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Abstract. A theorem of Sz.-Nagy and Foias [9] shows that the characteristic
function θT (z) = −T + zDT∗ (1H − zT ∗)−1DT of a completely non-unitary
contraction T is a complete unitary invariant for T . In this note we extend this
theorem to the case of a pure commuting contractive tuple using a natural
generalization of the characteristic function to an operator-valued analytic
function defined on the open unit ball of C

n. This function is related to the
curvature invariant introduced by Arveson [3].

1. Introduction

A contraction T acting on a Hilbert space H is said to be completely non-unitary
(c.n.u.) if there is no non-zero reducing subspace M of H such that T |M is a
unitary operator. The class of completely non-unitary operators plays an important
role in understanding general contractions because, given any contraction T on a
Hilbert space H, there is a decomposition H = H0 ⊕ H1 of H into orthogonal
subspaces each of which is a reducing subspace for T such that T0 = T |H0 is
unitary while T1 = T |H1 is a c.n.u. contraction. A key ingredient for studying
contraction operators on Hilbert spaces is the following analytic operator-valued
function, called the characteristic function of T and introduced by Sz.-Nagy and
Foias in [9]:

θT (z) = −T + zDT∗(1H − zT ∗)−1DT , z ∈ D. (1.1)

Here D is the open unit disk in the complex plane. The operators DT and DT∗

are the so-called defect operators (1H − T ∗T )1/2 and (1H − TT ∗)1/2 of T and T ∗,
respectively. By virtue of the relation TDT = DT∗T (see Section I.3 in [9]), the
values θT (z) of the characteristic function can be regarded as bounded operators
from DT = RanDT into DT∗ = RanDT∗ .
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It is shown in [9] that θT (z) is contraction valued and that ‖θT (0)ξ‖ < ‖ξ‖ for
all ξ ∈ DT . The characteristic functions θT and θR of two contractions T and R are
said to coincide if there are unitary operators σ1 : DT → DR and σ2 : DT∗ → DR∗

such that

θT (z) = σ−1
2 θR(z)σ1 for all z ∈ D. (1.2)

It is easy to see that if T and R are two unitarily equivalent contractions, i.e.,
if there is a unitary operator U such that T = URU∗, then the characteristic
functions θT and θR coincide. One can easily construct examples to show that the
converse of this is not true in this generality (see page 240 in [9]). However, the
converse is true if both T and R are c.n.u. contractions.

Theorem 1.1. (Sz.-Nagy and Foias) Two completely non-unitary contractions are
unitarily equivalent if and only if their characteristic functions coincide.

This theorem shows that the characteristic function is a complete unitary
invariant for c.n.u. contractions. The route to prove the theorem is via constructing
a functional model for c.n.u. contractions which is also of independent interest. We
briefly recall some essential features of this model theory relevant to us here. Let Bn

be the open unit ball in Cn. If E is a complex Hilbert space, we follow the notation
of [4] and define O(Bn, E) to be the class of all E-valued analytic functions on Bn.
For any multi-index k = (k1, . . . , kn) ∈ N

n, we write |k| = k1 + · · · + kn. Then
consider the Hilbert space

H(E) = {f ∈ O(B, E) : f =
∑

k∈Nn

akzk with ak ∈ E and ‖f‖2 =
∑

k∈Nn

‖ak‖2

γk
< ∞},

(1.3)
where γk = |k|!/k!. One can show that H(E) is the E-valued functional Hilbert
space given by the reproducing kernel (1−〈z, w〉)−11E . Of course, when n = 1 and
E = C, this is the usual Hardy space on the disk. Given complex Hilbert spaces E
and E∗, the multiplier space M(E , E∗) consists of all ϕ ∈ O(Bn,B(E , E∗)) such that
ϕH(E) ⊂ H(E∗). By the closed graph theorem, for each function ϕ ∈ M(E , E∗),the
induced multiplication operator Mϕ : H(E) → H(E∗), f 	→ ϕf is continuous.

The Sz.-Nagy and Foias model theory works for c.n.u. contractions T . Here
we shall confine ourselves to a more restricted class. The characteristic function of a
single contraction T is a multiplier from the Hardy space H(DT ) to the Hardy space
H(DT∗). A contraction T is said to be of class C·0 if T ∗m converges strongly to 0
as m → ∞. It is easy to see that each C·0 contraction is completely non-unitary. If
T is a C·0 contraction acting on a Hilbert space H, then there is a unitary operator
U from H onto H = H(DT∗)
MθT H(DT ) such that UTU∗ = PHMz|H where Mz

is the multiplication operator with the independent variable z on H(DT∗). Thus
any C·0 contraction can be realized as PHMz|H where the model space H is the
orthocomplement of the range of MθT .

In this note, we generalize Theorem 1.1 to the case of pure commuting con-
tractive tuples. So we construct an operator-valued holomorphic function on the
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open unit ball in C
n and show that it is a complete unitary invariant for a pure

commuting contractive tuple. En route we also construct a functional model for
such a tuple.

Previously, Frazho [5] and Popescu [8] have considered characteristic func-
tions for tuples of non-commuting operators. Since they are dealing with non-
commuting families of operators, the characteristic function is actually an opera-
tor. The characteristic function in that case is a complete unitary invariant for a
completely non-coisometric contractive family [8]. It is not clear how the charac-
teristic function of a not necessarily commuting tuple is related to the one defined
below in case the tuple consists of commuting operators.

2. Definition of the Characteristic Function

A commuting tuple of bounded operators T = (T1, . . . , Tn) acting on a Hilbert
space H is called contractive if ‖T1h1 + · · · + Tnhn‖2 ≤ ‖h1‖2 · · · + ‖hn‖2 for
all h1, . . . , hn in H. This is equivalent to demanding that

∑n
i=1 TiT

∗
i ≤ 1H. The

positive operator (1H − ∑n
i=1 TiT

∗
i )1/2 and the closure of its range will be called

the defect operator DT∗ and the defect space DT∗ of T ∗.
We shall also denote by T the bounded operator from Hn to H which maps

(h1, h2, . . . , hn) to T1h1 + T2h2 + · · · + Tnhn. The adjoint T ∗ : H → Hn maps h
to the column vector (T ∗

1 h, T ∗
2 h, . . . , T ∗

nh) and, in fact, T is a contractive tuple if
and only if the operator T is a contraction. Thus for a contractive tuple T one can
also consider the defect operator DT = (1Hn − T ∗T )1/2 = ((δij1H − T ∗

i Tj))1/2 in
B(Hn) and the associated defect space DT = RanDT ⊂ Hn.

Lemma 2.1. For any commuting contractive tuple T , we obtain the identity

TDT = DT∗T.

Proof. This follows from equation (I.3.4) of [9] where it is proved that TDT =
DT∗T for any contraction from a Hilbert space H′ into a Hilbert space H. Here
we have the special case of the operator T defined above from Hn into H. �

Note that, for z = (z1, . . . , zn) ∈ Bn, the operator Z from Hn to H which
maps (h1, . . . , hn) to z1h1 + · · ·+ znhn is a contraction because ZZ∗ =

∑ |zi|21H.
Thus Z = (z11H, . . . , zn1H) is a commuting contractive tuple on H with ‖Z‖ =
(
∑ |zi|2)1/2. Hence, given a commuting contractive tuple T , the operator ZT ∗ is

a strict contraction for z ∈ Bn and hence 1H − ZT ∗ is invertible. We define the
characteristic function of T to be the analytic operator-valued function θT : Bn →
B(DT ,DT∗) with

θT (z) = −T + DT∗(1H − ZT ∗)−1ZDT , z ∈ B
n. (2.1)

Lemma 2.2. Given a commuting contractive tuple T , its characteristic function θT

is a multiplier, that is θT ∈ M(DT ,DT∗), with ‖MθT ‖ ≤ 1. For z, w ∈ Bn, the
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identity

1 − θT (w)θT (z)∗ = (1 − WZ∗)DT∗(1 − WT ∗)−1(1 − TZ∗)−1DT∗ (2.2)

holds.

Proof. It is an elementary exercise to check that

U =
(

T ∗ DT

DT∗ −T

)
∈ B(H⊕DT ,Hn ⊕DT∗)

defines a unitary matrix operator. By Proposition 1.2 in [4] the transfer function of
U , that is, the analytic operator-valued function θT : Bn → B(H⊗DT ,Hn⊗DT∗),

θT (z) = −T + DT∗(1H − ZT ∗)−1ZDT

defines a multiplier θT ∈ M(DT ,DT∗) with ‖MθT ‖ ≤ 1 such that formula (2.2)
holds. �

For z = w, the right-hand side of formula (2.2) defines a positive operator.
Thus we obtain the following corollary.

Corollary 2.3. Given a commuting contractive tuple T , its characteristic function
θT is a bounded analytic function on Bn with supz∈Bn ‖θT (z)‖ ≤ 1.

3. Functional model of a pure commuting contractive tuple

The purpose of this section is to produce functional models for pure commuting
contractive tuples. This functional model generalizes the corresponding model for
C·0 contractions (Theorem VI. 2.3 in [9]) to the multivariable case and reflects
very clearly the important role that the characteristic function plays.

A prototype of a commuting contractive tuple is the so-called n-shift which
we simply call the shift as long as the dimension n is fixed. By definition this is the
commuting tuple Mz = (Mz1 , . . . , Mzn) on the scalar-valued functional Hilbert
space H(C) consisting of the multiplication operators Mzi with the coordinate
functions zi. It is not difficult to see that

∑n
i=1 MziM

∗
zi

= 1 − E0 where 1 is the
identity operator on H(C) and E0 is the projection onto the one-dimensional sub-
space consisting of all constant functions (see [2]). Hence the shift is a commuting
contractive tuple. It is not hard to show that

SOT − lim
k→∞

∑

1≤i1,i2,...ik≤n

Mzi1
Mzi2

. . .Mzik
M∗

zik
. . . M∗

zi2
M∗

zi1
= 0.

Thus the shift is an example of a pure commuting contractive tuple in the sense
of the following definition.

Definition 3.1. For a commuting contractive tuple T on a Hilbert space H, define a
completely positive map PT : B(H) → B(H) by PT (X) =

∑n
i=1 TiXT ∗

i . We denote
by A∞ ∈ B(H) the strong limit of the decreasing sequence of positive operators
I ≥ PT (I) ≥ P 2

T (I) ≥ ... ≥ 0. The commuting contractive tuple T is called pure if
A∞ = 0.
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It is interesting to observe that the norm of A∞ is either 0 or 1. For the proof,
first define for any integer m ≥ 1, the operator T m ∈ B(Hnm

,H) which sends an
element h of Hnm

to the sum
∑

1≤i1,...,im≤n Ti1 ...Timhi1...im . Its adjoint T m∗ ∈
B(H,Hnm

) maps a vector h to the nm column vector (T ∗
i1 ...T

∗
im

h)1≤i1,...,im≤n in
Hnm

. By the above definition, T mT m∗ = Pm
T (1). Thus we find that

‖A1/2
∞ h‖2 = 〈A∞h, h〉 = lim

m→∞〈Pm
T (1)h, h〉 = lim

m→∞〈T mT m∗h, h〉 = lim
m→∞ ‖T m∗h‖2.

Let A denote the operator A∞⊕A∞⊕· · ·⊕A∞ : Hnm → Hnm

. Then T mAT m∗ =
Pm

T (A∞) = A∞. It follows that

‖A∞
1
2 h‖2 = 〈A∞h, h〉 = 〈T mAT m∗h, h〉 = ‖A 1

2 T m∗h‖2

≤ ‖A 1
2 ‖2 ‖T m∗h‖2 = ‖A∞‖ ‖T m∗h‖2 m−→ ‖A∞‖ ‖A∞

1
2 h‖2.

Hence either A∞1/2 = 0 or ‖A∞‖ ≥ 1. But A∞ being a contraction, this
means that ‖A∞‖ = 1.

Remark 3.2. In the case n = 1 a contraction T ∈ B(H) is pure in the above sense
if and only if it is of class C·0.

Arveson proved the following theorem for commuting contractive tuples in
[2] (Theorem 4.5). In a way, the operator L below is a precursor of the functional
model that we are going to construct.

Theorem 3.3. Let T be a commuting contractive tuple of operators on some Hilbert
space H. Then there exists a unique bounded linear operator L : H(C)⊗DT∗ → H
satisfying

L(f ⊗ ξ) = f(T )DT∗ξ

for all f in C[z1, ..., zn], and ξ in DT∗ . Furthermore, we have LL∗ = 1H − A∞
and the identity L(f(Mz)⊗ 1DT∗ ) = f(T )L holds for all f in C[z1, . . . , zn] where
C[z1, . . . , zn] is the algebra of all polynomials in n complex variables.

Remark 3.4. The tuple T is pure if and only if L is a co-isometry.

Given a Hilbert space E , we denote by ME
z = (ME

z1
, . . . , ME

zn
) ∈ B(H(E))n

the tuple of multiplication operators induced by the coordinate functions zi. There
is a canonical unitary operator UE : H(C) ⊗ E → H(E) with UE(f ⊗ x) = fx for
f ∈ H(C) and x ∈ E . In the following we shall identify the spaces H(C) ⊗ E
and H(E) via this unitary operator UE . In this way each multiplier ϕ ∈ M(E , E∗)
induces a bounded operator Mϕ : H(C) ⊗ E → H(C) ⊗ E∗.

As observed by Arveson in [2] (Proposition 1.12), the space H(C) is a func-
tional Hilbert space with reproducing kernel

K : B
n × B

n → C, K(z, w) = (1 − 〈z, w〉)−1.

In particular, the space H(C) is the closed linear span of the functions kw =
K(·, w) (w ∈ Bn).
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Lemma 3.5. Let ϕ ∈ M(E , E∗) be a multiplier. Then the identity

Mϕ∗(kz ⊗ x) = kz ⊗ ϕ(z)∗x

holds for all z ∈ Bn and x ∈ E∗.
Proof. Fix z ∈ Bn and x ∈ E∗. Note first that

〈f ⊗ y, kz ⊗ x〉 = f(z)〈y, x〉 = 〈(fy)(z), x〉
holds for all f ∈ H(C) and y ∈ E∗. Hence it follows that 〈f, kz ⊗ x〉 = 〈f(z), x〉 for
each function f ∈ H(E∗). Using this identity twice (for E- and E∗-valued functions),
we obtain that

〈f, M∗
ϕ(kz ⊗ x)〉 = 〈ϕ(z)f(z), x〉 = 〈f, kz ⊗ ϕ(z)∗x〉

for each function f ∈ h(E). �
Next we relate the operator L described in Theorem 3.3 with the character-

istic function.

Lemma 3.6. Given a commuting contractive tuple T , we obtain the identity

L∗L + MθT M∗
θT

= 1H(C)⊗DT∗ .

Proof. As observed by Arveson in the proof of Theorem 1.2 in [3], the operator L
satisfies the identity

L(kz ⊗ ξ) = (1 − TZ∗)−1DT∗ξ (z ∈ B
n, ξ ∈ DT∗).

Therefore, for z, w in Bn and ξ, η in DT∗ , we obtain that

〈(L∗L + MθT M∗
θT

)kz ⊗ ξ, kw ⊗ η〉
= 〈L(kz ⊗ ξ), L(kw ⊗ η)〉 + 〈M∗

θT
(kz ⊗ ξ), M∗

θT
(kw ⊗ η)〉

= 〈(1 − TZ∗)−1DT∗ξ, (1 − TW ∗)−1DT∗η〉 + 〈kz ⊗ θT (z)∗ξ, kw ⊗ θT (w)∗η〉
= 〈DT∗(1 − WT ∗)−1(1 − TZ∗)−1D∗

T ξ, η〉 + 〈kz , kw〉〈θT (w)θT (z)∗ξ, η〉
= 〈kz ⊗ ξ, kw ⊗ η〉.

To verify the last equality, the reader should use the formula obtained in Lemma
2.2. Using the fact that the vectors kz form a total set in H(C), the assertion
follows. �

In [3] Arveson used abstract factorization results to prove the existence of a
multiplier ϕ ∈ M(D,DT∗) such that

1H(C)⊗DT∗ − L∗L = MϕM∗
ϕ.

The above Lemma 3.6 shows that ϕ can be chosen as the characteristic function
of T .

As usual we call two commuting tuples T =(T1, . . . , Tn) and R=(R1, . . . , Rn)
of bounded operators on Hilbert spaces H and K unitarily equivalent if there exists
a unitary operator U from H to K such that Ri = UT iU

∗ holds for all i = 1, ..., n.
Now we are ready to prove the main theorem of this section.
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Theorem 3.7. Every pure commuting contractive tuple T on a Hilbert space H
is unitarily equivalent to the commuting tuple T = (T1, . . . , Tn) on the functional
space HT = (H(C)⊗DT∗)
MθT (H(C)⊗DT ) defined by Ti = PHT (Mzi⊗1DT∗ )|HT

for 1 ≤ i ≤ n.

Proof. Since T is pure, the map

L∗ : H → H(C) ⊗DT∗

is an isometry. Thus H is isometrically embedded into H(C) ⊗ DT∗ via the iden-
tification of H with the closed subspace L∗H. Now L∗L is the projection of
H(C) ⊗ DT∗ onto the closed subspace L∗H. But then by Lemma 3.6, the op-
erators L∗L and MθT M∗

θT
are mutually orthogonal projections which add up to

identity. Therefore the subspace L∗H is the orthocomplement of the range of MθT :

L∗H = (H(C) ⊗DT∗) 
 MθT (H(C) ⊗DT ).

Now by Theorem 3.3, L∗T ∗
i = (Mzi ⊗ 1DT∗ )∗L∗. Thus the subspace L∗H is

co-invariant for the shift and, via the identification of H with L∗H, the operators
Ti in B(H) coincide with the compressions of the operators Mzi ⊗ 1DT∗ to the
space HT . �

So every pure commuting contractive tuple T on a Hilbert space H is unitarily
equivalent to the commuting tuple PHT (Mz ⊗ 1DT∗ )|HT , where HT is the M∗

z -
invariant subspace (H(C) ⊗DT∗) 
 MθT (H(C) ⊗DT ) of H(C) ⊗DT∗ .

4. The characteristic function as a complete unitary invariant

Definition 4.1. Given two commuting contractive tuples T and R on Hilbert spaces
H and K, the characteristic functions of T and R are said to coincide if there
exist unitary operators τ : DT → DR and τ∗ : DT∗ → DR∗ such that the following
diagram commutes for all z in Bn:

DR DR∗
θR(z)

τ τ∗

DT DT∗
θT (z)

�

�

� �

In this section, we prove that the characteristic function of a pure commuting
contractive tuple is a complete unitary invariant.
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Proposition 4.2. The characteristic functions of two unitarily equivalent commut-
ing contractive tuples coincide.

Proof. Let T and R be two commuting contractive tuples on H and K, respectively,
such that there is a unitary operator σ : H → K satisfying σTiσ

∗ = Ri for all i.
Denote by σ and σ∗ the operators

⊕n
i=1σ : Hn → Kn and i ⊕n

i=1 σ∗ : Kn → Hn.

Then it is easy to see that σD2
T σ∗ = D2

R and σD2
T∗σ∗ = D2

R∗ . Thus σDT σ∗ = DR

and σDT∗σ∗ = DR∗ . Hence τ : DT → DR defined by τ = σ |DT is a unitary
operator between DT and DR. Similarly, the restriction τ∗ = σ |DT∗ defines a
unitary operator from DT∗ to DR∗ . Finally, note that

θR(z)τ = (−R + DR∗(1 − ZR∗)−1ZDR)σ |DT .

= −σT + DR∗(1 − ZR∗)−1Z σDT .

= −σT + DR∗(1 − ZR∗)−1σZDT

= −σT + σDT∗(1 − ZT ∗)ZDT

= τ∗θT (z),

for all z ∈ Bn. Hence the two characteristic functions θT and θR coincide. �

Next we prove the converse of the above proposition for the case of pure
tuples.

Proposition 4.3. Let T and R be two pure commuting contractive tuples on H and
K, respectively. If their characteristic functions θT and θR coincide, then the tuples
T and R are unitarily equivalent.

Proof. Let τ ′ : DT → DR and τ
′
∗ : DT∗ → DR∗ be two unitary operators such that

the diagram

DR DR∗
θR(z)

τ
′

τ
′
∗

DT DT∗
θT (z)

�

�

� �

commutes for all z in Bn. The operators τ ′ and τ ′∗ give rise to unitary operators
τ = 1⊗τ ′ : H(C)⊗DT → H(C)⊗DR and τ∗ = 1⊗τ ′

∗ : H(C)⊗DT∗ → H(C)⊗DR∗

which satisfy the intertwining relation

MθRτ = τ∗MθT .
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We conclude that

τ∗(HT ) = τ∗((RanMθT )⊥) = τ∗(RanMθT )⊥ = (RanMθR)⊥ = HR,

where HT and HR are the model spaces for T and R as in Theorem 3.7. Since the
operator τ∗ interwines the tuples (Mz ⊗1DT∗ )∗ and (Mz ⊗1DR∗ )∗ componentwise,
the induced unitary operators τ∗ : HT → HR intertwines the adjoints of the re-
strictions of these tuples, which are precisely the model tuples PHT (Mz⊗1DT∗ )|HT

and PHR(Mz ⊗1DR∗ )|HR. But then Theorem 3.7 shows that T and R are unitarily
equivalent. �

Summarizing the last two propositions we obtain the main result of this
paper.

Theorem 4.4. Two pure commuting contractive tuples T and R on Hilbert spaces H
and K are unitarily equivalent if and only if their characteristic functions coincide.

Let T ∈ B(H)n be a pure commuting contractive tuple on a separable Hilbert
space H. Arveson used in [3] the abstract solution of the factorization problem

1H(C)⊗DT∗ − L∗L = MϕM∗
ϕ

to construct an invariant for pure commuting contractive tuples T ∈ B(H)n with
finite defect, that is, with dim(DT∗) < ∞, called the curvature invariant. Since we
know that the characteristic function θT of T can be used for ϕ, we see that the
curvature invariant is completely determined by the characteristic function of T .
We end this paper by briefly indicating this connection between the characteristic
function and the curvature invariant.

By Corollary 2.3 the characteristic function θT is a bounded analytic function
with values in B(DT ,DT∗) and supremum norm bounded by one. Suppose that
the number d = dim(DT∗) is finite. Then B(DT ,DT∗) is topologically isomorphic
to a separable Hilbert space, and therefore θT has a pointwise radial limit almost
everywhere defining a function θ̃T : ∂Bn → B(DT ,DT∗) belonging to the unit ball
of L∞(∂Bn,B(DT ,DT∗)). Define kT : Bn → B(DT∗ ,H) by

kT (z) = (1 − TZ∗)−1DT∗ .

It follows from Lemma 2.2 that

1 − θT (z)θT (z)∗ = (1 − ‖z‖2)kT (z)∗kT (z) (z ∈ B
n).

Using the definition given by Arveson in [3] we obtain the following repre-
sentation of the curvature invariant of T in terms of the characteristic function

K(T ) = lim
r↑1

(1 − r2)
∫

S

trace kT (rz)∗kT (rz)dσ(z)

=
∫

S

trace (1DT∗ − θ̃T (z)θ̃T (z)∗)dσ(z).

Here S = ∂Bn is the unit sphere and σ denotes the normalized surface measure
on S.
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