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A plethora of strange nonchaotic attractors
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Abstract. We show that it is possible to devise a large class of skew-product dynamical systems
which have strange nonchaotic attractors (SNAs): the dynamics is asymptotically on fractal attrac-
tors and the largest Lyapunov exponent is non-positive. Furthermore, we show that quasiperiodic
forcing, which has been a hallmark of essentially all hitherto known examples of such dynamics is
notnecessary for the creation of SNAs.
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1. Introduction

Since 1984, when Grebogi, Ott, Pelikan and Yorke [1] described attractors that were
strange but not chaotic, interest in these exotic objects has been increasing [2]. Several
studies, both theoretical [3–9] and experimental [10–15], have, over the years, elucidated
the principal features of such attractors which appear to be generic in quasiperiodically
driven nonlinear dynamical systems. These are geometrically strange sets (fractals) on
which all Lyapunov exponents are either zero or negative. Further, owing to their fractal
character, motion on SNAs is intermittent and aperiodic.

A very important connection between classically driven systems and the Schr¨odinger
equation for a particle in a quasiperiodic potential [16] makes the correspondence between
nonchaotic attractors and localized states [17–19], and this further underscores the interest
in strange nonchaotic attractors (SNAs). These results show that the transition from an
invariant circle to SNA in the iterative mapping is related to the transition from extended
to localized states in the quantum system.

Although there are many known examples of systems with SNAs, proving the existence
of such attractors is a mathematically nontrivial task. Indeed, rigorous results exist for only
two systems—the original system introduced by Grebogiet al, and the Harper map [17].
Keller [20] and Bezhaeva and Oseledets [21] have shown in the dynamical system [1]

xi+1 = 2� cos 2��i tanhxi; (1)

�i+1 = f! + �ig; (2)
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(we use the notationfyg � y mod 1) that for� sufficiently large and for! an irrational
number, the attractor is fractal, has a singular-continuous spectrum, and is the support of
an ergodic SRB measure [22]. For the Harper map (E being a parameter)

xi+1 = �[xi �E + 2� cos 2��i]
�1; (3)

�i+1 = f! + �ig; (4)

a persuasive argument [17] suggests that, again for� sufficiently large and! irrational,
the attractor of the dynamics is fractal, and the dynamics is nonchaotic since the Lyapunov
exponent is nonpositive [18].

Virtually all known examples of systems with SNAs—and the two cases above are
typical—have the skew-product [22a] form and have a quasiperiodic driving term. How
necessary are these features? This question has considerable practical relevance since there
are known cases ofexperimentalsystems [14,15] where the dynamics appears to be on
strange nonchaotic attractors, but where there is no quasiperiodic driving. Furthermore,
it is also known that a judicious choice of forcing term can convert chaotic dynamics to
nonchaotic dynamics [23–26]. Are the resulting attractors SNAs? In particular, can SNAs
be formed via non-periodic (and also not quasiperiodic) driving of a nonlinear system?

In the present paper we address two issues that are of concern in the study of SNAs.
The first deals with the ubiquity of such attractors: what are the necessary conditions for a
dynamical system such that SNAs result? While we do not provide an exhaustive answer,
our study shows that strange nonchaotic dynamics can be realized in a wide variety of
systems, and may in fact be quite common. Our examples all remain, however, within the
skew-product paradigm. The second issue relates, as discussed above, to the necessity of
quasiperiodic forcing and we find that it is possible to construct dynamical systems wherein
there isnoexplicit quasiperiodic forcing and the dynamics is on SNAs.

These results are described in the following two sections of this paper. Inx2, we extend
the general arguments which establish the existence of SNAs in eqs (1) and (3) so as to
yield a large variety of dynamical systems wherein the motion will remain on SNAs. In
x3, we further generalize the dynamics so that the forcing is no longer quasiperiodic but
the resulting dynamics continues to be on SNAs. This is followed by a brief summary and
discussion inx4.

2. Strange nonchaotic dynamics

By now there is a host of examples of strange non-chaotic dynamics [2] in driven systems.
These include both flows such as the driven Duffing oscillator [27,28] and iterative maps
such as the driven logistic map [29,30]. Most studies to date have relied on numerical
techniques to establish the presence of SNAs, by explicitly computing the Lyapunov expo-
nents and by determining the fractal dimension. SNAs are ‘intermediate’ between strange
chaotic attractors and nonchaotic regular dynamics with regard to many dynamical and
structural properties, some of which can be determined through study of power-spectra,
correlation functions, and related measures (see ref. [2] for a recent review). The most
extensively studied cases all have a skew-product dynamical structure, and thus these are
systems inn+1 dimensions, the latter dimension pertaining to the dynamics of the driving
term.
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In the present paper, we study the case of driven iterative maps in 1+1 dimension for
convenience. Rigorous mathematical results concerning SNAs are so far available only
for the simplest such examples. However, the arguments presented here largely carry over
to the case of flows as well, and can be extended to higher dimensions, so this is not a
restriction.

2.1 Generalizing the original SNA system

The following heuristic arguments, first put forward by Grebogiet al [1] for the system
embodied in eq. (1) suggest that SNAs should occur for appropriate values of�.

The mappingx! 2� tanhx is 1�1 and contracting, taking the real line into the interval
[�2�; 2�]. Because! is an irrational number, the dynamics in� (cf. eq. (2)) is ergodic in
the unit interval. The attractor of the dynamical system eq. (1) therefore must be contained
in the strip[�2�; 2�] 
 [0; 1]. A point xn with the corresponding�n = 1/4 will map to
(xn+1 = 0; �n+1 = ! + 1=4), after which subsequent iterates will all remain on the line
(x = 0; �), as will points with�n = 3=4. This line therefore forms an invariant subspace,
but for large enough�, this subspace is transversally unstable. Thus, it follows that the
attractor has a dense set of points on the linex = 0; � 2 [0; 1] (since! is irrational), but
the entire line itself cannot be the attractor for� > 1, since the dynamics is unstable on
that line. There will, therefore at some�, be a ‘blowout bifurcation’ [8,9] transition to
strange nonchaotic dynamics.

Generalizing eq. (1) (keeping the skew-product structure intact) as

xi+1 = �f(xi)g(�i); (5)

it is clear that the same arguments will carry over so long as the following properties hold:

(i) f(x) is 1–1 and contracting, withf(0) = 0:

(ii) f 0(0) 6= 0, and concurrently,
(iii) g(�) = 0 for some� = �

�
.

Then, clearly, all pointsx; �
�

will map to0; f!+�
�
g, and the subsequent dynamics will

be dense on the linex = 0; �. From condition (ii) above, this can be made unstable locally
for sufficiently large�, and from (i), since the map is contracting, the slopejf 0j � 1 almost
everywhere, the Lyapunov exponent can be made negative so as to give a SNA.

2.2 A piecewise linear SNA

A piecewise linear strange non-chaotic attractor can be simply obtained by taking, in eq.
(5),

f(x) = �x jxj � 1=�

= sign(x) jxj > 1=�; (6)

g(�) = �� 1=2: (7)

It is easy to verify that there is indeed a blowout bifurcation near� � 2:33 (figure 1a),
above which the attractor is strange and nonchaotic: see figure 1b.
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Figure 1. The piecewise linear system with! = (
p
5� 1)=2. Plot of (a) the Lyapunov

exponent as a function of the parameter�, showing the blowout bifurcation at� � 2:33,
above which the Lyapunov exponent! �1, and (b) the strange nonchaotic attractor
for � = 2:5

2.3 Generalizing the Harper map

In the Harper map, on the other hand, the argument for the existence of strange nonchaotic
dynamics proceeds as follows [17]. In the strong coupling limit,�!1, eq. (3) reduces
to

xi+1 = �[2� cos 2��i]
�1: (8)

Clearly, for�i = 1=4 or �i = 3=4 this gives a singularity in the neighbourhood of which
the mapping locally looks like a hyperbola. Since the� dynamics eq. (2) is ergodic in
the interval [0,1], the image of this singularity is dense: on every�-fiber there will be a
singularity, and thus the dynamics is on a strange set. By continuity, even away from the
strong coupling limit but for� large enough, this argument suggests that the dynamics can
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be strange. (In fact, for eq. (3), there are SNAs even at� = 1.) For a suitable choice
of functionf(x), the Lyapunov exponent may turn out to be negative; in such a case, the
attractor is strange and nonchaotic. For the Harper map [18], whenE = 0 this is indeed
the situation.

Proceeding as above, one can generalize the Harper map (with the�-dynamics un-
changed) as

xi+1 = [f(xi) + 2�g(�i)]
�1; (9)

wheref andg are now arbitrary functions, the only additional requirement being thatg(�)
should have a zero in the interval [0,1]. For suitable functionsf(x), the Lyapunov exponent
can indeed be made zero or negative, giving therefore, SNAs.

2.4 SNAs of the Fibonacci chain

The Harper map [17] derives from the Harper equation [31] which is the discrete
Schrödinger equation for a particle in a quasiperiodic potential,

 n+1 +  n�1 + V (n) n = E n; (10)

 n denoting the wave-function at lattice siten, the potential beingV (n) = 2� cos 2�(n!+
�0). The identification n�1= n � xn, connects eqs (10) and (3). This system is known
to have critical (or power-law localized) states for� = 1, when the classical system has
critical SNAs [19]. It is also known that other forms of the potentialV (n) support critically
localized states [32–35], one example being the Fibonacci chain with

V (n) = � 0 � fn!g � !; (11)

= �� ! < fn!g � 1; (12)

when all states are critical for any�.
The classical map corresponding to this potential is

xi+1 = �[xi �E + V (i)]�1; (13)

�i+1 = f! + �ig; (14)

whereV (i) is given by eq. (11), and there is an additional overall phase� 0. It is a simple
task to compute the Lyapunov exponent for this mapping (figure 2a); ifE is an eigenvalue,
then the Lyapunov exponent is zero. Comparing eq. (9) with eq. (13), the conditions on
the functionsf andg are met, and therefore, the attractors of the above system are SNAs;
see figure 2b for an example.

3. SNAs without quasiperiodic driving

It is clear from the above constructions, that there are two main ingredients in achieving
SNAs in dynamical systems such as eqs (5) or (9). Firstly, one needs some mechanism for
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Figure 2. The Fibonacci chain, where! = (
p
5� 1)=2. (a) Variation of the Lyapunov

exponent with forcing parameter�. Each zero of the Lyapunov exponent corresponds
to an eigenstate in the quantum system, and a critical SNA in the classical system. (b)
A typical SNA in this system, forE = 0, � = 0:8326745 Note that the variable plotted
on the ordinate is tanhx rather thanx; this is merely for convenience.

local instability while maintaining global stability. The main purpose of the quasiperiodic
driving, namely the� dynamics which is governed by eq. (2), is to make the instabilities
dense in�.

This suggests that a generalization of eq. (5) to

xi+1 = �f(xi)g(�i); (15)

�i+1 = h(�i); (16)

or of eq. (9) to
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xi+1 = �[f(xi) + �g(�i)]
�1; (17)

�i+1 = h(�i); (18)

where the functionh is not necessarily the rigid rotation, but is otherwise such that the
orbit hn(�

�
) is dense will still yield SNAs for sufficiently large�.

To be mathematically more precise [36], we need thath be a homeomorphism with an
invariant ergodic probability measure of full support, and that theh�1 orbit of�

�
be dense,

in which circumstances, the resulting attractor can be shown to be a SNA, following the
basic proof given by Keller [20] for the casef � tanh, g � cos andh the irrational rigid
rotation. The basic property that is required is that the mappingh(�) take the interval
[0; 2�] into some continuous subinterval (at least), and that the orbit of a typical point
should be dense in this subinterval.

It should be added that the functionh should have only nonpositive Lyapunov expo-
nents since the skew-product form for the dynamical system is being retained. There are
a number of possible choices forh which are distinct from the quasiperiodic rotation, but
which use related maps to generate ergodic flows. This follows from the Weyl theorem
[37] which states that ifH is a polynomial function of degreer � 1 with real coefficients
a0; : : : ; ar, at least one of which is an irrational number, then the map

�n = fH(n)g � fa0 + a1n+ � � �+ arn
rg (19)

is ergodic, and the sequencef�ng is uniformly distributed in the interval [0,1]. IfH is
nonlinear, then it can be easily verified that the sequencef�ng is not quasiperiodic, but the
Lyapunov exponent is zero since the map preserves distance.

An example of such a system is easy to devise. A simple choice is to takeH(n) =
!n2; ! irrational, which gives

xi+1 = �f(xi)g(�i) (20)

�i+1 = f�i + (2i+ 1)!g: (21)

The SNA which obtains forf andg given by eqs (6) and (7), for a suitably large value of
� is shown in figure 3a.

Of course, it is also possible to use other mappings which generate quasiperiodic motion
to determine the� dynamics. Many examples of such maps are known, as for instance the
diffeomorphisms

�! f�+
+ �a(�)g (22)

for 
 a constant,� sufficiently small anda an arbitrary analytic function. The orbits are
everywhere dense on the interval and typically have irrational rotation number; indeed,
by Denjoy’s theorem, any orientation preservingC 2 diffeomorphism of the circle is topo-
logically equivalent to a rigid rotation [38]. In the specific case of the circle map with
a(�) � sin 2�� the parameter ranges wherein the map has irrational winding number have
been comprehensively described.

Other possibilities forh exist: there are examples of integrable geodesic flows on com-
pact manifolds which have positive topological entropy but have no positive Lyapunov
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Figure 3. (a) SNA in the system eq. (20) where the driving is no longer quasiperiodic.
The parameters are� = 2:5; ! is the golden mean ratio. (b) SNA in the system given
by eqs (23)–(25), where the map governing the� dynamics itself has SNA dynamics.
The parameters� and� are both 2.5.

exponents [36], or one can even takeh to be a SNA map such as eq. (1) itself, since that is
known to provide an ergodic flow [20]. This yields, for instance, the system

xi+1 = 2��i tanhxi; (23)

�i+1 = 2� cos 2��i tanh�i; (24)
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�i+1 = f! + �ig; (25)

which has strange nonchaotic attractors for suitable values of� and�, see figure 3b.

4. Discussion and summary

Although so far all known examples of systems with strange nonchaotic dynamics have ap-
peared to require quasiperiodic forcing, the present work shows that this is, in fact, not nec-
essary. By suitably generalizing systems wherein SNAs are known to exist [17,18,20,21],
we have constructed dynamical systems where the motion is on strange nonchaotic attrac-
tors and there is no quasiperiodic driving. This has particular relevance to experimental
observations of apparently nonchaotic attractors where the dynamics does not have ex-
plicit quasiperiodic forcing. One specific example is of a gas discharge plasma where the
light flux as a function of time (with current as the driving parameter) appears to lie on a
SNA. This has been deduced by attractor reconstruction and extraction of fractal dimen-
sion and Lyapunov exponents [14]. The other example [15] pertains to the effect of noise
which allegedly reproduces the effect of many-frequency quasiperiodic driving.

In addition, we have also shown that strange nonchaotic dynamics can be quite common.
Our approach has been heuristic: the same deconstruction also provides a prescription for
obtaining a large variety of dynamical systems wherein SNAs must occur. We have shown
examples of two specific systems wherein the attractors are piecewise-linear fractals. De-
tailed analyses of such examples may prove to be simpler than the cases studied so far.

This procedure for creating SNAs is clearly not exhaustive and there may be different
generalizations that will also yield strange nonchaotic dynamics. In particular, we have
chosen to stay within the ‘skew-product’ class of mappings, although other possibilities
[39] may be compatible with such dynamics as well.
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