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Recurrences of strange attractors
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Abstract. The transitions from or to strange nonchaotic attractors are investigated by
recurrence plot-based methods. The techniques used here take into account the recurrence
times and the fact that trajectories on strange nonchaotic attractors (SNAs) synchronize.
The performance of these techniques is shown for the Heagy–Hammel transition to SNAs
and for the fractalization transition to SNAs for which other usual nonlinear analysis tools
are not successful.
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1. Introduction

A strange attractor is an object in the phase space generated by a nonlinear dy-
namical system, which usually corresponds to chaotic behaviour of the system.
However, another type of attractor was found about two decades ago, i.e., strange
nonchaotic attractors (SNAs) [1]: here we have a strange attractor but the corre-
sponding dynamical system is not chaotic. SNAs mainly appear in quasiperiodically
forced nonlinear systems. These objects lie in between quasiperiodicity and chaos.
They are strange because the relations showing the dependence of the dynamical
variables on the phases are not smooth. Their nonchaotic behaviour, which is due
to the fact that they are not sensitive to changes of initial conditions, can be char-
acterized by the largest Lyapunov exponent which is negative. SNAs have been
reported in many situations using usual methods of nonlinear analysis and a quite
complete description of these exotic attractors has been recently given [2,3].

In 1987, a new method of data analysis, called recurrence plots (RPs), was intro-
duced [4]. Many contributions have been reported since then, showing the relevance
of this method for short, nonstationary data and its applicability to data from dif-
ferent fields of research, such as physiological and climate data [5]. Since RPs have
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been shown to be efficient in detecting various qualitative transitions in the dy-
namics of different systems, we have intended to propose a recurrence approach in
order to detect the transitions from or to SNAs too.

The outline of this paper is as follows: in §2, we present the recurrence approach
to detect the different transitions. This approach is applied in §3 to detect transi-
tions to SNAs in the quasiperiodically forced logistic map. Section 4 examines the
transition from SNAs to chaos. Section 5 summarizes the results.

2. Recurrence approach

RPs allow visualizing the recurrence of states in phase space. A particularity of
RPs is that they even enable the visualization of higher-order dimensional phase
space trajectories through a two-dimensional representation of their recurrences.
Considering an m-dimensional phase space trajectory ~xi ∈ Rm (i = 1, . . . , N), the
RP is obtained by calculating a N ×N matrix:

Ri,j = Θ(δ− ‖~xi − ~xj ‖), i, j = 1, . . . , N, (1)

where δ is a predefined threshold, Θ(·) the Heaviside function and ‖ · ‖ denotes a
norm, here the maximum norm. Points that are closer (respectively further) than
δ yield an entry ‘1’ (respectively ‘0’) in the matrix Ri,j . Then, the values ‘1’ and
‘0’ are plotted in the two-dimensional (i–j) plot, providing a visual representation
of the system’s dynamics.

A closer inspection of the RP reveals small structures which are single dots and
lines which can be diagonal, vertical as well as horizontal lines. A recurrence quan-
tification analysis (RQA) based on diagonal lines in the RP has been introduced
in [6,7]. Marwan et al [8] have proposed further measures of complexity to quan-
tify vertical structures in RPs. Recently, we have introduced statistical measures
based on recurrence times and on the main diagonal line of the cross-recurrence
plot (CRP) in order to detect the transitions from or to SNAs [9]. In the following,
we recall briefly these statistics.

Transition from a quasiperiodic to a SNA: To detect the transition from quasiperi-
odic dynamics to SNAs, we are interested in the vertical distances between recur-
rence points in the RP. These vertical time distances between recurrence points
have been first analyzed by Gao who has called them recurrence times [10]. We
evaluate the frequency distribution P (w) of the lengths w of these time distances.
We then compute the mean value of this distribution which is the mean recurrence
time (TMRT):

TMRT =
N∑

w=1

wP (w)
/ N∑

w=1

P (w). (2)

Furthermore, we extract the maximum value of the distribution and call it number
of recurrence of the most probable recurrence time (NMPRT):

NMPRT = max({P (w)}; w = 1, . . . , N). (3)

1040 Pramana – J. Phys., Vol. 70, No. 6, June 2008



Recurrences of strange attractors

Finally, we compute the variances σMRT of TMRT and σMPRT of NMPRT. For a given
sufficiently long trajectory, the variances are evaluated by dividing the trajectory
into k segments and computing TMRT and NMPRT for each segment separately.
These are

σMRT =
1

k − 1

k∑

l=1

(TMRT(l)− T̄MRT)2 (4)

and

σMPRT =
1

k − 1

k∑

l=1

(NMPRT(l)− N̄MPRT)2, (5)

where the overbar indicates the mean value.

Transition from SNAs to chaos: To detect the transition from SNAs to chaotic
dynamics, we mainly explore the property that two trajectories on a SNA, start-
ing at different initial conditions but driven by the same quasiperiodic force with
identical phase, completely synchronize [11]. Note that, this is not the case for two
chaotic trajectories. In order to identify the complete synchronization, we compute
the cross-recurrence plot (CRP) of the two trajectories. A CRP is an extension of
the RP which enables a nonlinear analysis of bivariate data [12]. A CRP consists
of the visualization of the cross-recurrence matrix

CRi,j = Θ(δ− ‖~xi − ~yj ‖) (6)

of the two separate trajectories ~xi and ~yj with i, j = 1, . . . , N ; ~xi ∈ Rm and
~yj ∈ Rm. We will reconstruct the trajectories by delay coordinates [13], with
embedding dimension m and delay τ . In this case, the value for the threshold δ is
of the order of the average standard deviation σ of the two time series. Although
it is possible to use real coordinates here, we have found it useful to study a case
of data generated by embedding which is of relevance in experiments where usually
only one observable of the system is available. Our indicator of synchronization is
based on the main diagonal line or line of identity of the CRP, more precisely, on the
measure of complexity determinism (DET) [5] computed on the main diagonal line.
If both trajectories synchronize, the main diagonal line of the CRP is continuous,
otherwise it is interrupted. The determinism (DET) is given by

DET =
N∑

l=lmin

lD(l)
/ N∑

l=1

lD(l), (7)

where D(l) denotes the frequency distribution of the length l of diagonal lines.
Computing DET only for coordinates i = j, we find DET = 1 when both trajectories
~xi and ~yj synchronize and DET < 1 when they do not. Therefore, computing DET
as a bifurcation parameter is varied, will allow us to detect the transition from
SNAs to chaotic attractors.
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Figure 1. Collision of tori in the Heagy–Hammel route to SNAs in the logistic
map (eq. (8)). (a) Behaviour of TMRT; (b) behaviour of NMPRT; (c) variance
of TMRT and (d) variance of NMPRT. The critical value αc = 3.271383.

3. The transition from quasiperiodic dynamics to SNAs

As already mentioned, SNAs appear to be typical in quasiperiodically forced sys-
tems, i.e., if one chooses a single parameter value of the system at random, then
the probability that this parameter value yields a SNA is not zero. Many studies
have reported different mechanisms through which SNAs could appear in a system.
In this section we apply the previously introduced recurrence approach to detect
the transition to SNAs through the Heagy–Hammel and fractalization routes. The
system that we consider is the quasiperiodically driven logistic map, given by

xn+1 = α[1 + ε cos(φn)]xn(1− xn),
φn+1 = φn + 2πω mod 2π. (8)

The mechanism of creation of SNAs described by Heagy and Hammel [14] occurs
in the entire class of quasiperiodically forced systems possessing a period doubling
cascade without forcing. Following [14], we consider eq. (8) beyond the first period-
doubling bifurcation with ε = 0.1 and ω = (

√
5−1)/2. For α = 3.246, the attractor

in the (φ, x) phase has two smooth branches forming a period-2 attractor (T2) and
an unstable torus with only one branch. This period-1 repellor (T1) is located in
the middle between the two branches of the T2 attractor. For α = 3.271, the two
branches of the T2 attractor become more and more wrinkled. As α increases,
the two branches come closer and closer to the T1 torus, which then cross at
α = 3.272. From this collision, a SNA is created. The merging of attractors occurs
at the critical value αc = 3.271383. We compute the recurrence measures TMRT

and NMPRT using a normalized time series consisting of N = 10,000 data points.
To compute the variances σMRT and σMPRT, we use N = 300,000 data points in

total and N = 2,000 data points as the length of each segment. The threshold for
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Figure 2. Fractalization route in the logistic map (eq. (9)). (a) Variance
of TMRT; (b) variance of NMPRT; variances computed using the threshold
δ = 0.05σ, N = 750,000 data points as the whole trajectory and N = 3,000
as the length of each segment. The critical value of the bifurcation parameter
εc ≈ 0.1553.

the computation of RPs is δ = 0.001σ. Note that, in this case, we have used original
coordinates which have been normalized leading the standard deviation of the data
to unity. Except the measure NMPRT, the three other recurrence measures present a
drastic change at the critical value αc = 3.271383, indicating the transition to SNA.
This is the value at which Heagy and Hammel identified the merging of attractors
leading to the creation of SNAs [14]. Before the critical value, TMRT increases
rather smoothly and σMRT and σMPRT are almost constant. After the merging of
the T2 and T1 tori, the recurrence measures fluctuate strongly, confirming a new
regime, which is the SNA one (see figure 1).

We now turn to another transition to SNAs called the fractalization route, which
was first described by Kaneko [15]. It is a very common route to SNAs, in which
a torus becomes more and more wrinkled until it breaks and gives birth to a SNA
without any interaction with a nearby unstable orbit. The usual techniques of
nonlinear analysis, such as the Lyapunov exponents, are not able to detect this
transition. We study this fractalization route in the logistic map using the same
parameters as in [16]:

xn+1 = axn(1− xn) + ε sin(2πθn),
θn+1 = θn + ω mod 1. (9)

The parameter a is fixed to a = 3, ω = (
√

5 − 1)/2 and ε is considered as a
bifurcation parameter. Nishikawa et al [16] found that at ε = 0 the attractor in
phase space is a straight-line torus. Some oscillations of the torus happen as ε is
increased. The torus becomes fractal at ε ≈ 0.1553. To compute the recurrence
measures, we used original coordinates which we normalized. The threshold used
is δ = 0.05σ. Before the critical value the measures of complexity (namely the
variances σMRT and σMPRT) vary slightly. At the critical value εc ≈ 0.1553, the
recurrence measures increase suddenly. For the values of the bifurcation parameter
in the SNA regime, the measures fluctuate more strongly (figures 2). The measures
of complexity are again able to clearly detect this transition.
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Figure 3. Transitions from SNAs to chaotic attractors in the logistic map
(eq. (8)). (a) Maximal Lyapunov exponent; (b) measure of complexity DET
computed using the threshold δ = 0.2σ, where σ is the average of the individual
standard deviations of the two time series. The embedding dimension is m = 3
and the delay is 1.

4. The transition from SNAs to chaotic attractors

To detect this transition, we use the idea of synchronization of trajectories on SNAs
introduced in [11]. A complete synchronization of SNAs is possible because their
largest Lyapunov exponents are negative. In contrast, in the chaotic regime, both
systems have positive Lyapunov exponents and therefore, they show an exponential
divergence and do not become synchronized. The transition from SNAs to chaotic
attractors is a purely dynamical one: the structure of the attractor remains es-
sentially unchanged, while the largest Lyapunov exponent becomes positive. The
recurrence measure which we use to identify this transition is based on the deter-
minism DET of the cross-recurrence matrix defined in eq. (6) for two different time
series generated by the same initial phase θ0.

We exemplify this transition in the quasiperiodically forced logistic map (eq. (8))
rewritten with a rescaled driving parameter ε′ = ε/(4/α − 1) fixed to ε′ = 1 and
varying α. The trajectories are reconstructed by delay coordinates with embedding
dimension m = 3 and delay 1. From figures 3 it can be seen that DET can detect
clearly the transition from a SNA to a chaotic attractor. When the Lyapunov
exponent changes from negative to positive, DET also changes and becomes smaller
than one. DET and the others proposed measures of complexity that are found to
be robust to added external noise [9], which is crucial in the context of the analysis
of experimental data.

5. Summary

The main objective of this work has been to use measures of complexity based
on recurrence plots in order to detect transitions to or from SNAs. Four measures:
TMRT, NMPRT and their variances, have been introduced in order to detect the tran-
sitions from quasiperiodic dynamics to SNAs. These measures are derived from the
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distribution of the lengths of vertical distances between recurrence points in the
recurrence plots. The determinism DET computed on the main diagonal line of
cross-recurrence plots was introduced to detect the transitions from SNAs to chaos.
All these measures are able to detect clearly the different transitions. The measures
were able to detect the collision of attractors in the route to SNAs introduced by
Heagy and Hammel. Furthermore, they detect the critical value at which a torus
becomes fractal in the fractalization route to SNAs. This result is important be-
cause the usual methods of nonlinear analysis fail here. Another advantage of these
measures – which are robust against noise – is that, they can detect the transitions
even when the orbits are not very long, in contrast to Lyapunov exponent-based
measures. Furthermore, they do not require the knowledge of the equations govern-
ing the system under study. Therefore, they are very appropriate for the analysis
of experimental data.
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