Integr. equ. oper. theory 53 (2005), 23–32 c 2005 Birkh¨auser Verlag Basel/Switzerland 0378-620X/010023–22, *published online* June 13, 2005 DOI 10.1007/s00020-004-1309-5

Integral Equations and Operator Theory

Characteristic Function of a Pure Commuting Contractive Tuple

T. Bhattacharyya, J. Eschmeier and J. Sarkar

Abstract. A theorem of Sz.-Nagy and Foias [9] shows that the characteristic function $\theta_T(z) = -T + zD_{T^*}(1_{\mathcal{H}} - zT^*)^{-1}D_T$ of a completely non-unitary contraction T is a complete unitary invariant for T . In this note we extend this theorem to the case of a pure commuting contractive tuple using a natural generalization of the characteristic function to an operator-valued analytic function defined on the open unit ball of \mathbb{C}^n . This function is related to the curvature invariant introduced by Arveson [3].

1. Introduction

A contraction T acting on a Hilbert space $\mathcal H$ is said to be completely non-unitary (c.n.u.) if there is no non-zero reducing subspace M of H such that T/M is a unitary operator. The class of completely non-unitary operators plays an important role in understanding general contractions because, given any contraction T on a Hilbert space H , there is a decomposition $H = H_0 \oplus H_1$ of H into orthogonal subspaces each of which is a reducing subspace for T such that $T_0 = T | \mathcal{H}_0$ is unitary while $T_1 = T | \mathcal{H}_1$ is a c.n.u. contraction. A key ingredient for studying contraction operators on Hilbert spaces is the following analytic operator-valued function, called the characteristic function of T and introduced by Sz.-Nagy and Foias in [9]:

$$
\theta_T(z) = -T + zD_{T^*}(1_{\mathcal{H}} - zT^*)^{-1}D_T, \ z \in \mathbb{D}.
$$
 (1.1)

Here $\mathbb D$ is the open unit disk in the complex plane. The operators D_T and D_{T^*} are the so-called defect operators $(1_{\mathcal{H}} - T^*T)^{1/2}$ and $(1_{\mathcal{H}} - TT^*)^{1/2}$ of T and T^* , respectively. By virtue of the relation $TD_T = D_{T^*}T$ (see Section I.3 in [9]), the values $\theta_T(z)$ of the characteristic function can be regarded as bounded operators from $\mathcal{D}_T = \overline{\text{Ran}} D_T$ into $\mathcal{D}_{T^*} = \overline{\text{Ran}} D_{T^*}$.

It is shown in [9] that $\theta_T(z)$ is contraction valued and that $\|\theta_T(0)\xi\| < \|\xi\|$ for all $\xi \in \mathcal{D}_T$. The characteristic functions θ_T and θ_R of two contractions T and R are said to coincide if there are unitary operators $\sigma_1 : \mathcal{D}_T \to \mathcal{D}_R$ and $\sigma_2 : \mathcal{D}_{T^*} \to \mathcal{D}_{R^*}$ such that

$$
\theta_T(z) = \sigma_2^{-1} \theta_R(z) \sigma_1 \quad \text{for all} \quad z \in \mathbb{D}.
$$
 (1.2)

It is easy to see that if T and R are two unitarily equivalent contractions, i.e., if there is a unitary operator U such that $T = URU^*$, then the characteristic functions θ_T and θ_R coincide. One can easily construct examples to show that the converse of this is not true in this generality (see page 240 in [9]). However, the converse is true if both T and R are c.n.u. contractions.

Theorem 1.1. *(* **Sz.-Nagy and Foias***) Two completely non-unitary contractions are unitarily equivalent if and only if their characteristic functions coincide.*

This theorem shows that the characteristic function is a complete unitary invariant for c.n.u. contractions. The route to prove the theorem is via constructing a functional model for c.n.u. contractions which is also of independent interest. We briefly recall some essential features of this model theory relevant to us here. Let \mathbb{B}^n be the open unit ball in \mathbb{C}^n . If $\mathcal E$ is a complex Hilbert space, we follow the notation of [4] and define $\mathcal{O}(\mathbb{B}^n, \mathcal{E})$ to be the class of all $\mathcal{E}\text{-valued analytic functions on }\mathbb{B}^n$. For any multi-index $k = (k_1, \ldots, k_n) \in \mathbb{N}^n$, we write $|k| = k_1 + \cdots + k_n$. Then consider the Hilbert space

$$
H(\mathcal{E}) = \{ f \in \mathcal{O}(\mathbb{B}, \mathcal{E}) : f = \sum_{k \in \mathbb{N}^n} a_k z^k \text{ with } a_k \in \mathcal{E} \text{ and } ||f||^2 = \sum_{k \in \mathbb{N}^n} \frac{||a_k||^2}{\gamma_k} < \infty \},
$$
\n
$$
(1.3)
$$

where $\gamma_k = |k|!/k!$. One can show that $H(\mathcal{E})$ is the E-valued functional Hilbert space given by the reproducing kernel $(1 - \langle z, w \rangle)^{-1} 1_{\mathcal{E}}$. Of course, when $n = 1$ and $\mathcal{E} = \mathbb{C}$, this is the usual Hardy space on the disk. Given complex Hilbert spaces \mathcal{E} and \mathcal{E}_* , the multiplier space $M(\mathcal{E}, \mathcal{E}_*)$ consists of all $\varphi \in \mathcal{O}(\mathbb{B}^n, \mathcal{B}(\mathcal{E}, \mathcal{E}_*))$ such that $\varphi H(\mathcal{E}) \subset H(\mathcal{E}_*)$. By the closed graph theorem, for each function $\varphi \in M(\mathcal{E}, \mathcal{E}_*)$, the induced multiplication operator $M_{\varphi}: H(\mathcal{E}) \to H(\mathcal{E}_*)$, $f \mapsto \varphi f$ is continuous.

The Sz.-Nagy and Foias model theory works for c.n.u. contractions T . Here we shall confine ourselves to a more restricted class. The characteristic function of a single contraction T is a multiplier from the Hardy space $H(\mathcal{D}_T)$ to the Hardy space $H(\mathcal{D}_{T^*})$. A contraction T is said to be of class C_{0} if T^{*m} converges strongly to 0 as $m \to \infty$. It is easy to see that each C_{0} contraction is completely non-unitary. If T is a C_0 contraction acting on a Hilbert space H , then there is a unitary operator U from H onto $\mathbb{H} = H(\mathcal{D}_{T^*}) \ominus M_{\theta_T} H(\mathcal{D}_T)$ such that $UTU^* = P_{\mathbb{H}}M_z|\mathbb{H}$ where M_z is the multiplication operator with the independent variable z on $H(\mathcal{D}_{T^*})$. Thus any C_0 contraction can be realized as $P_{\mathbb{H}}M_z|\mathbb{H}$ where the model space \mathbb{H} is the orthocomplement of the range of M_{θ_T} .

In this note, we generalize Theorem 1.1 to the case of pure commuting contractive tuples. So we construct an operator-valued holomorphic function on the open unit ball in \mathbb{C}^n and show that it is a complete unitary invariant for a pure commuting contractive tuple. En route we also construct a functional model for such a tuple.

Previously, Frazho [5] and Popescu [8] have considered characteristic functions for tuples of non-commuting operators. Since they are dealing with noncommuting families of operators, the characteristic function is actually an operator. The characteristic function in that case is a complete unitary invariant for a completely non-coisometric contractive family [8]. It is not clear how the characteristic function of a not necessarily commuting tuple is related to the one defined below in case the tuple consists of commuting operators.

2. Definition of the Characteristic Function

A commuting tuple of bounded operators $T = (T_1, \ldots, T_n)$ acting on a Hilbert space H is called contractive if $||T_1h_1 + \cdots + T_nh_n||^2 \le ||h_1||^2 \cdots + ||h_n||^2$ for all h_1, \ldots, h_n in H. This is equivalent to demanding that $\sum_{i=1}^n T_i T_i^* \leq 1_{\mathcal{H}}$. The positive operator $(1_{\mathcal{H}} - \sum_{i=1}^{n} T_i T_i^*)^{1/2}$ and the closure of its range will be called the *defect operator* D_{T^*} and the *defect space* \mathcal{D}_{T^*} of T^* .

We shall also denote by T the bounded operator from \mathcal{H}^n to $\mathcal H$ which maps (h_1, h_2, \ldots, h_n) to $T_1h_1 + T_2h_2 + \cdots + T_nh_n$. The adjoint $T^* : \mathcal{H} \to \mathcal{H}^n$ maps h to the column vector $(T_1^*h, T_2^*h, \ldots, T_n^*h)$ and, in fact, T is a contractive tuple if and only if the operator T is a contraction. Thus for a contractive tuple T one can also consider the defect operator $D_T = (1_{\mathcal{H}^n} - T^*T)^{1/2} = ((\delta_{ij} 1_{\mathcal{H}} - T^*_i T_j))^{1/2}$ in $\mathcal{B}(\mathcal{H}^n)$ and the associated defect space $\mathcal{D}_T = \overline{\text{Ran}} D_T \subset \mathcal{H}^n$.

Lemma 2.1. For any commuting contractive tuple T, we obtain the identity

$$
TD_T = D_{T^*}T.
$$

Proof. This follows from equation (I.3.4) of [9] where it is proved that $TD_T =$ $D_{T^*}T$ for any contraction from a Hilbert space \mathcal{H}' into a Hilbert space \mathcal{H} . Here we have the special case of the operator T defined above from \mathcal{H}^n into \mathcal{H} .

Note that, for $z = (z_1, \ldots, z_n) \in \mathbb{B}^n$, the operator Z from \mathcal{H}^n to H which maps (h_1, \ldots, h_n) to $z_1h_1 + \cdots + z_nh_n$ is a contraction because $ZZ^* = \sum |z_i|^2 \mathbb{1}_{\mathcal{H}}$. Thus $Z = (z_1 1_H, \ldots, z_n 1_H)$ is a commuting contractive tuple on H with $||Z|| =$ $(\sum |z_i|^2)^{1/2}$. Hence, given a commuting contractive tuple T, the operator ZT^* is a strict contraction for $z \in \mathbb{B}^n$ and hence $1_{\mathcal{H}} - Z T^*$ is invertible. We define the characteristic function of T to be the analytic operator-valued function $\theta_T : \mathbb{B}^n \to$ $\mathcal{B}(\mathcal{D}_T, \mathcal{D}_{T^*})$ with

$$
\theta_T(z) = -T + D_{T^*}(1_{\mathcal{H}} - ZT^*)^{-1}ZD_T, \ z \in \mathbb{B}^n.
$$
 (2.1)

Lemma 2.2. *Given a commuting contractive tuple* T *, its characteristic function* θ_T *is a multiplier, that is* $\theta_T \in M(\mathcal{D}_T, \mathcal{D}_{T*})$, *with* $||M_{\theta_T}|| \leq 1$. For $z, w \in \mathbb{B}^n$, the *identity*

$$
1 - \theta_T(w)\theta_T(z)^* = (1 - WZ^*)D_{T^*}(1 - WT^*)^{-1}(1 - TZ^*)^{-1}D_{T^*}
$$
 (2.2)

holds.

Proof. It is an elementary exercise to check that

$$
U = \left(\begin{array}{cc} T^* & D_T \\ D_{T^*} & -T \end{array} \right) \in \mathcal{B}(\mathcal{H} \oplus \mathcal{D}_T, \mathcal{H}^n \oplus \mathcal{D}_{T^*})
$$

defines a unitary matrix operator. By Proposition 1.2 in [4] the transfer function of U, that is, the analytic operator-valued function $\theta_T : \mathbb{B}^n \to \mathcal{B}(\mathcal{H} \otimes \mathcal{D}_T, \mathcal{H}^n \otimes \mathcal{D}_{T^*}),$

$$
\theta_T(z) = -T + D_{T^*}(1_{\mathcal{H}} - ZT^*)^{-1}ZD_T
$$

defines a multiplier $\theta_T \in M(\mathcal{D}_T, \mathcal{D}_{T*})$ with $||M_{\theta_T}|| \leq 1$ such that formula (2.2) holds. \Box holds.

For $z = w$, the right-hand side of formula (2.2) defines a positive operator. Thus we obtain the following corollary.

Corollary 2.3. *Given a commuting contractive tuple* T *, its characteristic function* θ_T *is a bounded analytic function on* \mathbb{B}^n *with* $\sup_{z \in \mathbb{B}^n} ||\theta_T(z)|| \leq 1$.

3. Functional model of a pure commuting contractive tuple

The purpose of this section is to produce functional models for pure commuting contractive tuples. This functional model generalizes the corresponding model for C_0 contractions (Theorem VI. 2.3 in [9]) to the multivariable case and reflects very clearly the important role that the characteristic function plays.

A prototype of a commuting contractive tuple is the so-called n -shift which we simply call the *shift* as long as the dimension n is fixed. By definition this is the commuting tuple $M_z = (M_{z_1}, \ldots, M_{z_n})$ on the scalar-valued functional Hilbert space $H(\mathbb{C})$ consisting of the multiplication operators M_{z_i} with the coordinate functions z_i . It is not difficult to see that $\sum_{i=1}^n M_{z_i}M_{z_i}^* = 1 - E_0$ where 1 is the identity operator on $H(\mathbb{C})$ and E_0 is the projection onto the one-dimensional subspace consisting of all constant functions (see [2]). Hence the shift is a commuting contractive tuple. It is not hard to show that

$$
SOT - \lim_{k \to \infty} \sum_{1 \leq i_1, i_2, \dots, i_k \leq n} M_{z_{i_1}} M_{z_{i_2}} \dots M_{z_{i_k}} M_{z_{i_k}}^* \dots M_{z_{i_2}}^* M_{z_{i_1}}^* = 0.
$$

Thus the shift is an example of a *pure* commuting contractive tuple in the sense of the following definition.

Definition 3.1. *For a commuting contractive tuple* T *on a Hilbert space* H*, define a completely positive map* $P_T : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ *by* $P_T(X) = \sum_{i=1}^n T_i X T_i^*$ *. We denote by* $A_{\infty} \in \mathcal{B}(\mathcal{H})$ *the strong limit of the decreasing sequence of positive operators* $I \geq P_T(I) \geq P_T^2(I) \geq ... \geq 0$. The commuting contractive tuple T is called pure if $A_{\infty}=0.$

Vol. 53 (2005) Characteristic Function of a Commuting Contractive Tuple 27

It is interesting to observe that the norm of A_{∞} is either 0 or 1. For the proof, first define for any integer $m \geq 1$, the operator $T^m \in \mathcal{B}(\mathcal{H}^{n^m}, \mathcal{H})$ which sends an element $\frac{h}{m}$ of \mathcal{H}^{n^m} to the sum $\sum_{1 \leq i_1, ..., i_m \leq n} T_{i_1} ... T_{i_m} h_{i_1...i_m}$. Its adjoint $T^{m*} \in$ $\mathcal{B}(\mathcal{H},\mathcal{H}^{n^m})$ maps a vector h to the n^m column vector $(T^*_{i_1}...T^*_{i_m}h)_{1\leq i_1,\dots,i_m\leq n}$ in \mathcal{H}^{n^m} . By the above definition, $T^m T^{m*} = P_T^m(1)$. Thus we find that

$$
||A_{\infty}^{1/2}h||^{2} = \langle A_{\infty}h, h \rangle = \lim_{m \to \infty} \langle P_{T}^{m}(1)h, h \rangle = \lim_{m \to \infty} \langle T^{m}T^{m*}h, h \rangle = \lim_{m \to \infty} ||T^{m*}h||^{2}.
$$

Let \underline{A} denote the operator $A_{\infty} \oplus A_{\infty} \oplus \cdots \oplus A_{\infty} : \mathcal{H}^{n^m} \to \mathcal{H}^{n^m}$. Then $T^m \underline{A} T^{m*} =$ $P_T^m(A_\infty) = A_\infty$. It follows that

$$
||A_{\infty}^{\frac{1}{2}}h||^{2} = \langle A_{\infty}h, h \rangle = \langle T^{m}\underline{A}T^{m*}h, h \rangle = ||\underline{A}^{\frac{1}{2}}T^{m*}h||^{2}
$$

$$
\leq ||\underline{A}^{\frac{1}{2}}||^{2} ||T^{m*}h||^{2} = ||A_{\infty}|| ||T^{m*}h||^{2} \xrightarrow{m} ||A_{\infty}|| ||A_{\infty}^{\frac{1}{2}}h||^{2}.
$$

Hence either $A_{\infty}^{-1/2} = 0$ or $||A_{\infty}|| \ge 1$. But A_{∞} being a contraction, this means that $||A_{\infty}|| = 1$.

Remark 3.2. In the case $n = 1$ a contraction $T \in \mathcal{B}(\mathcal{H})$ is pure in the above sense *if and only if it is of class* C_{0} *.*

Arveson proved the following theorem for commuting contractive tuples in [2] (Theorem 4.5). In a way, the operator L below is a precursor of the functional model that we are going to construct.

Theorem 3.3. *Let* T *be a commuting contractive tuple of operators on some Hilbert space* H. Then there exists a unique bounded linear operator $L : H(\mathbb{C}) \otimes \mathcal{D}_{T^*} \to \mathcal{H}$ *satisfying*

$$
L(f\otimes \xi)=f(T)D_{T^*}\xi
$$

for all f *in* $\mathbb{C}[z_1, ..., z_n]$ *, and* ξ *in* \mathcal{D}_{T^*} *. Furthermore, we have* $LL^* = 1_H - A_\infty$ *and the identity* $L(f(M_z) \otimes 1_{\mathcal{D}_{T^*}}) = f(T)L$ *holds for all* f *in* $\mathbb{C}[z_1,\ldots,z_n]$ *where* $\mathbb{C}[z_1,\ldots,z_n]$ *is the algebra of all polynomials in n complex variables.*

Remark 3.4. *The tuple* T *is pure if and only if* L *is a co-isometry.*

Given a Hilbert space \mathcal{E} , we denote by $M_z^{\mathcal{E}} = (M_{z_1}^{\mathcal{E}}, \ldots, M_{z_n}^{\mathcal{E}}) \in \mathcal{B}(H(\mathcal{E}))^n$ the tuple of multiplication operators induced by the coordinate functions z_i . There is a canonical unitary operator $U_{\mathcal{E}} : H(\mathbb{C}) \otimes \mathcal{E} \to H(\mathcal{E})$ with $U_{\mathcal{E}}(f \otimes x) = fx$ for $f \in H(\mathbb{C})$ and $x \in \mathcal{E}$. In the following we shall identify the spaces $H(\mathbb{C}) \otimes \mathcal{E}$ and $H(\mathcal{E})$ via this unitary operator $U_{\mathcal{E}}$. In this way each multiplier $\varphi \in M(\mathcal{E}, \mathcal{E}_*)$ induces a bounded operator $M_{\varphi}: H(\mathbb{C}) \otimes \mathcal{E} \to H(\mathbb{C}) \otimes \mathcal{E}_*.$

As observed by Arveson in [2] (Proposition 1.12), the space $H(\mathbb{C})$ is a functional Hilbert space with reproducing kernel

$$
K: \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{C}, \quad K(z, w) = (1 - \langle z, w \rangle)^{-1}.
$$

In particular, the space $H(\mathbb{C})$ is the closed linear span of the functions k_w = $K(\cdot, w)$ $(w \in \mathbb{B}^n)$.

$$
M_{\varphi^*}(k_z \otimes x) = k_z \otimes \varphi(z)^*x
$$

holds for all $z \in \mathbb{B}^n$ *and* $x \in \mathcal{E}_*$ *.*

Proof. Fix $z \in \mathbb{B}^n$ and $x \in \mathcal{E}_*$. Note first that

$$
\langle f \otimes y, k_z \otimes x \rangle = f(z) \langle y, x \rangle = \langle (fy)(z), x \rangle
$$

holds for all $f \in H(\mathbb{C})$ and $y \in \mathcal{E}_*$. Hence it follows that $\langle f, k_z \otimes x \rangle = \langle f(z), x \rangle$ for each function $f \in H(\mathcal{E}_*)$. Using this identity twice (for \mathcal{E}_* -valued functions), we obtain that

$$
\langle f, M_{\varphi}^*(k_z \otimes x) \rangle = \langle \varphi(z) f(z), x \rangle = \langle f, k_z \otimes \varphi(z)^* x \rangle
$$

for each function $f \in h(\mathcal{E}).$

Next we relate the operator L described in Theorem 3.3 with the characteristic function.

Lemma 3.6. *Given a commuting contractive tuple* T, we obtain the identity

$$
L^*L + M_{\theta_T} M_{\theta_T}^* = 1_{H(\mathbb{C}) \otimes \mathcal{D}_{T^*}}.
$$

Proof. As observed by Arveson in the proof of Theorem 1.2 in [3], the operator L satisfies the identity

$$
L(k_z \otimes \xi) = (1 - T Z^*)^{-1} D_{T^*} \xi \quad (z \in \mathbb{B}^n, \xi \in \mathcal{D}_{T^*}).
$$

Therefore, for z, w in \mathbb{B}^n and ξ, η in \mathcal{D}_{T^*} , we obtain that

$$
\langle (L^*L + M_{\theta_T} M_{\theta_T}^*)k_z \otimes \xi, k_w \otimes \eta \rangle
$$

=
$$
\langle L(k_z \otimes \xi), L(k_w \otimes \eta) \rangle + \langle M_{\theta_T}^*(k_z \otimes \xi), M_{\theta_T}^*(k_w \otimes \eta) \rangle
$$

=
$$
\langle (1 - TZ^*)^{-1}D_{T^*}\xi, (1 - TW^*)^{-1}D_{T^*}\eta \rangle + \langle k_z \otimes \theta_T(z)^* \xi, k_w \otimes \theta_T(w)^* \eta \rangle
$$

=
$$
\langle D_{T^*}(1 - WT^*)^{-1}(1 - TZ^*)^{-1}D_T^* \xi, \eta \rangle + \langle k_z, k_w \rangle \langle \theta_T(w) \theta_T(z)^* \xi, \eta \rangle
$$

=
$$
\langle k_z \otimes \xi, k_w \otimes \eta \rangle.
$$

To verify the last equality, the reader should use the formula obtained in Lemma 2.2. Using the fact that the vectors k_z form a total set in $H(\mathbb{C})$, the assertion follows. \Box

In [3] Arveson used abstract factorization results to prove the existence of a multiplier $\varphi \in M(\mathcal{D}, \mathcal{D}_{T^*})$ such that

$$
1_{H(\mathbb{C})\otimes \mathcal{D}_{T^*}} - L^*L = M_{\varphi}M_{\varphi}^*.
$$

The above Lemma 3.6 shows that φ can be chosen as the characteristic function of T .

As usual we call two commuting tuples $T = (T_1, \ldots, T_n)$ and $R = (R_1, \ldots, R_n)$ of bounded operators on Hilbert spaces H and K unitarily equivalent if there exists a unitary operator U from H to K such that $R_i = UT_iU^*$ holds for all $i = 1, ..., n$. Now we are ready to prove the main theorem of this section.

Theorem 3.7. *Every pure commuting contractive tuple* T *on a Hilbert space* H *is unitarily equivalent to the commuting tuple* $\mathbb{T} = (\mathbb{T}_1, \dots, \mathbb{T}_n)$ *on the functional* $space \ \mathbb{H}_T = (H(\mathbb{C}) \otimes \mathcal{D}_{T^*}) \ominus M_{\theta_T}(H(\mathbb{C}) \otimes \mathcal{D}_T) \ \text{defined by} \ \mathbb{T}_i = P_{\mathbb{H}_T}(M_{z_i} \otimes 1_{\mathcal{D}_{T^*}}) | \mathbb{H}_T$ *for* $1 \leq i \leq n$.

Proof. Since T is pure, the map

$$
L^*:\mathcal{H}\to H(\mathbb{C})\otimes \mathcal{D}_{T^*}
$$

is an isometry. Thus H is isometrically embedded into $H(\mathbb{C}) \otimes \mathcal{D}_{T^*}$ via the identification of H with the closed subspace $L^*\mathcal{H}$. Now L^*L is the projection of $H(\mathbb{C}) \otimes \mathcal{D}_{T^*}$ onto the closed subspace L^*H . But then by Lemma 3.6, the operators L^*L and $M_{\theta_T} M_{\theta_T}^*$ are mutually orthogonal projections which add up to identity. Therefore the subspace $L^*\mathcal{H}$ is the orthocomplement of the range of M_{θ_T} :

$$
L^*\mathcal{H}=(H(\mathbb{C})\otimes \mathcal{D}_{T^*})\ominus M_{\theta_T}(H(\mathbb{C})\otimes \mathcal{D}_T).
$$

Now by Theorem 3.3, $L^*T_i^* = (M_{z_i} \otimes 1_{\mathcal{D}_{T^*}})^*L^*$. Thus the subspace $L^*\mathcal{H}$ is co-invariant for the shift and, via the identification of $\mathcal H$ with $L^*\mathcal H$, the operators T_i in $\mathcal{B}(\mathcal{H})$ coincide with the compressions of the operators $M_{z_i} \otimes 1_{\mathcal{D}_{T^*}}$ to the space \mathbb{H}_T . space \mathbb{H}_T .

So every pure commuting contractive tuple T on a Hilbert space $\mathcal H$ is unitarily equivalent to the commuting tuple $P_{\mathbb{H}_T}(M_z \otimes 1_{\mathcal{D}_{T^*}})|\mathbb{H}_T$, where \mathbb{H}_T is the M_z^* invariant subspace $(H(\mathbb{C}) \otimes \mathcal{D}_{T^*}) \oplus M_{\theta_T}(H(\mathbb{C}) \otimes \mathcal{D}_T)$ of $H(\mathbb{C}) \otimes \mathcal{D}_{T^*}$.

4. The characteristic function as a complete unitary invariant

Definition 4.1. *Given two commuting contractive tuples* T *and* R *on Hilbert spaces* H *and* K*, the characteristic functions of* T *and* R *are said to coincide if there exist unitary operators* $\tau : \mathcal{D}_T \to \mathcal{D}_R$ *and* $\tau_* : \mathcal{D}_{T^*} \to \mathcal{D}_{R^*}$ *such that the following diagram commutes for all* z *in* \mathbb{B}^n *:*

In this section, we prove that the characteristic function of a pure commuting contractive tuple is a complete unitary invariant.

Proposition 4.2. *The characteristic functions of two unitarily equivalent commuting contractive tuples coincide.*

Proof. Let T and R be two commuting contractive tuples on H and K, respectively, such that there is a unitary operator $\sigma : \mathcal{H} \to \mathcal{K}$ satisfying $\sigma T_i \sigma^* = R_i$ for all i. Denote by $\underline{\sigma}$ and $\underline{\sigma}^*$ the operators

$$
\oplus_{i=1}^n \sigma : \mathcal{H}^n \to \mathcal{K}^n \text{ and } i \oplus_{i=1}^n \sigma^* : \mathcal{K}^n \to \mathcal{H}^n.
$$

Then it is easy to see that $\underline{\sigma}D_T^2 \underline{\sigma}^* = D_R^2$ and $\sigma D_{T*}^2 \sigma^* = D_{R*}^2$. Thus $\underline{\sigma}D_T \underline{\sigma}^* = D_R$ and $\sigma D_{T^*}\sigma^* = D_{R^*}$. Hence $\underline{\tau}$: $\mathcal{D}_T \rightarrow \mathcal{D}_R$ defined by $\underline{\tau} = \underline{\sigma} |_{\mathcal{D}_T}$ is a unitary operator between \mathcal{D}_T and \mathcal{D}_R . Similarly, the restriction $\tau_* = \sigma \vert_{\mathcal{D}_{T^*}}$ defines a unitary operator from \mathcal{D}_{T^*} to \mathcal{D}_{R^*} . Finally, note that

$$
\theta_R(z)\underline{\tau} = (-R + D_{R^*}(1 - ZR^*)^{-1}ZD_R)\underline{\sigma} |_{\mathcal{D}_T}.
$$

\n
$$
= -\sigma T + D_{R^*}(1 - ZR^*)^{-1}\underline{Z}\underline{\sigma}D_T.
$$

\n
$$
= -\sigma T + D_{R^*}(1 - ZR^*)^{-1}\sigma ZD_T
$$

\n
$$
= -\sigma T + \sigma D_{T^*}(1 - ZT^*)ZD_T
$$

\n
$$
= \tau_*\theta_T(z),
$$

for all $z \in \mathbb{B}^n$. Hence the two characteristic functions θ_T and θ_R coincide. \Box

Next we prove the converse of the above proposition for the case of pure tuples.

Proposition 4.3. *Let* T *and* R *be two pure commuting contractive tuples on* H *and* K , respectively. If their characteristic functions θ_T and θ_R coincide, then the tuples T *and* R *are unitarily equivalent.*

Proof. Let $\tau' : \mathcal{D}_T \to \mathcal{D}_R$ and $\tau'_*: \mathcal{D}_{T^*} \to \mathcal{D}_{R^*}$ be two unitary operators such that the diagram

commutes for all z in \mathbb{B}^n . The operators τ' and τ'_* give rise to unitary operators $\tau = 1 \otimes \tau' : H(\mathbb{C}) \otimes \mathcal{D}_T \to H(\mathbb{C}) \otimes \mathcal{D}_R$ and $\tau_* = 1 \otimes \tau'_* : H(\mathbb{C}) \otimes \mathcal{D}_{T^*} \to H(\mathbb{C}) \otimes \mathcal{D}_{R^*}$ which satisfy the intertwining relation

$$
M_{\theta_R}\tau=\tau_*M_{\theta_T}.
$$

Vol. 53 (2005) Characteristic Function of a Commuting Contractive Tuple 31

We conclude that

$$
\tau_*(\mathbb{H}_T) = \tau_*((\mathrm{Ran}M_{\theta_T})^{\perp}) = \tau_*(\mathrm{Ran}M_{\theta_T})^{\perp} = (\mathrm{Ran}M_{\theta_R})^{\perp} = \mathbb{H}_R,
$$

where \mathbb{H}_T and \mathbb{H}_R are the model spaces for T and R as in Theorem 3.7. Since the operator τ_* interwines the tuples $(M_z \otimes 1_{\mathcal{D}_{T*}})^*$ and $(M_z \otimes 1_{\mathcal{D}_{T*}})^*$ componentwise, the induced unitary operators $\tau_* : \mathbb{H}_T \to \mathbb{H}_R$ intertwines the adjoints of the restrictions of these tuples, which are precisely the model tuples $P_{\mathbb{H}_T}(M_z \otimes 1_{\mathcal{D}_{T^*}})|\mathbb{H}_T$ and $P_{\mathbb{H}_R}(M_z \otimes 1_{\mathcal{D}_{R^*}})|\mathbb{H}_R$. But then Theorem 3.7 shows that T and R are unitarily equivalent. equivalent.

Summarizing the last two propositions we obtain the main result of this paper.

Theorem 4.4. *Two pure commuting contractive tuples* T *and* R *on Hilbert spaces* H and K are unitarily equivalent if and only if their characteristic functions coincide.

Let $T \in \mathcal{B}(\mathcal{H})^n$ be a pure commuting contractive tuple on a separable Hilbert space H . Arveson used in [3] the abstract solution of the factorization problem

$$
1_{H(\mathbb{C})\otimes \mathcal{D}_{T^*}}-L^*L=M_\varphi M_\varphi^*
$$

to construct an invariant for pure commuting contractive tuples $T \in \mathcal{B}(\mathcal{H})^n$ with finite defect, that is, with $\dim(\mathcal{D}_{T^*}) < \infty$, called the *curvature invariant*. Since we know that the characteristic function θ_T of T can be used for φ , we see that the curvature invariant is completely determined by the characteristic function of T . We end this paper by briefly indicating this connection between the characteristic function and the curvature invariant.

By Corollary 2.3 the characteristic function θ_T is a bounded analytic function with values in $\mathcal{B}(\mathcal{D}_T, \mathcal{D}_{T^*})$ and supremum norm bounded by one. Suppose that the number $d = \dim(\mathcal{D}_{T^*})$ is finite. Then $\mathcal{B}(\mathcal{D}_T, \mathcal{D}_{T^*})$ is topologically isomorphic to a separable Hilbert space, and therefore θ_T has a pointwise radial limit almost everywhere defining a function $\tilde{\theta}_T : \partial \mathbb{B}^n \to \mathcal{B}(\mathcal{D}_T, \mathcal{D}_{T^*})$ belonging to the unit ball of $L^{\infty}(\partial \mathbb{B}^n, \mathcal{B}(\mathcal{D}_T, \mathcal{D}_{T^*}))$. Define $k_T : \mathbb{B}^n \to \mathcal{B}(\mathcal{D}_{T^*}, \mathcal{H})$ by

$$
k_T(z) = (1 - T Z^*)^{-1} D_{T^*}.
$$

It follows from Lemma 2.2 that

$$
1 - \theta_T(z)\theta_T(z)^* = (1 - ||z||^2)k_T(z)^*k_T(z) \quad (z \in \mathbb{B}^n).
$$

Using the definition given by Arveson in [3] we obtain the following representation of the curvature invariant of T in terms of the characteristic function

$$
K(T) = \lim_{r \uparrow 1} (1 - r^2) \int_S \operatorname{trace} k_T(rz)^* k_T(rz) d\sigma(z)
$$

$$
= \int_S \operatorname{trace} (1_{\mathcal{D}_{T^*}} - \tilde{\theta}_T(z) \tilde{\theta}_T(z)^*) d\sigma(z).
$$

Here $S = \partial \mathbb{B}^n$ is the unit sphere and σ denotes the normalized surface measure on S.

Acknowledgement. Work of the first named author is supported by DST grant no. SR/ FTP/ MS-16/ 2001. The third named author's research work is supported by a UGC fellowship.

References

- [1] C. Ambrozie and J. Eschmeier, *A commutant lifting theorem on analytic polyhedra*, preprint.
- [2] W. B. Arveson, *Subalgebras of* C∗*-algebras III, Multivariable operator theory*, Acta Math. (2) 181 (1998), 159-228.
- [3] W. Arveson, *The curvature invariant of a Hilbert module over* $\mathbb{C}[z_1,\ldots,z_d]$, J. Reine Angew. Math. 522 (2000), 173–236.
- [4] J. Eschmeier and M. Putinar, *Spherical contractions and interpolation problems on the unit ball*, J. Reine Angew. Math. 542 (2002), 219-236.
- [5] A. E. Frazho, *Models for noncommuting operators*, J. Funct. Anal. 48 (1982), 1–11.
- [6] D. Greene, S. Richter and C. Sundberg, *The Structure of Inner Multipliers on Spaces with Complete Nevanlinna Pick Kernels*, J. Funct. Anal. 194 (2002), 311-331.
- [7] S. McCullough and T. T. Trent, *Invariant subspaces and Nevanlinna-Pick kernels*, J. Funct. Anal. 178 (2000), 226-249.
- [8] G. Popescu, *Characteristic functions for infinite sequences of noncommuting operators*, J. Operator Th., 22 (1989), 51 - 71.
- [9] B. Sz.-Nagy and C. Foias, *Harmonic Analysis of Operators on Hilbert Space*, North-Holland, 1970.

T. Bhattacharyya

Department of Mathematics, Indian Institute of Science, Bangalore 560012, India e-mail: tirtha@math.iisc.ernet.in

J. Eschmeier

Fachbereich Mathematik, Universität des Saarlandes, 66123 Saarbrücken, Germany e-mail: eschmei@math.uni-sb.de

J. Sarkar

Department of Mathematics, Indian Institute of Science, Bangalore 560012, India e-mail: jaydeb@math.iisc.ernet.in

Submitted: November 30, 2003 Revised: January 4, 2004

To access this journal online: http://www.birkhauser.ch