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Small Resolutions of Schubert Varieties
Kazhdan-Lusztig Polynomials

By

Parameswaran SANKARAN* and P. VANCHINATHAN*

§1. Introduction

Let G be a complex semisimple algebraic group. Let B, F, W, and S denote
respectively a Borel subgroup, a fixed maximal torus contained in B, the Weyl
group of G with respect to F, and the set of fundamental reflections in W. Let P
denote a parabolic subgroup which contains B. We denote by Wp c W the Weyl
group of P. For A,EW/Wp let e^ denote the corresponding F-fixed point of G/ P.
Let X(A)cG/P denote the Schubert subvariety determined by k£W/Wp.
Thus,X(A) is the Zariski closure of the 5-orbit of e^ e G/ P. The point <?A will be
referred to as 'the centre' of X(A).

Recall that a resolution p: X —> X of an irreducible complex projective
variety X is said to be small if, for each / > 0 one has

codimx {x E X\ dim p~l (x) > i} > 21.

If p : X - ^ > X is a small resolution, then for the intersection cohomology sheaf
#'(X) (with respect to the middle perversity), the stalk 7/'(X)K is isomorphic to

the singular cohomology group H'(p~l(x);C) for any i > 0 . Suppose

p: X(A) -> X(A) is a small resolution of Schubert variety X(A)czG/£ , A e W ,
and let X(r) e X(A) be a Schubert subvariety. It is well-known that the Poincare
polynomial in q l / 2 of the fibre p~l(eT} of p is equal to the Kazhdan-Lusztig
polynomial P rA(g), where T < A, A, r e W [4]. Suppose that, for some g e G ,

gX(A) = X(A). Then g induces an isomorphism of the intersection cohomology
sheaf #(X) such that # (X\ maps onto #(X)^. In particular />

8 A(^) = P r A(^)
if PXX(9) = X(r) c X(A) where FA denotes the largest parabolic subgroup that

stabilizes X(A).
Suppose X(A) dGI P. Let A0 e W denote the representative of A of maximal

length. Then PA = PA, the largest parabolic that stabilizes X(A). Also if
X(T) e X(A) is /{-stable, then so is X(r0) c X(A0).
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In our previous paper [6], we exhibited small resolutions for certain Schubert
varieties in G/Pn where G = SO(2n) or Sp(2n). Here Pn denotes the parabolic
subgroup which corresponds to omitting the right end root an , where we follow
the conventions of [1] for labelling the simple roots of G. We also exhibited
Schubert varieties in Sp(2ri)/ Pn for which there exists no small resolution at all.
In Theorem 1 of the present paper we shall give an inductive formula for the
Poincare polynomial of the fibres when p : X(A) — » X(A) is a small resolution
constructed in [6]. This readily yields a formula for the Kazhdan-Lusztig
polynomial PT;L (q) , r < / L 0 , where /L0 denotes the representative of A,eW/Wp

of maximal length in W. See Theorem 2.4, [6]. In view of our remarks in the
previous paragraphs, we need only consider PA -stable subvarieties of X(A) while
computing Kazhdan-Lusztig polynomials.

A similar formula was obtained in the case of Grassmannian Schubert
varieties by A.V. Zelevinskii. In fact our proof of Theorem 1 is similar to that
given in [7] for Grassmannian Schubert varieties. Using Theorem 1 we obtain the
following result. In order to emphasise the dependence of PTA for T, A e W,
T < A, on (W, 5), we write PT\ for the Kazhdan-Lusztig polynomial.

Theorem. Let W be the Weyl group of G = SO(2n) or Sp(2n). Let A e W
be such that X(/L) admits a small resolution given by Corollary 4.3 [6]. Let 9 < A .
Then there exist elements B' , X' in W - W(SL(M)) for a suitable integer M,
such that

For the precise statement see Theorem 2. The above theorem reduces
calculation of Kazhdan-Lusztig polynomials of certain pairs of elements r < A in
the Weyl group of G = Sp(2n) or SO(2n) to the calculation of such polynomials
for a suitable pair of elements in the Weyl group of SL(M) for some M. We do
not know if the above theorem holds without any restriction on A e W . The above
theorem can be interpreted as comparing the nature of the singularity at ee in
X(A) c= Gl B with that of the singularity at eff in X(A') c SL(M)I B . However the
above theorem should be deducible as a consequence of a statement about the
geometry of singularities of the Schubert varieties involved. The precise
formulation of such a theorem is not clear to us.

We shall also consider the homogeneous variety E6/P6. Some results on
small resolutions, and description of singular loci for most of the Schubert
varieties in £6 / P6 are obtained. In cases where we obtain small resolutions, we
determine the Poincare polynomials of the fibres of the resolution. We are able to
completely determine which Schubert varieties in E6/ P6 are smooth. It turns out
that smooth Schubert varieties are all homogeneous varieties of the form PI Q
where P and Q are suitable parabolic subgroups of E6. The singular locus of a
Schubert variety in E6 / P6 is determined using the following observation:
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Fact. Let p : X — > X be a desingularization of an irreducible normal
complex variety. Let Z = [x e X\ dim p'1 (x) > 1}. Suppose that p~[ (Z) has
codimension at least 2. Then Z is the singular locus of X.

The reader is referred to Lemma 4.4 [5] for a proof.

It follows easily from the above fact that if p : X —> X is a small resolution of
a normal irreducible variety, then the singular locus of X is equal to
{jc e X\dimp~l(x) > 1}. In particular if X ( A ) < z G / # admits a small resolution,
then x € X(A) is rationally smooth point if and only if x is a smooth point of
X(A). Here G can be any semisimple complex algebraic group. It is known that
for Schubert varieties in SL(ri)l B, rational smoothness of a point is equivalent to
smoothness [2]. However it is not known if every Schubert variety in SL(ri)l B
admits a small resolution.

Acknowledgments
The authors are grateful to Professors C.S. Seshadri and V. Lakshmibai for many
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§2. Bott-Samelson Resolutions

In [6], we considered Bott-Samelson type resolutions p : X(A) —» X(A) of

Schubert varieties in GIF where G is a complex semisimple algebraic group
and P a parabolic subgroup of G. It was shown that certain Schubert varieties in
Sp(2n)/Pn and SO(2n)/Pn admit small resolutions of the Bott-Samelson type. We
calculate here the Poincare polynomials of the fibres of p: X(A) —> X(A). For this
purpose we first give an alternative, more convenient description of
p: X(A) -> X(A).

We consider the case G = SO(2n) first. The case of Sp(2ri) can be handled
similarly and hence will not be discussed in detail.

2.1. Let V be a 2n-dimensional complex vector space with 'standard basis'
{e,, ...,e?2J. Let j 3 : V x V - » C be the symmetric bilinear form defined by

P(e,,ej) = 8l2ll+l_/, l<i<j<2n. The matrix of fi with respect to the standard
0

basis is where / is the nxn matrix (/ t f), JtJ =SIJt+l_r Let V =(e}, ..., et){J (jj

:= span{e, , . . . , et } , 1 < i < 2n . Note that ( V )± = V2n~l , \<i<n. Thus we have the

"standard flag"

Note that p(V,Vn) = 0.
By definition, SO(2n) is the group of all C-linear automorphisms of V having

determinant 1 which preserve the bilinear form /?. Let B be the subgroup of
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SO(2n) such that B fixes the standard flag &~ . B is a Borel subgroup of SO(2ri).
Let T be the subgroup of all linear automorphisms of V such that et H-> tlel ,
ttt2n+l_t =1, ! < / < 2 r t , ff EC". Then T is a maximal torus of SO(2ri) and TdB.
Let P be the parabolic subgroup of SO(2n) which fixes the component Vn of the
standard flag ^ . Then P z> 5 and in fact P = Pn, the parabolic subgroup which
corresponds to omitting the right end root an (with respect to this choice of T ).
SO(2n)/Pn can now be identified with that component of {W a V \ j8(W, W) = 0,
dim W = w} which contains V" . In fact this is just the variety.

{WdV\fi(W,W) = Q, dimW = n, n - dim W n Vn is even} .

2.2. Now the T fixed points of the space SO(2n)/Pn are £A = (e^, ..., £A )
where A = ( A, , . . . , An ) satisfies (i) 1 < A, < • • • < A,z < 2n , (ii) if k occurs in A , then
2n+ \—k does not occur in A , (iii) n - r is even where r =# {j | Ay < n} .

Let Int denote the set of all sequence A = (AP ..., Ar) of integers with
1 < A, < • • • < A, < n . Note that any sequence A, , . . . , A, , with 1 < Aj < • • • < Ar < n and

H - r even uniquely determines a sequence A = (Ap ..., A;2) with A/+1 > n satisfying
conditions (i)-(iii) (cf. [3]) above and hence a F-fixed point eK. Thus the 7-fixed
points of SO(2ri)/Pn are labelled by lU-,,^4,, • One can identify W/W^ with
un-/«'«i^nr' wnere the Bruhat order is given by A > / £ if A e / / j r , ^u e 7/w , r<5
and A! > / l j , . . . ,A , >^.

For A e / / z r , n-r even, the Schubert variety determined by A is the 5-orbit
closure of eK , namely,

2.3. Similarly we regard Sp(2n) as the group of linear automorphisms of V
which preserve the skew-symmetric form ft' whose matrix with respect to the

0
standard basis is ,

L J \J

The subgroups B, T and Pn are defined just as in the case of SO(2n) using the
standard flag &. We identify Sp(2n)IPn with {W|j8 /(W,W) = 0, dimW = ̂ }.

2.4. The Schubert varieties of Sp(2ri)/ Pn are indexed by

W/Wpa = U / /M, where for Ae / / M .
0</</z

One has

X(A,) = {W<ESp(2n)/Pn \dimWnV*' > i, 1 < i < n}

with centre ^A =(eA | , . . . , ̂ A ). Here A, for r<i<n are determined by the
following conditions [3]: (i) (Ap . . . , An) e /9 / ! / z , (ii) if A; occurs In A, then
2n +1 - A, does not occur in A, and (iii) A/+1 > n .
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2.5. We recall the notations of [6]. For A = (AP ..., A, ) e Inr , a maximal

subsequence of consecutive integers in A is referred to as a 'block' of A. The
sequence A is clearly the concatenation of its blocks. Let al be the length and k,

the last term of the zth block. Then A determines a 2xm matrix
k ••• k

(k ••• k ^
On the other hand starting with a 2xm matrix '" with 0 < k, <•••

{"I '" anj

<km<n, Q<al<kl-kl_l, ( f c 0 =0) , £ a , = r , we obtain a unique element A of

Ini having at most m blocks. We often write

(k ••• k \
2.6. Let G = SO(2n) or Sp(2n). Suppose A- ' m \eW/WPi. Let ^

Vfll '" am)

denote the partial flag 0 d VA| c • • • cz V*"' c V . Then one can see easily that

X(h) = {WEG/Pn\dimWnVk> > a , + - - - + a l, l < i < m } .

Suppose ^' is another flag

OcW"1 eW"2 c i ---c=W"'" c » - c = V

with P(Wkm,WLm) = Q (resp. /3'(WA'", W^) = 0) when G = SO(2n) (resp.

is isomorphic to the Schubert variety X(A) = X(A,

2.7. We shall now give a slightly different description of the Bott-Samelson
type resolution of X(A) e G//^ constructed in Theorem 4.2 of [6] which is more

(k\ •'• k,n}useful for our present purposes. Let A equal either (i) with exactly

k{ ••- k,,, n
a\ •" an.,

blocks, G = S0(2n), 5p(2«), or (ii) I '"I with exactly m + l blocks,
v i in J

and G = S0(2rc). Let M denote the number of blocks in A; thus M = m, or m + l.

Let km+l = n , am+l = I.

Choose an / , 0<i<m. Let

Then the number of blocks of A' is M-l except when m = 1, in which case A' is
a smooth variety. Let U be any vector subspace of V such that Vkl c C7 c ^'+l
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and dim U = kt + al+l . The space of all such U can be identified with the
Grassmannian G0+j (V

k>+t IVk< ) , where £/h->£7, the image of U under the pro-

jection Vk'+l -> Vk'+l IVkl . Let ^,(E7) denote the partial flag

o c vk] c ••• c y*'-1 c f/ c y*'+2 c ••• c v*" c y.
Let

e Gfl (V*- / V*- ), U z> V*' , W e X(A'; <

One can readily identify X(A;0 with the associated fibre space P^x
j? = PA n PA, where PA denotes the parabolic which stabilizes the Schubert variety

X(A). The second projection Gfl|+j (y*'+1 / V k > ) x G / P n -*GIPn maps X(A;i) onto
X(A). The map ;r:X(A;/)-» X(A) defined by the second projection map is
surjective birational morphism.

The restriction to X(A;/) of the first projection map is a locally trivial fibre

bundle with fibre X(A7) . Iterating this procedure for A' in the place of A finally

leads to a desingularization p : X(A) —> X( A) . We remark that X( A) depends on

the successive choice of '/ ' made at each stage. Note that the definition of X(A)

depends on the choice of the flag ^. For emphasis we write p7 :X(A;^)

-> X(A;^), for the above resolution.

2.8. We note that X(A;^) is a sub variety of a certain product
G/Qi xG/Q2 x - - - x G/Qm+l where the Q, are certain maximal parabolic
subgroups of G. (For example, Ql =Pk+(l ). One has the following compatibility
properties:

(i). Suppose g e G , a n d ^' = g^\gVl d--gV" d-'-gV2'1 =y .Then

where by gx we mean image of x E G/Q, x- - -xG/Q ( , I + 1 under the diagonal
action.

(ii). Also,

#>^(*) = p^(gjr) e X(A;^') for every x

Furthermore,

;«^) = {(U, x) 1 17 e Gf lf+j (yA'+1 / V^ ), U =) V^- , ;

(iii). In particular, if g e F A , then g^ = ̂  and we deduce that p~ is FA-
equivariant. If jc, y e X(A) are in the same Px -orbit then it follows that p~~(x)



SMALL RESOLUTIONS 471

and p~~(y) are isomorphic as varieties, Consequently they have the same
Poincare polynomial.

Note. The above description of X(A) parallels the one given by Zelevinskii
for Grassmannian Schubert varieties [7].

§3. Main Results and Proofs

(k\3.1 . Let G = S0(2/i) or Sp(2ri) .Let A e W/ WP equal either (i)
Vfll

k, ••• k n
with exactly m blocks, G = SO(2n), Sp(2n), or (ii)

and G = 50(2n) .

We let

and bm=N-km where Af = rc if G = S0(2ra), and W = rc + l ifG = 5p(2/i). (Note

that in [6] bm was defined to be N -kn --r). We denote the number of blocks in

A by M, so that M = m, or m + 1. It follows from Theorem 3.1 of [6] that the
largest parabolic subgroup /^cG which leaves X(A)cG/ /^ stable corresponds
to omitting the roots {ak ,-

m,ctk } .

3.2. Let X(T) be a PA -stable subvariety of X(A)cG/P n . Suppose that for
r < A , C(T,A) = ( C J , - - - , C A / ) is the 'depth' sequence of Tin A so that

n\
where the column is present precisely whenG = S(9(2n) and cm is odd. See

Corollary 3.3 [6]. Now starting with a Schubert subvariety X(9) c
( 0 , , - - - , 0 s ) e In s, one has the following description of the Schubert variety

X(T) c X(A) such that 0 = X(r) = PA • X(0): Let f, =# {7 | £,_, < 0, < fc,, 1 < j < s],

1 < / < m, and let £ = 0 or 1 according as # {j \ km <dl <n,l<j<s} is even or odd.

Then

(hi ••• k, : n
T =

£
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Since X(0) c X(A), it follows from 2.6 that Zi<;<^7 ^Ii<7<,^ • We let c, =
2d<,<, (*, ~ aj)' 1 ̂  7 ̂  "i, and cm+1 = cm + £ -1. Then the depth of X(r) in X(A) is
c(T,A) = (c p - - - ,cM ) .

3.3. Assume that the following conditions on A hold:

(i) km<N-am,
(ii)for i >1, one has &,„ < Af-(0m + «„,_, +»- + a,) + (feIII_i + --- + fel).
Under the above assumptions X(A) admits a Bott-Samelson type resolution

p: X(A) —» X(A) which is small. Indeed choose /, 0<i<m such that bt<al9

(a0 = oo) and al+] < foj+1. Let A' be as in 2.1. This leads to the first step of a Bott-
Samelson type resolution. Then the above conditions hold for A' and we iterate
this procedure to obtain a Bott-Samelson type resolution. The resolution so
obtained is small and is PA-equivariant (cf. Theorem 4.2, [6]). In particular,
denoting the Poincare polynomial in ql/2 of p~l(ee) by Pe^(q), one has, by 2.8
(iii) above, PejL(q) = PIJL(q).

We now state the main results of this paper: Let be the Gaussian
J>\

binomial coefficient (qa -!)••• (qa~b+l -1) l(qb -1) • • - (q -1). We follow the
roi

conventions that = 0 if either b < 0 or a < b , and = 1.

Theorem 1. Let G = Sp(2n)orSO(2n).Let heW/WPi satisfy 3.3(i) and

3.3(ii). With the above notations, one has the following inductive formula for the

Poincare polynomial of the fibre over er of p : X(A) —> X(A)

(c,-(l)(cl+l-d)

c-d

where X(r(d)) is the PA, -stable subvariety of X(A7) with depth sequence

c(r(d), A7) = (c, , • • • , c,_, , d, c!+2 , - • • , CM ).

3.4. As an immediate consequence we obtain the following theorem, which is

a more precise restatement of the theorem stated in the introduction. Let
G = SO(2ri) or Sp(2n) . Let A, reW/WPi be as in the above theorem. Let

A0,T0 6 W denote the representatives of A, T e W respectively of maximal length.
(k{ ••• km N + cm\

Let A = , where N = n or n + 1 according as G = SO(2n) or

Sp(2h) . A defines a Grassmannian Schubert variety XGl (A) c SL(N + cm)/ P)+c ,

where r = 21^nfl /. Let Xc' (7) be the FA -stable Schubert subvariety of XGl (A)

with depth sequence (c,, c2, • • • , c;;i, 0) . Let A0 , ro E W(SL(W + c//r)) denote the
representatives of A, T of maximal length respectively. We denote by PV

W
M, the
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Kazhdan-Lusztig polynomial of the Weyl group W defined by the pair y, w e W,

y < w. Then,

Theorem 20 LetG = SO(2h) orSp(2n). Let W be the Weyl group G. Let

A, be as in Theorem 1. Let BeW be any element such that 0 < A0 . Let

9eW/WPn denote its projection. Let X(r) = Px • X(0 ) c X(A) . With the above

notations,

Pw = Pw = Pw'
9,A,Q TO ,A0 ^O'^o

where W' = W(SL(N + cm )) , the Weyl group of SL(N + cj.

Proof of Theorem 1. The proof is based on counting the Fq -rational points on
p ' l ( e T ) and an induction argument on m.

First note that p is the composition

X( A) — *-> X( A, 0 — £-> X( A),

where q(U\x) = (U,p'7(U)(x)) , /^(£/) being the inductively constructed small
resolution

Thus _
p-l(er) = {(U9x)\UeGa^(Vk"/Vk'), U^Vk<, p ' 7 ( U ) ( x ) = eT]

dim U n er > a{ H ----- 1- al+} }

= UFrf,

where

^ = {(!/, jc) | x e (p'7([/))-'(er), C7 e G^ (V4- / V1- ) , U ID ̂ ' ,

dim U r\eT = al H ----- H a I+1 + <i} .

Therefore the number of J^ -rational points in Fd is equal to the product of the
number of Fq -rational points of the variety

times the number of F9 -rational points of the variety (p'7(U})~
l(eT) .

For any two U^ U2eAd, (pf
7(U ))"1(^T) are isomorphic and the number of

Fq -rational points of the variety (p'7(U))~
l(er) equals the polynomial PT(d)^ where
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T(d) is the PX -stable subvariety with depth sequence (c,,, • • • , ct_l9 d, c[+2, • • • , c / n ) .
Therefore, one has the formula

where Nq(Ad) is the number of Fq -rational points of the variety Ad .

To complete the proof, we need only show that Nq(Ad) is as in the Theorem.

Let E = eT , and let E} = Vkj n E . Note that Vk' I Et <-> Vk'+l I El+l .For UeAd,

one has
(i) El c
(ii) Vk>

One has a morphism 0: Ad -> GlxG2, U \-+ (UnE/Et, U l(Vk' +[/n£)),
where G, and G2 are the grassmannians of (al+] + d-c,) -spaces in El+l/Et, and
(c, -J) -dimensional spaces in (V A < + I IEl+l)l(V

k' /£,) = VA-< /(VA< +£" l+1), respec-
tively. One shows that 0 is a fibre bundle with fibre an affine space of dimension
(c, - d) (cl+i -d).It follows that

As
a \ \ a

b\ \a-b
, this completes the proof.

Proof of Theorem 2. Let p : X(A) — > X(A) denote the Bott-Samelson type
small resolution corresponding to the choice (z, /',..., / ( I I I )) (see 3.3). Thus,

,bl < at , a/+1 < fcl+I , and

Q/ l
A =

yields the first step of the small resolution p. Let X(r) have depth sequence
(Cj , . . . , CM ) . Now , for any positive integer c ,

A =
a\ •'• a,n

and defines a Grassmannian Schubert variety

Note that for the same choice of z,

Ui "• a,-i «,+a,+i
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yields the first step of a small resolution constructed by Zelevinskii. By induction,
one concludes that the same sequence of induces (/,/',..., z ( m ) ) yields a small
resolution for the Grassmannian Schubert variety XG'"(A). In particular we let
c = cm , and consider the PA-stable Schubert subvariety XGr (T) <^ XGr (A) which
has 'depth' sequence (^,...,^,0).

It is now immediate from Theorem 1 above, and Theorem 2 of Zelevinskii
[7] and standard facts (see Theorem 2.4 of [6] and [4]) that

Example 3. Take G = 5O(24). W = W(SO(24)) is a subgroup 524. Let
(6 8>|

A = e W/Wp^ . Note that A satisfies conditions 3 .3(1), (ii) and hence admits

a small resolution. Then A0 -(24,23,22,18,16,15,14,13,8,6,5, 4|-») e W (cf. [3]).

Take 0 = (5,6,8,13,21,16,14,7,l,10,3,2|»-)eWr. Then 0 < A 0 . We shall compute
Pe^ using our methods. First note that, denoting by 0 the coset in W/WPn

determined by 6, one has

0= (1,2, 3, 5, 6, 7, 8, 10).

Now PA, the stabilizer of X(A) c SO(24)I P12, is the parabolic which omits the
simple roots a6 and a8 .

The FA -saturation of X(0) is X(T) where

8
T~\5 2 1

See 3.2. Therefore the Kazhdan-Lusztig polynomial Pe, (q) = P((p
 l ( e T ) ) , the

Poincare polynomial of the fibre over er for small resolution p: X(A) -^ X(A)
(with q = t2).

Now for A= , one has (^,^2) = (6,8), (a,,a2) = (3,l), (^0,^) = (3,1).
V

Therefore the choice of i = 1 leads to the first step of a small resolution of X(A).

When i = 1, A'= . One then takes A" = =5O(16)/P16 which is a smooth
variety. V4y v4/

Now c(T,A) = (c,,c2) = (2,3). Since / = 1, the possible non-zero terms in the
formula for Pt(p~l(er)) are when d = 0, 1, or 2. Again b2 -c2 +c, =0, and the
only non-zero term corresponds to d = cl = 2 .

Thus
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Now T(2) = , and again using our formula

4+2-01 re'
2 Hi

Thus, by substitution

§40 Schubert Varieties In E6/P6

In this section we consider the Schubert subvarieties in E61F6 and address
the question of existence of Bott-Samelson type resolutions which are small. Here
F6 denotes the maximal parabolic which omits the root a6 (see Figure 1). We
shall determine the singular loci for most of the Schubert subvarieties. Although
our methods are applicable to other exceptional groups and other parabolic
subgroups as well, we consider only E6 /P6 because in this case the computations
are manageable. First recall that the Dynkin diagram for the group E6 is

2

Figure 1

The numbers represent the simple roots of E6.

4.1 One has the following coloured directed graph in which the set of
Schubert varieties in E6/P6 form the vertices. The zero dimensional variety is at
the bottom; vertices on the same horizontal represent varieties of the same
dimension. There is an edge from X(A) to X(CD) with colour i if and only if
sa A, = (O, k<co under the Bruhat order. Here sa e S denotes the fundamental
reflection corresponding to the simple root ai. Reduced expressions for the
minimal lift of X(A) in E6J B are obtained by simply reading off the colours of
downward paths from X(A) to X(id).
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Figure 2

Lemma 4* The largest parabolic subgroup PA which stabilizes a given
Schubert variety X(X) corresponds to omitting those simple roots ai such that i is
the colour of an edge which originates from X(A).

Proof. It is clear that FA omits the simple roots which are labels of edges
originating from X(A). If sa is a fundamental reflection which is not the colour of
any edge originating from X(A) one has /6(saA)</6(A) where /6 is the length
function on W / Wp . From this it follows that PA contains a representative for sa.
Hence the lemma.

Lemma 5» Let X(r)cX(A). Then X(T) is a Px stable subvariety if and only
if PA omits at for every colour i of an edge that originates at the vertex X(t).

Proof. Immediate from the above lemma.

4.2. Our conventions for labelling the Schubert varieties are as follows: X(A,)
denotes the only Schubert variety of dimension i when i = 0, 1, 2, 3, 13, 14, 15,
16. When i = 4, ..., 12, j = 1, (resp.j = 2), X(AM) denotes the Schubert variety of
dimension i which is a vertex on the left (resp. right) hand side of the above
graph. The X(A80) denotes the variety of dimension 8 at the 'centre' of the graph.
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Theorem 60 The smooth Schubert subvarieties in E6/P6 are X(A0) = {eI£/},
xa{)=pi

} xa2)=p2, xa3)-Jp
3, xa4 i l)=x(A4 i2)=p4 , xa^=p5, x(A8>1)

= SO(W)/P{.

Proof. That the above are the only possible smooth ones follow by a simple
argument using Poincare duality. We shall only show that
X := X(Agj) = 50(10)//^, the remaining cases being similar. First note that the
largest parabolic P that leaves X stable is that which omits the root [a{] and that
X has no subvariety properly contained in X which is stable under P. Thus X is
the P orbit of eld. It follows that X = P/Q, where Q is the isotropy at eld for the
P action on X. Thus Q = Fn ,P6. By considering the Levi decomposition of P, one
can show easily that P contains a subgroup G of type D5 such that
R:=Gr\Q = GnP6 is the parabolic subgroup of G which corresponds to omitting
the left end root and that G/R = P/Q = X. Clearly, G/R = SO(IQ)/Pl where the
P} c 50(10) here stands for the parabolic subgroup of 50(10) that corresponds to
omitting the left end root of 50(10). This completes the proof.

4.3. We shall now consider other Schubert varieties in E6f P6 and determine
in most of the cases the singular loci. We shall exhibit small resolutions
p: X(A) —» X(A) for some of the Schubert varieties and calculate the Poincare
polynomials of the fibres over the F-fixed points.

We shall use the following abbreviations in the statements of our results. A
always stands for the Schubert variety X(A) being considered. For a subset J of
{1, ...6} let Pj denote the parabolic which corresponds to omitting the simple roots
{at \i£j}. The set / c {1, 2, 3, 4, 5, 6} denotes the set for which the parabolic
subgroup Pj = FA, which is the parabolic that stabilizes X(A).

Recall the FACT noted in the introduction.

Definition 7. If p : X — > X satisfies the hypothesis of the FACT, we call
p a strict resolution.

Thus if p is a small resolution, then it is strict.
Observe that PA acts on X(A) and the smooth locus of X(A) contains the orbit

of the centre ek of X(A). It follows that the singular locus of X(A) is contained
in a union of lower dimensional jPA orbits. We will make use of this observation
in determining the singular locus of X(A). When p: X(A) —> X(A) is a small
resolution the Poincare polynomial of the fibre over e^ is the same as the
Poincare polynomial of the stalk at er of the intersection cohomology sheaf of
X(A). We compute the Poincare polynomials of p~l(eT) for each PA-stable
subvariety X(T) c X(A). In view of the discussion in the introduction one can
deduce the Poincare polynomial of p ~ l ( e 9 ) for any X(0) c X(A). We denote
Poincare polynomial (in the variable q l / 2 ) of p~l(eT) by KLt or KLltJ where
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1 = A, or T = A/7 respectively, in the view of its relation to the Kazhdan-Lusztig
polynomial.

Theorem 8.

1 . A5il : / = {2, 3, 5, 6} . Singular locus is X(A2 ) . The map p : P [ 3 ] x B X( A4 { ) -> X( A)
is a small resolution. KL^ =l + q.

2. A61 : / = {2,3,4,6} . Singular locus is X(A,) .
3. A62 :/ = {1,2,3,5, 6}. Singular locus is X(A2). The map p : P{2} XB X(A5 2) -^

X(A) is a small resolution. KL2 = \ + q.
4. A71 : I = {2^4,5} -Singular locus is X(A0).
5. A72 :/ = {!, 2, 4, 6}. Singular locus is X(A41). TTze map p : P{2A} XR X(A5 2) -*

X(A) , where R = P{4} , zs a .sfn'cf resolution.
6. A8 0 : / = {1, 2, 4, 5} . Singular locus is X(A41). 77ze map p : /|245} x^ X(A5 2) — >

X(A) , where R = P{45], is a strict resolution.
1 . A8 9 : / = {1, 2, 3, 4, 6} . Singular locus is X( Aj ) .
8. A91 :/ = {l,2,4,5,6}. Singular locus is X(A4 1). The map p : P{1} XB X(A) ~^

X(A) /5 a small resolution. KL4 , = 1 + g .
9. A92 :/ = {1,2,3,5} . Singular locus is X(T) where 1 is one of A62 , or A2 or A0 .
10. A101 : / = {1, 2, 3, 5, 6} . Singular locus is X(A6 2) . The map p : P{13} XR X(A81) — >

X( A) , where R = P{3}, is a small resolution. KL6 9 = 1 + q , KL2 = 1 + q + q1 .
11. A,0 <2 : / = {1, 3, 4, 5} . Singular locus is X( A5 2 ) , 6>r X( A0 ) .
12. A1U :/ = {l,3,4,6}. The map p : /^1 3 4 } XR X(A81) -> X(A), ^ = ^3,4}, w a j/wa//

resolution. Singular locus is X(A8 2) . KL% 2 =\ + q, KL52 =\ + q + q2 , KLX = 1

13. A1U :/ = {!, 2,3, 4,5}. 5i/igM/ar/ocM5w X(A0).
14. A, 2 , :/ = {1,3,4,5,6}. Singular locus is X(A52). T/ze map p: P{l345]xR

— > X(A), R = P{345} is a small resolution. KL5i=l
15. A122 : / = {1,2,3,4,6}. Singular locus is X(A83) or
16. A, 3 :/ = {1,2,3,5,6} . Singular locus is X(A I 0 1). The map p : P{2} XB

xRX(hs , ) — > X(A), where R = P{345] is a strict resolution .
17. &14: 1 = {1,2,4,5,6}. Singular locusts X(A91) or X(A4 1).
18. AI5 : 1 = {2,3,4,5,6}. Singular locus is X(A81).

When A = A92, A102 , A1 2 2 , A14 the above theorem does not completely
determine the singular locus.

Proof. We know that the singular locus of X(A) is a union of PA -stable
Schubert subvarieties. This allows us to determine the singular locus of X(A) in
case A = A5J, A6J, A6i2, A7a, A8<2, A91 , A 1 I 2 , A121 , A15. For example, X(A,) is the only
/^ -stable subvariety of X(A82) of smaller dimension. As X(A82) is not smooth
one sees that X(A,{) is its singular locus. The same argument shows, for example,
that the singular locus of X(A92) is either X(A62) or X(A2) or X(A0). (Note:
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X(A,Q) c X(A9) c: X(A 6 2)) . To prove the rest of the theorem we proceed as
follows: Let Fz)Q be parabolic subgroups of a complex semisimple group G.
The dimension of the projective variety P/Q equals l((00(P)) - £(G)0(Q)) , where
G)Q(P) denotes the longest element of the Weyl group of P and £ denotes the
length function. Using this and Lemma 2.1 of [6], one veritfies that the map p is
small or strict as asserted in each case. Using the FACT mentioned in the
introduction one determines the singular locus whenever p is a strict resolution.
We shall now show how to compute the Poincare polynomials of fibres over T-
fixed points. We shall only prove that when A = A i n , one has KL52 =l + q + q2 ,
others being similar. Note that X(A52) is a PA -stable subvariety. Let e denote the
centre of X(A5i2). One sees that p-l(X(h52)) = PxRX(h4a), where P = P{l^A}

and R = P{34]. We wish to determine the fibre F:=p~l(e) of the map
p : P XR X( A4 2 ) — > X( A5 2 ) . Consider the commutative diagram:

PxR

where S = P{3} , Q = P{1 3} . The morphisms p and q are induced by the respective
multiplication maps, and n is the projection. One has, for g e P , * G J?xs X(A2),
#([#»*]) = [£»#'(*)] where g' is the map q : J?xs X(/L2)— » X(A42) induced by
multiplication. The map g' is birational. The map q q~l(F) : q~l(F) — > F is an
isomorphism. On the other hand // is birational, and the map K is a smooth
bundle projection with fibre Ql S = P2 . Let £ePxQ X(A2) be the point which is
mapped to e by /?' . Then

Therefore KL7 = Poincare polynomial of P2 in q112 = l + q + q2
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