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ABSTRACT
Learning to rank from relevance judgment is an active re-
search area. Itemwise score regression, pairwise preference
satisfaction, and listwise structured learning are the major
techniques in use. Listwise structured learning has been
applied recently to optimize important non-decomposable
ranking criteria like AUC (area under ROC curve) and MAP
(mean average precision). We propose new, almost-linear-
time algorithms to optimize for two other criteria widely
used to evaluate search systems: MRR (mean reciprocal
rank) and NDCG (normalized discounted cumulative gain)
in the max-margin structured learning framework. We also
demonstrate that, for different ranking criteria, one may
need to use different feature maps. Search applications should
not be optimized in favor of a single criterion, because they
need to cater to a variety of queries. E.g., MRR is best for
navigational queries, while NDCG is best for informational
queries. A key contribution of this paper is to fold multiple
ranking loss functions into a multi-criteria max-margin op-
timization. The result is a single, robust ranking model that
is close to the best accuracy of learners trained on individ-
ual criteria. In fact, experiments over the popular LETOR
and TREC data sets show that, contrary to conventional
wisdom, a test criterion is often not best served by training
with the same individual criterion.
Categories and Subject Descriptors: I.2.6 [Computing
Methodologies]: Artifical Intelligence — Learning ; H.3.3 [In-
formation Systems]: Information Storage and Retrieval —
Information Search and Retrieval.
General Terms: Algorithms, Experimentation.
Keywords: Max-margin structured learning to rank, Non-
decomposable loss functions.

1. INTRODUCTION
Learning to rank is an active research area where super-

vised learning is increasingly used [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
The main challenge in adapting supervised learning is that
for ranking problems, the evaluation criterion or “loss func-
tion” is usually defined over the permutation induced by the
scoring function over response instances (see Section 2.2),
and hence the loss function is not decomposable over in-
stances as in regular Support Vector Machines (SVMs) [11].
Moreover, common ways to formulate learning with these
loss functions result in intrinsically non-convex and “rough”
optimization problems. This is a central challenge in learn-
ing to rank.

1.1 Existing algorithms
Algorithms for learning to rank may view instances
Itemwise [10] and regress them to scores, then sort the

instances by decreasing score.
Pairwise [2, 3], which is highly suited for clickthrough data,

and leads to a simple loss function decomposable over
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preference pairs; however, it is thereby not sensitive to
absolute ranks.

Listwise [4, 9], and use structured learning [12] algorithms,
which is our focus here.

The large-margin structured learning framework [12] fits a
model to minimize the loss of a whole permutation, not in-
dividual or pairs of items. This approach has been used to
optimize non-decomposable ranking criteria, like the area
under the ROC curve (AUC) [4] and mean average pre-
cision (MAP) [9]. However, other widely-used criteria in
Information Retrieval and Web search, such as mean recip-
rocal rank (MRR) [13] or normalized discounted cumulative
gain (NDCG) [14], had no efficient direct optimizers.

The advantage of the structured learning approach is that
it helps break down the difficult non-convex ranking loss
optimization problem into a convex quadratic program and
a combinatorial optimization problem which, as we shall see,
is often tractable and simple for ranking applications.

The second framework approximates the non-convex and
discontinuous ranking loss function with a somewhat more
benign (but often still non-convex) surrogate, which is then
optimized using gradient descent and neural networks [3, 7,
8, 15]. A very interesting variant is LambdaRank [6] which
models only the gradient, with an unmaterialized objective.
A potential problem with this family is that non-convex opti-
mization behavior is tricky to replicate accurately in general,
requiring many bells and whistles to tide over local optima.
In fact, a recent approach using boosted ordinal regression
trees (McRank) [10] has proved surprisingly competitive to
gradient methods and put itemwise approaches back in the
race. In this paper we will not focus on this family, except
to compare the best structured learning approaches with
McRank, to show that listwise structured learning remains
very competitive.

1.2 Our contributions
Our first contribution is to augment the class of non-

smooth ranking loss functions that can be directly and effi-
ciently (in near-linear time) optimized for listwise structured
learning. Specifically, we propose new, almost linear-time al-
gorithms, SVMndcg for NDCG (Section 3.4) and SVMmrr
for MRR (Section 3.6). Therefore, now we can optimize ef-
ficiently for AUC, MAP, NDCG and MRR within the struc-
tured ranking framework.

Structured ranking requires us to design a feature map
φ(x, y) over documents x and a proposed ranking y. Our
second contribution is a close look (Section 3.1) at feature
map design and feature scaling: all-important but some-
what neglected aspects of structured ranking. Specifically,
our feature maps for MRR and NDCG are different, and
this affects accuracy (Section 4.3). It also greatly affects the
numerical behavior of the optimizer (Section 4.2). We give
some guidelines on how to check if a feature map, in con-
junction with a loss function, is healthy for the optimizer.

We perform a thorough comparison, using standard public
data sets (see Figures 1, 9), of test accuracies in terms of
MAP, MRR, and NDCG when trained with structured rank
learners that are optimizing for each of these loss functions
separately. Conventional wisdom suggests that a system
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trained to optimize MAP should be best for test MAP, a
system optimized for MRR should be best for test MRR,
etc. Surprisingly, across five data sets, we see very little
evidence of this. Often, the best test loss of a certain type
is obtained by training with a different loss function. We
conjecture that this is because conventional feature maps
for ranking are not well-matched to commonly-used ranking
loss functions (Section 4.2).

Web search users have diverse needs. Even if we could,
it would be undesirable to ultra-optimize in favor of one
criterion. MRR is best for navigational queries (“IBM”)
and factual questions (“giraffe height”), where only the first
URL ( http://www.ibm.com) or answer (18 feet) matter. In
contrast, NDCG is best for collecting information about a
topic.

Our third contribution is a robust max-margin optimiza-
tion (SVMcombo) of a combined loss function (Section 3.7).
We show that SVMcombo’s test performance on any crite-
rion (MAP, MRR, NDCG) is close to that of the best com-
ponents of the combination (Section 4.5).

We also report on running time and scalability compar-
isons between structured rank learners and a prominent re-
cent contender in accuracy (McRank—boosted regression
trees) and find, on the public LETOR data set [16], that
structured learners are considerably faster (Section 3.8) while
also being more accurate in two out of three data sets.

2. BACKGROUND
2.1 Testbed and data sets

Figure 1 summarizes the leading algorithms and data sets
on which they have been evaluated. RankSVM [2], Struct-
SVM [12], and SVMmap [9] codes are in the public do-
main. Implementations of ranking using gradient-descent
and boosting are not public.

From Figure 1 it is evident that many of the data sets
are proprietary, and many implementations are not readily
available. As a result, there are hardly any data sets over
which many algorithms have been compared directly. We
have implemented SVMauc [4], SVMmap [9], DORM [18],
McRank [10], as well as our new proposals SVMmrr and
SVMndcg, in a common open-source Java testbed ( http:
//www.cse.iitb.ac.in/soumen/doc/StructRank/).

We ran all the algorithms on the well-known LETOR
benchmark [16] that is now widely used in research on learn-
ing to rank. We also ran all algorithms but one on TREC 2000
and 2001 data prepared by Yue et al. [9]. More details are
in Section 4.1. In many cases, the behavior of different al-
gorithms differed on the three data sets. This highlights the
importance of shared, standardized data to avoid potentially
biased conclusions.

2.2 Ranking evaluation criteria
Suppose q is a query from a query set Q. For each docu-

ment xi in the corpus, we use q together with xi to compute
a feature vector we call xqi ∈ Rd whose elements encode
various match and quality indicators. E.g., one element of
xqi may encode the extent of match between q and the page
title, while another element may be the PageRank of the
node corresponding to the ith document in the Web graph.
Collectively, these feature vectors over all documents, for
fixed query q, is called xq.

Learning a ranking model amounts to estimating a weight
vector w ∈ Rd. The score of a test document x is w>x.
Documents are ranked by decreasing score.

For evaluation, suppose the exact sets of relevant and ir-
relevant documents, Gq and Bq, are known for every query q.
For simplicity these can be coded as zqi = 1 if the ith docu-
ment is relevant or “good” for query q, and 0 otherwise, i.e.,
the document is “bad”. Let n+

q = |Gq| and n−q = |Bq|. We
will drop q when clear from context.

2.2.1 Pair preference and AUC
For every query q, every good document xqi and every

bad document xqj , we want xqi to rank higher than xqj ,
denoted “xqi � xqj” and satisfied if w>xqi > w>xqj . Pair
preferences can be asserted even when absolute relevance
values are unknown or unreliable, as with clickthrough data.
Usually, learning algorithms [1, 2] seek to maximize over w
(a smooth approximation to) the number of pair preferences
satisfied. The number of satisfied pairs is closely related to
the area under the receiver operating characteristic (ROC)
curve [4].

A long-standing criticism of pair preference satisfaction is
that all violations are not equal [19]; flipping the documents
at ranks 2 and 11 is vastly more serious than flipping #100
and #150. This has led to several global criteria defined on
the total order returned by the search engine.

2.2.2 Mean reciprocal rank (MRR)
In a navigational query, the user wants to quickly locate

a URL that is guaranteed to satisfy her information need.
In question answering (QA), many questions have definite
answers, any one correct answer is adequate. MRR is well-
suited to such occasions [13]. Suppose, in the document list
ordered by decreasing w>xqi, the topmost rank at which
an answer to q is found is rq. (Note: For consistency with
code all our ranks begin at zero, not one.) The reciprocal
rank for a query q is 1/(1 + rq). Averaging over q, we get
MRR = 1

|Q|
P

q∈Q
1

1+rq
where Q is the set of all queries.

Often a cutoff of k is used:

MRR = 1
|Q|

P
q∈Q

(
1/(1 + rq), rq < k

0, rq ≥ k
(MRR)

The ideal ranking ensures an MRR of 1 (assuming there is
at least one relevant document for every query).

2.2.3 Normalized discounted cumulative gain (NDCG)
Of recent interest in Information Retrieval and Machine

Learning communities is NDCG, which, unlike MRR, does
accumulate credit for second and subsequent relevant docu-
ments, but discounts them with increasing rank. The DCG
for a specific query q and document order is DCG(q) =P

0≤i<k G(q, i)D(i) where G(q, i) is the gain or relevance of

document i for query q and D(i) is the discount factor given
by [14]

D(i) =

8><>:
1 0 ≤ i ≤ 1

1/ log2(1 + i) 2 ≤ i < k

0 k ≤ i
(Discount)

Note the cutoff at k. Suppose there are n+
q good documents

for query q, then the ideal DCG is

DCG∗(q) =
Pmin{n+

q ,k}−1

i=0 G(q, i)D(i),

pushing all the relevant documents to the top. Now define

NDCG(q) =
DCG(q)

DCG∗(q)
=

P
0≤i<k zqiD(i)

DCG∗(q)
(NDCG)
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RankSVM, public, reimplemented here [2] •[15, 17] • • [18] [17] [17]
SVMauc, public, reimplemented here [4] • • • • [9] • [9] [18]
SVMmap, public, reimplemented here [9] • • • • [9] • [9]
SVMmrr, proposed here • • • • •
SVMndcg, proposed here • • • • •
DORM, not public, reimplemented here •[17] • • • • [18] [17] [17]
RankNet, not public [3] [6]
LambdaRank, not public [6] [6, 10] [10] [10]
SoftRank, not public [8, 15] [15]
McRank, not public, reimplemented here [10] • • • ◦ ◦ [10] [10] [10]

Figure 1: Algorithms for learning to rank and data sets where they have been evaluated. “MS Web” data
is from Microsoft, “Y! Web” data is from Yahoo. “•” means the evaluation is reported here. “◦” means the
RAM/CPU requirements prevented evaluation. [2, 3, 4, 5] predate OHSUMED, TD2003, TD2004.

and average NDCG(q) over queries. G(q, i) is usually defined
as 2zqi − 1. Because we focus on zqi ∈ {0, 1}, we can simply
write G(q, i) = zqi.

2.2.4 Mean average precision (MAP)
For query q, let the ith (counting from zero) relevant or

‘good’ document be placed at rank rqi (again, counting from
zero). Then the precision (fraction of good documents) up
to rank rqi is (1 + i)/(1 + rqi). Average these over all good
documents for a query:

AP(q) =
P

i:zqi=1
1+i

1+rqi

and define MAP = 1
|Q|

P
q∈Q AP(q) (MAP)

The ideal ranking pushes all good documents to the top and
ensures a MAP of 1.

2.3 Structured ranking basics
In structured ranking, the input is the set of documents

xq and the output is a total or partial order y over all the
documents.

Ranking is achieved through two devices: a feature map
φ(xq, y) and a model weight vector w. The score of a ranking
y wrt xq, φ and w is w>φ(xq, y). The intention is, given a
trained model w and documents xq, to return the best rank-
ing arg maxy w

>φ(xq, y). φ(x, y) is usually chosen so that,
given w, this maximization amounts to sorting documents
by decreasing w>xqi.

The ideal ranking for query q is called y∗q . It places all
good documents in Gq at top ranks and all bad documents
Bq after that. The third component of structured learning is
a loss function: Any order y incurs a ranking loss ∆(y∗q , y) ≥
0. ∆(y∗q , y

∗
q ) = 0 and the worse the ranking y, larger the

value of ∆(y∗q , y).
In structured rank learning the goal is to estimate a scor-

ing model w via this generic StructSVM optimization [12]:

arg min
w;ξ≥~0

1
2
w>w + C

|Q|

X
q

ξq s.t. (1)

∀q, ∀y 6= y∗q : w>φ(xq, y
∗
q ) ≥ w>φ(xq, y) + ∆(y∗q , y)− ξq.

Intuitively, if y is a poor ranking, ∆(y∗q , y) is large and

we want w to indicate that, i.e., we want w>φ(xq, y
∗
q ) �

w>φ(xq, y) in that case. If not, w needs to be refined.
At any step in the execution of a cutting plane algorithm

[12], there is a working set of constraints, a current model

w and current set of slack variables ξq, and we wish to find
a violator (q̂, ŷ 6= y∗q̂ ) such that

w>φ(xq̂, y
∗
q̂ ) + ε < w>φ(xq̂, ŷ) + ∆(y∗q̂ , ŷ)− ξq̂,

where ε > 0 is a tolerance parameter, and then add the
constraint “w>(φ(xq̂, y

∗
q̂ )− w>φ(xq̂, ŷ)) ≥ ∆(y∗q̂ , ŷ)− ξq” to

the working set. This means we need to find, for each q,

arg max
y 6=y∗q

H(y;x,w) = arg max
y 6=y∗q

w>φ(xq, y) + ∆(y∗q , y) (2)

If w were “perfect”, maximizing w>φ(xq, y) would give us an
ideal y with very small ∆. Intuitively, the maximization (2)
finds weaknesses in w where a large w>φ(xq, y) can coexist
with a large ∆(yq, y). Then the next step of the cutting
plane algorithm proceeds to improve w and adjust ξ suitably.

Applying StructSVM to a problem [9, 18] amounts to
designing φ(x, y) and giving an efficient algorithm for (2).
The critical property of the cutting plane algorithm is that,
for any fixed ε, a constant number of violators are consid-
ered before convergence. Therefore, if each invocation of
(2) takes linear time, the overall training algorithm is also
linear-time. The details, which are now standard, can be
found in [12, 4, 5].

3. ALGORITHMS AND ANALYSIS
3.1 Feature map design

The representation of xqi as a feature vector comes from
domain knowledge, but the design of the feature map φ(x, y)
is an integral part of learning to rank. Here we review two
known feature maps and propose one.

3.1.1 Partial order φpo

For pair preferences and AUC, the partial order feature
map is a natural choice. If y encodes a partial order, it is
indexed as yij where zqi = 1 and zqj = 0. yij = 1 if the
partial order places xqi before xqj . yij = −1 if the partial
order (mistakenly) places xqi after xqj . If yij = 0, xqi and
xqj are incomparable in the partial order. Note that y∗ij = 1
for all i, j. With this coding of y, a common feature function
used by Joachims and others [4, 9] is

φpo(xq, y) = 1

n+
q n−q

P
g∈Gq,b∈Bq

ygb(xqg − xqb) (3)

where g indexes a good document and b indexes a bad doc-
ument.
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In practice, the pair-averaging scale factor 1/(n+
q n

−
q ) is

absolutely critical for any learnability of w; without it, we
get almost zero accuracy of all kinds (AUC, NDCG, MAP,
MRR). Therefore, proper scaling across queries is also an
integral part of feature map design.

3.1.2 New insights and feature map φmrr

With φpo defined as above, consider

δφx(y∗, y) = φ(x, y∗)− φ(x, y).

Note that the optimization (1) sees only δφx(y∗, y), never
φ(x, y∗) or φ(x, y) separately.

Fact 3.1. δφx(y∗, y) can be written as

2 1

n+
q n−q

P
g

P
b:b�g(xg − xb), (4)

where “b � g” means that y places the bad document indexed
by b before the good document indexed by g.

Proof. Consider a good document (index) g with two bad
documents, b1 � g and g � b2, in partial order y. Using (3),
φ(x, y) will include terms xb1 − xg and xg − xb2 . In y∗ we
will have g � b1 and g � b2, so φ(x, y∗) will include terms
xg − xb1 and xg − xb2 .

This shows that, despite the global “all pairs” feel to (3),
φpo carries no information to the optimizer from documents
lower than the lowest-ranked good document. We can use
(4) to define an equivalent feature map that exposes the
local nature of φpo:

ψ(x, y) = 2 1

n+
q n−q

P
g

P
b:b�g(xb − xg).

Note that ψ(x, y∗) = ~0, ∵ 6 ∃b � g in y∗,

and therefore δψx(y∗, y) = δφx(y∗, y).
Now consider MRR. ∆MRR depends not on all g, but only

the top-ranking good document g0(y). So the sum over all
g seems out of place. Accordingly, we will define

φmrr(x, y) =
P

b:b�g0(y)(xb − xg0(y)). (5)

Again, φmrr(x, y
∗) = ~0. There is no need to scale down by

n+
q , because only one good document is contributing to the

sum. We are just soft-counting the number of bad docu-
ments ahead of g0(y), so there is also no need to scale down
by n−q .

3.1.3 Permutation feature map φdorm

Instead of expressing a partial order involving good-bad
pairs, y may also encode a total order. A natural encoding
of a total order is to set y(i) to the rank of xqi, where y(i) ∈
{0, . . . , nq − 1}. Given xq and a permutation y, the feature
function is

φdorm(xq, y) =
P

0≤i<n A(y(i))xqi (6)

where A(r) is a heuristically designed decay profile [18]. E.g.,
the ranking evaluation measures we study here pay more
attention to the documents in the top ranks. For NDCG
and MRR, our attention is limited to the top k documents.
To embed this knowledge in the feature function, one can
set A(r) to various decay functions, like 1/

√
r + 1. Thus,

φdorm(xq, y) increases the representation of top-ranked docu-
ments. Unfortunately, there is no theoretical guidance to de-
sign A. It is naturally of interest to see how φpo, φmrr, φdorm

perform at various tasks; to our knowledge such comparisons
have not been done before.

3.2 Loss functions
It is easy to translate the ranking criteria reviewed in Sec-

tion 2.2 into loss functions. ∆AUC(y∗, y) is the fraction of
pair preferences that are violated by y (y∗ violates none).
This can be written as

∆AUC(y∗, y) = 1
2

1
n+ n−

P
g,b(1− ygb) (7)

Next we consider MRR, NDCG and MAP. For any y, MRR
is a number between 0 and 1; ∆MRR(y∗, y) is simply one
minus the MRR of y. Note that the MRR of y∗ is 1 if
there is at least one good document for every query, which
we will assume. ∆NDCG(y∗, y) and ∆MAP(y∗, y) are defined
similarly.

3.3 Review of SVMauc and SVMmap

Consider optimization (2) using φpo and ∆AUC [4]. For
the current fixed w in a cutting plane algorithm, let us short-
hand the current score sqi = w>xqi, and omit q when fixed
or clear from context. Then observe that

arg max
y

w>φpo(xq, y) + ∆AUC(y∗q , y)

= arg maxy
1

n+
q n−q

P
g,b ygb

`
sg − sb − 1

2

´
. (8)

In this case the best choice of y is obvious: ygb = sign(sg −
sb − 1

2
), and therefore the elements ygb can be optimized

independently. Other ranking criteria, such as MAP, MRR
and NDCG lead to more non-trivial optimizations.

SVMauc with φpo and ∆AUC admits a very efficient op-
timization of (2). Learning for MAP with φpo and ∆MAP is
not as simple, but the following insight can be exploited to
design a greedy algorithm [9].

Fact 3.2. There is an optimal total order y for (2) with φpo

and ∆ = ∆MAP such that the scores (wrt the current w) of
good documents are in non-increasing order, and the scores
of bad documents are in non-increasing order.

The proof is via a swap argument. The SVMmap algorithm
of Yue et al. [9] greedily percolates score-ordered bad doc-
uments into the score-ordered sequence of good documents,
and this is proved to be correct.

3.4 New algorithm SVMndcg

For φpo and ∆NDCG, we present a solution to optimiza-

tion (2) that takesO
“P

q(nq lognq + k2)
”

time, where nq =

n+
q + n−q . It can be verified that Fact 3.2 holds for φpo and

∆NDCG as well. However, the details of merging good and
documents are slightly different from SVMmap.

Fix a query q and consider the good documents in a
list G = x0, . . . , xg, . . . , xn+−1 sorted by decreasing current
score wrt the current w. Also let B = x0, . . . , xb, . . . , xn−1−1

be the bad documents sorted likewise. We will insert good
documents, in decreasing score order, into B (the opposite
also works). Initially, it will be easiest to visualize this as a
dynamic programming table, shown in Figure 2.

Cell [g, b] in the table will store a solution up to the place-
ment of good document xg just before bad document xb,
which means its rank in the merged list is g + b (counting
from 0). The contribution of the cell [g, b] to the objective
H comes in two parts:
CellScore(g, b) from w>φpo isPb−1

`=0(sb` − sg) +
Pn−−1

`=b (sg − sb`)

n+
q n

−
q

;

4



this can be found in O(1) time by precomputing prefix
and suffix sums of B.

CellLoss(g, b) is −D(g + b)/DCG∗(q): this is the negated
contribution of the gth good document to the NDCG
(Discount). After the last row, we will add up (nega-
tive) loss contributions from each row and add to 1 to
get ∆NDCG.

S b →
0 . . . k − 1 ≥ k . . . (n− − 1)

0 . . .
.
.
. •
g ◦ [g, b] ◦ ◦

k − 1
..
.

n+ − 1

1: obtain sorted good list G and bad list B
2: initialize objective matrix S to zeros
3: for g = 0, 1, . . . , n+ − 1 do
4: for b = 0, 1, . . . , n− − 1 do
5: {g good and b bad before xg}
6: find cellLoss← CellLoss(g, b) (see text)
7: find cellScore← CellScore(g, b) (see text)
8: cellValue← cellLoss + cellScore
9: if g = 0 then

10: {first good doc}
11: S[g, b]← cellValue
12: else if g > 0 and b = 0 then
13: {several good docs before first bad}
14: S[g, b]← S[g − 1, 0] + cellValue
15: else
16: {general recurrence with g, b > 0}
17: p∗ ← arg max0≤p≤b

˘
S[g − 1, p] + cellValue

¯
18: S[g, b]← S[g − 1, p∗] + cellValue

Figure 2: Generic SVMndcg pseudocode.

For clarity, Figure 2 shows a generic procedure that may
also be useful for other loss functions. For the specific case
of NDCG, the following observations simplify and speed up
the algorithm considerably.

Fact 3.3. The optimal solution can be found using a reduced
table of size min{n+, k}×(k+1) instead of the n+×n− table
shown.

Proof. We keep the first k columns 0, . . . , k − 1 as-is, but
columns k through n− can be folded into a single column
representing the best solution in row g for ‘b ≥ k’. This is
possible because, right of column k, cellLoss becomes zero,
so the best cellValue is the best cellScore, which can be
obtained by binary searching bad documents bk, . . . , bn−−1

with key sg. This reduces our table size to n+ × (k + 1).
However, there is also no benefit to considering more than k
good documents, so we can further trim the number of rows
to k if k < n+.

Fact 3.4. Instead of the general recurrence

S[g, b]← max
0≤p≤b

˘
S[g − 1, p] + cellValue

¯
,

which takes Θ(k2) time per cell and O(k3) time overall, we
can first find the best column for the previous row g − 1:

b∗g−1 = arg max
b
S[g − 1, b], S∗g−1 = max

b
S[g − 1, b],

and then set S[g, b] = max
b∗g−1≤b

˘
S∗g−1 + cellValue(g, b)

¯
,

which will take k2 time overall.

Proof. This involves a swap argument similar to Yue et al. [9,
Lemma 1] to show that b∗g−1 ≤ b∗g, i.e., even though the
optimal column in each row is being found greedily, these
columns will monotonically increase with g. This follows the
same argument as Yue et al. [9] and is omitted.

Therefore, we can execute each ‘argmax’ step of SVMndcg
in O(k2 + n logn) time, using φpo and ∆NDCG. The initial
sorting of good and bad documents by their current scores
sqi dominates the time.

Because MAP needs to optimize over the location of all
good documents, the ‘argmax’ (2) step in SVMmap took
time

P
q O(n+

q n
−
q +nq lognq). Because NDCG is clipped at

rank k, SVMndcg can be faster, although, in practice, the
O(nq lognq) term tends to be the dominating term.

Not clipping at k: Comparing (MRR), (NDCG) and (MAP),
we see that in case of MRR and NDCG, no credit accrues
for placing a good document after rank k, whereas in case
of MAP, a good document will fetch some credit no matter
where it is placed. This means that SVMmrr and SVM-
ndcg get no signal when if improves the position of good
documents placed beyond rank k. We can give SVMndcg
the same benefit by effectively setting k = ∞. The dy-
namic programming or greedy algorithms can be adapted,

like SVMmap, to run in O
“P

q(n
+
q n

−
q + nq lognq)

”
time.

We will call this option SVMndcg-nc, for “no clip”.

3.5 Review of the DORM algorithm
A different feature encoding, φdorm described in Section 3.1.3,

was used very recently by Le et al. [17, 18] to perform a Di-
rect Optimization of Ranking Measures (DORM). In this
case, optimization (2) takes the form

arg maxy

P
i A(y(i))(w>xi) + ∆NDCG(y∗, y)

= arg maxy

P
i A(y(i))(w>xi)−

P
i

D(y(i))
DCG∗ zi

This is equivalent to filling in a permutation matrix (a square
0/1 matrix with exactly one 1 in each row and column) π
to optimize an assignment problem [20] of the form

arg maxπ

P
i,j πij(siA(j)− zidj).

The Kuhn-Munkres assignment algorithm takes O(n3) time
in the worst case, which is much larger than the time taken
by SVMndcg. The time can be reduced by making A very
sparse. E.g., we might force A(r) = 0 for r > k, but the
resulting accuracy is inferior to a smooth decay such as
A(r) = 1/

√
1 + r [18], which needs O(n3) time.

An important limitation of DORM, thanks to using the
assignment paradigm, is that it cannot “count good docu-
ments to the left of a position”, and so cannot deal with
MAP or MRR at all.

As we shall see in Section 4.4, SVMndcg is substantially
faster than DORM while having quite comparable accuracy.

3.6 New algorithm SVMmrr

Because of the change in feature map from φpo to φmrr,
we have to redesign the ‘argmax’ routine. The pseudocode
for solving (2) in SVMmrr is shown in Figure 3. Below we
explain how it works.
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1: inputs: current w, x1, . . . , xn, clip rank k
2: obtain sorted good list G = g0, . . . , gn+−1 and bad list
B = b0, . . . , bn−−1

3: maxObj ← −∞, argMaxOrder ← null
4: for r = 0, 1, . . . , k − 1 do
5: initialize empty output sequence o
6: append b0, . . . , br−1; gn+−1 to o
7: merge br, . . . , bn−−1 and g0, . . . , gn+−2 in decreasing

score order to o
8: obj (o)← 1− 1

1+r
+ w>φmrr(x, o)

9: if obj (o) > maxObj then
10: maxObj ← obj (o)
11: argMaxOrder ← o
12: build remaining output sequence o with r ≥ k and

∆MRR = 1 as described in text
13: if obj (o) = 1 + w>φmrr(x, o) > maxObj then
14: maxObj ← obj (o)
15: argMaxOrder ← o
16: return optimal order o for generating new constraint

Figure 3: SVMmrr pseudocode for one query. In an
implementation we do not need to materialize o.

Fact 3.5. With φmrr and ∆MRR, (2) can be solved for a
query q in time O(nq lognq + k2 + k lognq).

Proof. With φmrr and ∆MRR, instead of using Fact 3.2,
we collect all solutions y for the objective w>φmrr(x, y) +
∆MRR(y∗, y) into clusters, each having a common value of
∆MRR(y∗, y).

Note that ∆MRR(y∗, y) can only take values from the set
{0, 1/k, 2/k, . . . , 1}, so we can afford to first optimize the
objective within each cluster and take the best of these k+1
solutions.

Consider all solutions y with ∆MRR(y∗, y) = 1−1/(1+r),
i.e., the MRR of ordering y is 1/(1 + r) (0 ≤ r < k) because
the first good document is at position r (beginning at 0).
Inspecting φmrr in (5), it is easy to see that within this
cluster of solutions, the y that maximizes w>φmrr(x, y) is the
one that fills ranks 0, . . . , r − 1 with bad documents having
the largest scores, and then places the good document with
the smallest score at rank r. What documents are placed
after the first good document is immaterial to φmrr, and
therefore we can save the effort.

The last cluster of orderings is where there is no good
document in any of ranks 0, . . . , k−1 and the MRR is 0 and
∆MRR = 1. In this case, clearly the k bad documents with
the largest scores should occupy ranks 0, . . . , k−1. Now con-
sider the good document xg with the smallest score sg. We
should now place all bad documents with score larger than
sg, after which we place xg. Again, how other documents
are placed after xg does not matter.

3.7 SVMcombo: Multicriteria ranking
Conventional wisdom underlying much work on learning

to rank is that it is better to train for the loss function on
which the system will be evaluated. As we have argued in
Section 1.2, search systems typically face a heterogeneous
workload. It may not be advisable to ultra-optimize a rank-
ing system toward one criterion. Moreover, our experiments
(Section 4.5) suggest that a test criterion is not reliably op-
timized by training with the associated loss function.

A related question of theoretical interest is, must one nec-
essarily sacrifice accuracy on one criterion to gain accuracy
in another, or are the major criteria (AUC, MAP, MRR

and NDCG) sufficiently related that there can be a com-
mon model serving them all reasonably well?

Once a model w is trained by optimizing (1), during test-
ing, given xq we return f(xq, w) = arg maxy w

>φ(xq, y). De-
fine the following empirical risk as

R(w,∆) = 1
|Q|

P
q ∆(y∗q , f(w, xq)).

In presence of multiple kinds of loss functions ∆l, l = 1, . . . , L,
we can modify learning problem (1) in at least two ways.

Shared slacks: We define an aggregate loss ∆(y, y′) =
maxl ∆l(y, y

′), and then assert the same constraint as in
(1). This is done by simply asserting more constraints, on
behalf of each ∆l:

∀l, ∀q, ∀y 6= y∗q : w>δφxq (y∗q , y) ≥ ∆l(y
∗
q , y)− ξq.

At optimality, we can see that 1
|Q|

P
q ξq ≥ R(w,maxl ∆l).

Separate slacks: The other option is to aggregate the em-
pirical risk, as

P
l R(w,∆l), in which case, we have to de-

clare separate slacks ξl
q for each query q and loss type l.

These slacks have different “units” and should be combined
as (1/|Q|)

P
l Cl

P
q ξ

l
q. For simplicity we set all Cl = C;

learning Cls is left for future work.

arg min
w;ξ≥~0

1
2
w>w + C

|Q|

X
q

X
l

ξl
q s.t.

∀l, q, ∀y 6= y∗q : w>δφ(y∗q , y;xq) ≥ ∆l(y
∗
q , y)− ξl

q.

As before, we can see that 1
|Q|

P
q ξ

l
q ≥ R(w,∆l), there-

fore
P

l
1
|Q|

P
q ξ

l
q ≥

P
l R(w,∆l). Because maxl ∆l(y, y

′) ≤P
l ∆l(y, y

′), we haveP
l R(w,∆l) ≥ R(w,maxl ∆l).

Therefore, if there is a mix of queries that benefit from dif-
ferent loss functions, such as some navigational queries that
are served well by MRR and some exploratory queries served
better by NDCG, separate slacks may perform better, which
is indeed what we found in experiments.

3.8 Review of McRank

For completeness, we compare the structured learning ap-
proaches (SVMauc, SVMmap, SVMmrr, SVMndcg, DORM,
SVMcombo) against McRank, which is among the best of
the lower half of Figure 1. Li et al. [10] have found Mc-
Rank to be generally better than LambdaRank [6] and
FRank [21]; SoftRank is comparable to LambdaRank [8]
and both are generally better than RankNet [3].

McRank uses a boosted ensemble of regression trees [22]
to learn a non-linear itemwise model for Pr(z|xqi), i.e., the
probability of falling into each relevance bucket (in this pa-
per we have mostly considered z ∈ {0, 1}). The interesting
twist is that, instead of assigning relevance arg maxz Pr(z|xqi),
McRank assigns a score

P
z z Pr(z|xqi) to the ith document

responding to query q, and then sorts the documents by de-
creasing score. Note that McRank has no direct hold on
true loss functions like MAP, MRR or NDCG. We imple-
mented the boosting code in Java, taking advantage of the
WEKA [23] REPTree implementation.

4. EXPERIMENTS
4.1 Data preparation

Inside the LETOR distribution [16] there are three data
sets, OHSUMED (106 queries, 11303 bad documents, 4837
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good documents), TD2003 (50 queries, 48655 bad docu-
ments, 516 good documents) and TD2004 (75 queries, 73726
bad documents, 444 good documents). Each document has
about 25–45 numeric attributes. These are scaled to [0, 1]
within each query as specified in the LETOR distribution.
We observed that LETOR has many queries for which the
same feature vector is marked as both good and bad. In
addition there are feature vectors with all elements exactly
equal to zero. A robust training algorithm is expected to
take these in stride, but test accuracy falls prey to break-
ing score ties arbitrary. This can give very unstable results
especially given the modest size of LETOR. Therefore we
eliminated all-zero feature vectors and good and bad vec-
tors whose cosine similarity was above 0.99. Although this
further reduced the number of queries, the comparisons be-
came much more reliable. In our other data set obtained
from Yue et al. [9], TREC 2000 has 50 queries, 218766 bad
documents and 2120 good documents. TREC 2001 has 50
queries, 203507 bad documents and 2892 good documents.

4.2 φ,∆ and ease of optimization
Obviously, formulating a structured learning approach to

ranking does not guarantee healthy optimization. The pur-
pose of this section is to highlight that structured ranking al-
gorithms suffer from various degrees of distress during train-
ing, and offer some analysis.

Average slack vs. C: Figure 4 shows, for different algo-
rithms, the value of (1/|Q|)

P
q ξq (an upper bound on the

training loss) when the optimizer terminates, against C.
DORM, SVMmrr, and SVMauc show the most robust
reduction in average slack with increasing C. Note that
DORM and SVMmrr use custom feature maps. Also, φpo

is ideally suited for ∆AUC. When constraints are added in
SVMauc, each term (1/n+n−)ygb(sg− sb) on the lhs w>δφ
is matched to one term (1/n+n−)(1−ygb) on the rhs ∆AUC.
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Figure 4: Different behavior of (1/|Q|)
P

q ξq at ter-
mination for different algorithms as C increases.

SVMmap and SVMndcg have a harder time. We conjec-
ture that this is caused by a mismatch between ∆MAP,∆NDCG,
and φpo. The lhs of constraints now consist of sums of (vari-
able numbers of) score differences, while the rhs have a much
more granular loss ∆ not sufficiently sensitive to the varia-
tion on the lhs.

Training objective: Let obj(w = ~0) be the value of the

objective in (1) for w = ~0, and obj be the optimized training

objective. For C = 0, w = ~0 is the optimum. A plot of
obj/obj(w = ~0) against C (Figure 5) is an indication of how
well w is adapting to increasing C. The results are related

to Figure 4: DORM, SVMauc and SVMmrr adapt best,
while SVMmap and SVMndcg stay close to w = ~0, but,
luckily, not quite at w = ~0—see Figure 6.
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Figure 5: obj/obj(w = ~0) for different algorithms as
C increases.
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Figure 6: Different behavior of |w| at termination
for different algorithms as C increases. Rightmost
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4.3 SVMmrr evaluation
Indirect support for our conjecture comes from Figure 7.

It shows the benefits of using φmrr instead of φpo for optimiz-
ing MRR. Over all data sets, there is a consistent large gain
in MRR when φmrr is used, compared to φpo. However, from
Figure 9, we see that training with some criterion other than
MRR is almost always best for test MRR scores. Specifi-
cally, SVMcombo almost always beats SVMmrr. Similar
to Taylor et al. [8], we conjecture that this is because the
“true” loss function ∆MRR and φMRR are losing information
from multiple good documents. SVMcombo “hedges the
bet” in a principled manner.

4.4 SVMndcg scalability and accuracy
The three data sets inside the LETOR distribution have

different sizes, which makes it easy to do scaling experi-
ments. OHSUMED has a total of 16140 documents, TD2003
has 49171, and TD2004 has 74170; this is roughly 1:3:4.6.
OHSUMED has 106 queries, TD2003 has 50 and TD2004
has 75.

In these experiments we gave DORM the benefit of a
sparse A(·) decay function decaying to zero after rank 30,
which was what was required to approach or match the ac-
curacy of SVMndcg. From Figure 8 we see that the total
time taken by DORM is substantially larger than SVM-
ndcg, and scales much more steeply than 1:3:4.6, which is
expected from the nature of the assignment problem.

In contrast, the total time taken by SVMndcg is much
smaller. For TD2004, SVMndcg took only 19 seconds while
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DORM needed 283 seconds. Obviously the gap will only
grow with increasing data sizes. Proprietary training data
mentioned in the literature [10] have millions of documents.

Also noteworthy is the very small time taken in the QP
optimizer (invisible for DORM, barely visible for SVM-
ndcg). We used a very recent and fast implementation of
LaRank [24]. This shows that solving the ‘argmax’ problem
(2) quickly for large data sets is important, because the QP
solver is not the bottleneck.

Figure 9 compares test NDCG at rank 10 for different
training criteria. SVMndcg and DORM come out about
even, but SVMndcg-nc is consistently better than DORM.

4.5 SVMcombo evaluation
At this point, it is of interest to complete a table where

each row corresponds to a training criterion, and each col-
umn is a test criterion. Conventional wisdom suggests that
the trainer that gives the best test NDCG will be the one
that uses ∆NDCG and so on. Figure 9 shows that this is
rarely the case! Specifically,

• ∆MRR is never best for test MRR.

• SVMndcg, which uses the “true” ∆NDCG loss, con-
sistently loses to SVMndcg-nc, which uses only an

approximation to ∆NDCG.

• Often, SVMmap does not give the best test MAP.

• SVMcombo (using MAP, NDCG, NDCG-NC, and MRR
components variously) is most consistently among the
top two performers in each column. Sometimes SVM-
combo’s accuracy is greater than any of its constituents.

• Despite spendingO(n3) time in optimization (2), DORM
never tops the chart in any column.

• Similarly, McRank rarely wins over SVMcombo and
SVMmap (two of nine columns).

4.6 Comparison with McRank

We finally consider the training speed and test accuracy
of McRank. Our WEKA-based implementation exceeded
2GB of RAM for each of TREC2000 and TREC 2001, and
was unreasonably slow. So we limit our study to the LETOR
data. In only two of the nine columns pertaining to LETOR
does McRank show substantial advantage; in the remaining
seven, one of the list-wise structured learning approaches is
better.

McRank’s occasional lead comes at a steep RAM and
CPU cost. The CPU time is dominated by the time to
induce CART [22] style regression trees. The number of
rounds of boosting was set between 1500 and 2000 by Li
et al. [10]; we found this too slow (corroborated elsewhere
[19]) and also unnecessary for accuracy. On LETOR more
than 30–40 rounds sometimes hurt accuracy, so we set the
number of boosting rounds to 30; this only tips the scales
against us wrt performance. Even so, we find in Figure 10
that McRank can be computationally more expensive that
structured learners by two orders of magnitude.

5. CONCLUSION
Using the structured learning framework, we proposed

novel, efficient algorithms for learning to rank under the
MRR and NDCG criteria. The new algorithms are com-
parable to known techniques in terms of accuracy but are
much faster. We then presented SVMcombo, a technique
to optimize for multiple ranking criteria. SVMcombo may
be preferable for real-life search systems that serve a hetero-
geneous mix of queries. Our exploration revealed that struc-
tured ranking often suffers from a mismatch between the fea-
ture map φ(x, y) and the loss function ∆(y, y′). Designing
loss-specific feature maps for better training optimization
remains a central problem that merits further investigation.

Acknowledgment: Thanks to Thorsten Joachims and Yisong
Yue for the TREC 2000 and TREC 2001 data, to Sundar
Vishwanathan for discussions, and to Sunita Sarawagi for
discussions and the LARank implementation.
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