UQi queries on the US patent database.

We present three sets of numbers: the first set gives
performance measure ratios comparing MI-Backward
with SI-Backward, while the second set gives perfor-
mance measure ratios comparing SI-Backward with
Bidirectional search. The third set gives absolute

513

Query #Keyword Rel Ans MI-Bkwd
SI-Bkwd

SI-Bkwd
Bidir

Ratios Time (secs)

nodes Ans Size Time Nodes Nodes Gen Out SI Bidir Sparse-LB
expl. touched time time Bkwd (#CN)

DQ1 “David Fernan-
dez” parametric

(2, 584) 18 3 3.48 16.78 3.45 7.0 1.25 0.07 0.05 0.12 (1)

DQ3 Giora Fernandez (5, 188) 13 5 4.12 5.30 4.65 1.03 7.6 0.59 0.08 0.75 (2)
DQ5 Krishnamurthy

parametric query
optimization

(51, 584,
3236, 3874)

2 3 16.7 24.51 3.94 23.5 8.6 1.30 0.15 1.40 (1)

DQ7 Naughton Dewitt
query processing

(5, 8, 3236,
4986)

1 5 12.45 4.39 1.39 59.95 1.35 3.54 2.63 3.70 (3)

DQ9 Divesh Jignesh
Jagadish Timber
Querying XML

(1, 4, 4, 7,
595, 1450)

1 7 4.07 6.83 1.89 23.13 2.29 1.39 0.61 6.20 (6)

IQ1 Keanu Matrix
Thomas

(4, 430,
3670)

4 3 7.49 13.99 7.77 3.14 18.5 0.77 0.04 3.20 (2)

IQ2 Zellweger Jude
Nicole

(3, 119,
1085)

1 7 3.64 6.38 1.10 2.039 4.34 2.2 1.63 6.80 (8)

UQ1 Microsoft recov-
ery

(1, 1138) 4 2 4.91 2.93 1.17 4.14 1.22 0.22 0.19 0.50 (2)

UQ3 Cindy Joshua (86, 207) 1 3 2.74 1.53 1.19 4.0 1.36 0.85 0.63 1.30 (4)
UQ5 Chawathe Philip (28, 2773) 5 3 7.06 6.82 1.95 1.86 2.11 0.77 0.36 1.20 (4)

Figure 5: Bidirectional vs. Backward search on some sample queries

times taken by SI-Backward, Bidirectional, and a lower
bound for the Sparse algorithm of [8].

When comparing SI-Backward with Bidirectional,
the column with heading Gen Time gives the gener-
ation time ratio, i.e. the ratio of the times when the
last relevant answer was generated.

Column 6 shows that SI-backward takes signifi-
cantly less time that MI-Backward; the nodes explored
(and touched) ratios for are similar to the time ratios,
and are not shown.

The next 4 columns show that Bidirectional beats
SI-Backward by a very large margin: in terms of the
number of nodes explored, sometimes by nearly two
orders of magnitude, and by a smaller but large mar-
gin in terms of nodes touched. It can be seen that
the output time ratio lies in-between the nodes ex-
plored and nodes touched ratios (except when explo-
ration time is very small and dominated by fixed over-
heads) The number of nodes touched by Bidirectional
search ranges from under 1000 for DQ1 (which took
about 50 msec to execute), to around 143,000 for DQ7
(which took 2.63 seconds).

Figure 5 shows that the generation time ratio is
significantly higher than the output time ratio. In
almost all cases where some of the keywords match
a large number of nodes and others matched only a
few nodes, Bidirectional found the relevant answers
quickly, but in several cases it could not output them
till much later, based on the lower bound estimation.
For example, in the case of DQ7 Bidirectional found
the relevant answer very fast, in 47 msec (vs. 2.7 sec
taken by Backward), but was able to output it only
much later (2.63 sec). The reason why an answer
generated early on cannot be output may be because
some paths of low weight have a low activation, and
do not get explored, but pull up the value of the upper
bound estimate for answer scores.

The most important part of Figure 5 are the last
3 columns of the table; these show that in terms of
the time taken to output the last relevant (or tenth)
result, Bidirectional search is the clear winner, often
by an order of magnitude, over SI-backward as well
as the Sparse lower bound (labeled Sparse LB). The
Sparse lower bound time actually corresponds to Gen
time of Bidirectional, and Bidirectional beats Sparse
by an even larger margin on the Gen time measure
(e.g. 47 msec versus 3.7 seconds for DQ7). It can
also be seen that Sparse does progressively worse as
the number of candidate networks (shown in paran-
theses) increases. For example, for the 9th and 10th
results of DQ7 (which Bidirectional output in 2.3 sec-
onds), Sparse took 15 min. and 10 min. respectively;
these networks used citation and co-authorship links
(respectively) requiring 6 and 8 joins respectively. Al-
though these results were not judged as highly relevant
they are small and intuitive.

5.4 Multi-Iterator vs Single-Iterator

Table 5 showed SI-Backward search significantly out-
performs MI-Backward search on the sample queries.
We now compare SI-Backward search with the MI-
Backward search on a larger workload of 200 queries
consisting of 2-7 keywords. For each of the queries the
size of the most relevant results is fixed to 5 i.e 4 joins
would be required to produce the relevant results. To
generate the workload we used the DBLP database
and executed SQL queries having a join network of
size 5. Keywords were selected at random from each
tuple in the result set. Small origin size queries denote
those where less than 1000 records matched at least
one of the query keywords, while large origin queries
denote those where more than 8000 records matched
at least one of the keywords.

We ran a large number of queries to compare

514

 1

 2

 4

 8

 16

 32

1 2 3 4 5 6 7

T
im

e
ra

tio

of Keywords

(a) MI-Bkwd/SI-Bkwd time ratio

Origin < 1000
Origin > 8000

 1

 2

 4

 8

 16

 32

 64

1 2 3 4 5 6 7

T
im

e
ra

tio

of Keywords

(b) SI-Bkwd/Bidirec time ratio

Origin < 1000
Origin > 8000

 1

 2

 4

 8

 16

 32

 64

A B C D E F G H

 5

 10

 15

 20

 25

N
od

es
 e

xp
lo

re
d

ra
tio

T
im

e
ra

tio

Query type

(c) SI-Bkwd/Bidirec time & node ratio

A=(T,S,S,S)
B=(T,S,S,S)
C=(T,S,S,S)
D=(T,S,S,S)
E=(T,S,S,S)
F=(T,S,S,S)
G=(T,S,S,S)
H=(T,S,S,S)

Nodes expl.
Time ratio

Figure 6: Comparison of search algorithms

the result sets of Bidirectional, SI-Backward and MI-
Backward. In all cases we found that Bidirectional,
SI-Backward and MI-Backward return the same sets
of relevant answers. Recall/precision results are pre-
sented in Section 5.7.

Figure 6(a) shows the average ratio of
Time(MI-Backward)

Time(SI-Backward)
for small as well as large ori-

gin sizes. SI-Backward wins over MI-Backward by
at least an order for almost all the queries. For the
2 keyword case with small origin size SI-Backward
wins only marginally over MI-Backward due to the
relatively low overhead required by the MI-Backward
algorithm for creating multiple iterators. We also

observed that the ratio of Nodes-Explored(MI-Backward)

Nodes-Explored(SI-Backward)

was identical to the time ratio as both the algorithms
explore the graph in a similar fashion.

5.5 Bidirectional vs SI-Backward

Figure 6(b) shows the ratio of average time taken
to answer a query using the Bidirectional and SI-
Backward search algorithms on the workload described
in Section 5.4. We observe that Bidirectional wins over
SI-Backward by a large margin. We also measured the
ratio of nodes explored, which followed roughly the
same pattern as the time taken, although the ratios
were higher by a factor of about 2; we omit details for
lack of space.

Although Bidirectional search wins over SI-
Backward search by an order of magnitude in most
cases, across a large number of queries that we tried,
we found that Bidirectional performed worse on just
a few queries. For example Bidirectional search took
about 1.5 times more time than the SI-Backward
search to answer the query “”C. Mohan” Rothermel”.
The reason is that both authors have an extremely low
initial origin size (1 and 5 respectively) and a large fan-
in (as both have written many papers). Bidirectional
search initiates backward as well as forward search,
but forward search does not help much in such a sym-
metric case.

5.6 Join order comparison

We now describe an experiment to test our claim that
Bidirectional search chooses a better join order than
the Backward search. We fix the number of keywords

to 4 and size of the most relevant result to 3. Keywords
in our queries are divided into four categories: tiny(T)
(keyword matches 1 to 500 tuples), small(S) (key-
word matches 1000-2000 tuples), medium(M) (key-
word matches 2500-5000 tuples) and large(L) (keyword
matches over 7000 tuples). We generate a workload of
400 queries from the DBLP database using techniques
outlined in Section 5.4.

Figure 6(c) shows the ratio of time taken by Bidi-
rectional and Backward along with the nodes explored
ratio for selected combinations of keyword categories
in the query. We omit the other combinations for lack
of space. We observe that Bidirectional outperforms
SI-Backward in all the cases and the speedup increases
as the difference between the origin sizes of keyword
increases. Thus Bidirectional beats SI-Backward by a
large margin when the keywords belong to the category
(Tiny, Tiny, Tiny, Large), whereas the win is much
smaller for (Medium, Medium, Medium, Medium) and
(Medium, Large, Large, Large).

5.7 Recall/Precision Experiments

We used the queries generated in Section 5.4 and mea-
sure the recall and precision ratios for each algorithm.
We find the set of relevant results by executing SQL
queries on the database while generating the work-
load, as described in Section 5.4. Our results indicated
that both MI-Backward and Bidirectional performed
equally well on the recall and precision ratios. The
recall was found to be close to 100% for all the cases
with an equally high precision at near full recall; in
other words, almost all relevant answers were found
before any irrelevant answer. Note that such high
recall/precision are not unreasonable, given that the
relevant answers are well defined, and our weighting
schemes discourage irrelevant shortcut answers.

6 Related Work

Among other search algorithms, DBXplorer [1] and
Discover [9] do not perform result ranking, and are
therefore not directly comparable. [8] presents an ex-
tension of the Discover algorithm, which they call
the sparse algorithm, which adds a simple ranking
measure, generates the top-K answers for each can-
didate network (with some pruning), and merges the

515

results. The other algorithms presented in [8] work
only on a class of ranking functions that is monotonic
on leaf node scores, and as a result cannot handle edge
weights, and Sparse worked best for the AND seman-
tics (which we use). Unlike our algorithms, the search
algorithms in [1, 9] and [8] cannot be used on schema-
less graphs, and suffer from a problem of common sub-
expressions.

The ObjectRank algorithm [2] uses a different an-
swer model, making it incomparable, The ObjectRank
score of a node with respect to a keyword is designed
to reward nodes that are connected to keyword nodes
with short and/or many paths. Their answer model
does not generate trees that explain answers, and their
evaluation algorithm requires expensive precomputa-
tion (costing 6 million seconds for a 3 million node
database).

Work on finding connecting paths in XML data,
such as XRank [7] or Schema-Free XQuery [11], ap-
ply only to tree structured data. Real world data is
most definitely not tree structured, and not even DAG
structured; cycles are common.

Li et al. [10] propose algorithms to find a linked set
of Web pages that together contain the set of keywords
in a query. Their algorithm is similar to Backward ex-
panding search, but restricted to undirected graphs.

Work on finding paths in semistructured data, such
as [12, 13], is related, but their queries supply schema
labels whereas our do not, and more importantly they
do not rank or prioritize answers. Their hybrid algo-
rithm which combines top-down (forward) search from
roots with bottom-up (backward) search from leaves
has some resemblance to Bidirectional search, but un-
like Bidirectional it cannot go backward from some leaf
and then forward to other leaves.

There has been work on prioritization of search
when finding shortest connecting paths: e.g. [14] in
the context of searching in a state space, and [6] in the
context of finding routes on a road network. This body
of work is not applicable to the more general problem
of finding connecting trees which we address.

7 Conclusions and Future Work

Keyword search on textual data graphs is an emerging
application that unifies Web, text, XML, and RDBMS
systems and has important applications in heteroge-
neous data integration and management. We pointed
out limitations of earlier keyword search techniques on
graphs. We introduced the Bidirectional search algo-
rithm and the novel frontier prioritization technique
(based on spreading activation) that guides it. We
presented extensive experiments that clearly demon-
strate the benefits of Bidirectional search over earlier
algorithms.

We have extended our answer ranking model as well
as the Bidirectional search algorithm to handle par-
tial specification of schema and structure using tree

patterns with approximate matching. Implementing
these extensions is part of future work. Other ar-
eas of future work include (a) improved “lookahead”
techniques for Bidirectional search which can reduce
the number of nodes touched, (b) more sophisticated
activation spreading techniques that will help reduce
the upper bounds on answers not yet computed, al-
lowing faster output of already computed answers, (c)
using schema information to reduce search priority on
paths that are unlikely to give good answers, and (d) a
performance study of alternative activation spreading
and prioritization techniques on different data sources,
such as Web data with hyperlinks.
Acknowledgments: We would like to thank
Arvind Hulgeri and Govind Kabra for their help with
the code, and the referees for their feedback.

References

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer:
A system for keyword-based search over relational
databases. In ICDE, 2002.

[2] A. Balmin, V. Hristidis, and Y. Papakonstanti-
nou. ObjectRank: authority-based keyword search
in databases. In VLDB, 2004.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing
in databases using BANKS. In ICDE, 2002.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks

and ISDN Systems, 30(1–7), 1998.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal aggrega-
tion algorithms for middleware. In PODS, 2001.

[6] A. Goldberg and C. Harrelson. Computing the short-
est path: A* search meets graph theory. Technical
Report MSR-TR-2004-24, Microsoft Research, 2004.

[7] L. Guo, F. Shao, C. Botev, and J. Shanmugasun-
daram. XRank: Ranked keyword search over XML
documents. In SIGMOD, 2003.

[8] V. Hristidis, L. Gravano, and Y. Papakonstanti-
nou. Efficient IR-style keyword search over relational
databases. In VLDB, 2003.

[9] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword search in relational databases. In VLDB,
2002.

[10] W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Re-
trieving and organizing Web pages by “information
unit”. In WWW, 2001.

[11] Y. Li, C. Yu, and H. V. Jagadish. Schema-free
XQuery. In VLDB, 2004.

[12] J. McHugh and J. Widom. Optimizing branching path
expressions. Technical Report 1999-49, Stanford Uni-
versity, 1999.

[13] J. McHugh and J. Widom. Query optimization for
XML. The VLDB Journal, pages 315–326, 1999.

[14] I. Pohl. Bi-directional search. Machine Intelligence,
6:127–140, 1971.

[15] I. H. Witten, A. Moffat, and T. C. Bell. Managing

Gigabytes: Compressing and Indexing Documents and

Images. Morgan-Kaufmann, 1999.

516

