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SYNOPSIS

Control and estimation of errors are important but difficult aspects of any analysis from which the
numerical results are necessarily approximate. The order of difficulty is gréater for local or distributed
quantities like stresses and displacements than for global or integrated parameters like eigenvalues and
stiffnesses. To really bound a desired quantity between a pair of ctose upper and iower bounds one should
obtain either an oscillatory but clear convergence or, preferably, two rapidly converging sequences one
from above and the other from beiow. Application of the two complementary variational principles of
energy and complimentary energy, when both are possible to apply, do yieid upper and lower bound
approximations. But these or other alternate methods are generally expensive. On the other hand it would
be advantageous if one basic procedure could be perturbed in a simple manner to provide both lower and
upper bounds and to refine the solution and control the errors without undue effort. This paper discusses
this concept and presents three powerful methods to closely bound any desired parameter in a problem.
These are particularly valuable for eigenvalue problems.

1. INTRODUCTION

Control of errors and assessment of accuracy are important but difficult aspects of any {numerically)
satisfactory-approximate analysis. The order of difficulty is greater for local or distributed quantities like
stresses and displacements than for global or integrated parameters like eigenvatues or stiffnesses. An upper
or tower bound is assured: for global quantities {only), if a variationai principle is apptied in its “’pure” form.
Where the complementary. principles of displacement and force can both be applied comfortably, one can
bound a.global quantity between two limits as for example in Veubeke[1,2]. In principle such bounds.may
be refined to the desired degree of closeness by increasing the- number of parameters in the variationai
formulation; in practice, the total effort involved is often considerable. In other cases, a reliable estimate
of errors in a particular solution is often a matter of judgement. Where a proof of convergence exists and
the convergence trend with increasing number of terms or elements is known, in principle, the true value
can be estimated from the convergence curve. But in practice the information is generally insufficient to
obtain an-accurate vatue-ar to establish reliable bounds with reasormable computational effort. Thus, to
reatly bound a desired quantity between an overestimate. and an underestimate, one should obtain either
an oscitlatory (clear} convergence or, preferably, two converging sequences, one from above and the other
from below. Such a procedure, as yet, involves a certain amount of search for a suitable technique {or pairs
of technigues) and, even when possible, is expensive. in view of the above position a further search for
economical techniques to control and estimate errors is desirable. In particular, it would be advantageous
if the same basic procedure could be perturbed in a simple manner to provide both upper and lower bounds
and to refine the solution and control the errors without undue additiona! effort.

In the first instance our attention was focussed on the analysis of two-dimensional elasticity problems
by the direct (or boundary) method in which the differential equation is exactly satisfied, while those
boundary conditions (or parts thereof) which cannot be identically satisfied are approximately satisfied.
Techniques were successfully evolved for determining close bounds for both locai.and global values in
various problems [3—5].
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In finite element formeiations neither the differentia! equation in the entire field, nor the boundary
conditions are identically satisfied. So the procedures developed for the direct method cannot be i
translated directly to the finite element methods. A different approach was evolved for the determination /ﬁ,\
of eigenvalues by the FEM [5]. In this, one artificially introduces a parameter into the formuiation of the
problem and perturbs this parameter systematically so as to maodify the kinetic (or potential} energy
without affecting the strain energy of the system or vice versa.
A study of methods for obtaining bounds using the continuum and finite element methods and the
results therefrom lent strength to a feeling that.if one has a monotonically converging curve for a parameter
in a problem it should be possible to start with this curve and operate on. it directly to refine it or to obtain
the other bound, so that cllose bounds could be 'achieved for that parameter with little further effort.
This approach also proved fruitful and it would appear to be most useful and economical procedure
available. It is possible to establish analytical justification for the foregoing procedures.
Lynn, Ramey and Dhillon have shown an independent appreciation of the line of thought in our
approach and have proposed procedures to either obtain the opposite bound [7] or to refine the available
bounds [8] for an eigenvalue. The technique of Lindberg and Olson [9] is also of interest in the context of
bounding the eigenvalues. The approach to be described in the-present paper will be seen-to be more
comprehensive and applicable to loca! and global quantities in a wide range of problems.

2. THE DIRECT (BOUNDARY) METHOD OF CONTINUUM ANALYSIS
We will first briefly consider the procedure for obtaining bounds by direct methods of continuum
analysis. It is convenient to present the approach through a typical example. Consider a simply supported
regular polygonal plate of n sides {each of length ‘a’) and flexural rigidity ‘D", under uniform pressure q [5]. é
Referring to the inset in Fig. 1, and using the parameter w = Dw/qa®, the-governing differential equation is

v¢w =1/49° {1
and the bour{da'ry conditions are

=0, v? w=0 along the periphery. . 2

A series solution is conveniently written in polar coordinates as
) ‘ M-1 ' 2y 4
— 4
W=r/64a + Zo (A +Bmr )r
m=

" cos (mn§) (3)

where A, Bm are unknown parameters to be determined. W satisfies identicaily the differential equation
and the multiple symmetry of the problem. The constants A, By are to be evaluated by approximately
satisfying the boundary conditions on the polygonal edge by a suitable procedure. Any procedure leads to
a.set of linear simultaneous equations in Aq, Bm. A converging sequence of solutions is obtained by ~
systematically progressing the stage of truncation (i.e,, by increasing M). Considering a parameter of the
problem, each procedure yields a different converging trend. With a given procedure, the convergence.
trends.are different for different parameters.

There are many standard procedures for such approximate satisfaction of boundary conditions.
Collocation, Tay!lor expansion (also described in the present context as polynomial expansion), feast . )\
squares and successive integration-provide a sufficient range-of basic techniques-on account of the : A
differences in the analytical and mathematical details and in the distribution of residual errors on the
boundary. The Taylor expansion method resulits in the boundary error increasing away from the origin
for expansion. The coliocation method has zero error at predetermlned locations. The other methods
yieid zero errors at points determined by the analysis.

For the regular hexagon under study, convergence by the expansion (P) collocation (C) and integration
(S) methods is shown in Figs. 1{a) and (b) for central deflection and central moment, respectively.

Consider now the Taylor expansion procedure used. The edge error in each of the two boundary
conditions increases from zero at the mid point of the side to a maximum at the corners. This characteristic
distribution of the edge error can be altered by imposing a constraint that the errors at the corners should
also be zero. Correspondingly, the convergence curves will be altered from P to P¢ in Fig. 1. In this case
P and its variant P¢ are both monotonic and provnde lower and upper bounds respectively for the central
deflection and moment. With equidistant collocation, the original solution (C) includes corner collocation
and the convergence vields a lower bound. Relaxing the collocation at the corner by deleting the
corresponding equations yields an upper bound curve (C¢). In the successive integration procedure the
original solution (S} yields a converging over-estimate while the.variant (Sc) yields underestimates. -~ =7
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The advantage with the technique used is obvious. fbe programme for the original prawsdisre:cam include
a simple instruction for inciusion or délétion.of a pafticilar sét of equations to yield txw converging
sequences. The constraints are generally obvious from physical considerations. .They may; be.natural
(force) or kinematic in nature.

0-57 P= Polynomial expansion"
‘ C = Collocation
S= Successive integration
€= Implies additional constraints
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The foregoing method has been applied extensively with success. Early applications were to problems of
St. Venant torsion, plate flexure and stress concentrations in perforated plates {3~5]. The results of a
simple example of a square sectioned shaft under St. Venant torsion [3] is shown in Fig. 2. Here we notice
that all the basic procedures applied and their variants (achieved by applying constraints) yield monotonic
convergence far the torsion constant J which is a global quantity, but some of them yield oscillatory
convergence for a local quantity like the maximum shear stress.
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3. AN ENERGY PERTURBATION METHOD FOR EIGENVALUES
For purposes of discussion, we can consider a vibration probiem without any loss of generality.
The governing equation for natural vibration takes the form,

mixX + k x=20 ‘ (4)
which in matrix notation is written as
(KI /V] = X[H] (V| (5)

where [K] is the elastic stiffness matrix, [H] is the mass matrix, |V | is the vector of kinematic freedoms
and ) the eigenvalue. This equation provides as many eigenvalues as there are kinematic freedoms.

In view of the errors implicit in the finite element formulation, the eigenvalues are obtained only
approximately, the fractional errors increasing progressively with the order of the eigenvalue. If in a
iormulation, V| is the eigen mode corresponding to the p-th eigenvaiue \p. the orthogorisiity between
the modes leads to the relationship :

{Vp}T[K] {Vp} Elastic Energy
= = (6}
P {vp}T [H] {vp} Kinetic Energy

An examination of this expression suggests a simple method of perturbing Ap- If a suitable scalar
parameter A is introduced into the formulation of either K or H, the value of Ap is modified. If one takes
an upper bound solution and introduces A such that the kinetic energy is increased, it leads to a reduction
in Ap. tf one has a converging sequence of upper bounds for Ap by systematically increasing the number of
elements, then, by introducing the parameter A and giving it various values in steps, one may obtain
refined upper bound sequences and also lower bound sequences. Thus from two close values of A, cne can
obtain close bounds for Ap. This possibility is explored in the rest of the section. It is obvious that by a
narallel procedure of decreasing the kinetic energy one can obtain an upper bound sequence from z lower
bound sequence. !t is also evident that in a simiiar manner one could perturb K to a'ter the elastic energy
in the numerator of Eq. (6).

3.1 Torsional Vibration of a Uniform Cantilever Shaft

A preiiminary understanding of the proposed method may be achieved by considering a lumped inertia
finite element solution of the simple problem of torsional vibration of a uniform cantilever shaft {10].

For a shaft of length L, mass density p, torsional constant J, shear modulus G, and polar moment of inertia
I, the goverring equation is

.GJG“+Pw219=o (7)

where § is the angle of twist, w is the angular frequency and the primes denote differentiation with respeact
to axial distnace. We define a frequency parameter X as

X =pwiI1L%6GJ (®)

It is shown in Ref. 1T that if the-shaft is divided into N efements of equal length ¥y, Eqg. (7) may be
represented by algebraic recurrence equations

(841 — 200 +0pa) +(P®lE1/76GT) (60t 48, +6n-7) =0 (9

or
Bnyr ~(2-8)6, +6,_, =0, n<N (10)
where 2 2 .
_ MNT or _ SN
1+ N/6N° 1-8/6

together with the boundary conditions
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8, =0 ; 268y_, —(2-3)8, =0 (11)
The exact solution to Egs. {10) and (11) yields (with p <N),

8p,N =2 [ 1—cos((2p-1)T/2 N)]

(2p—1)7f:] : [ (2p-—1)‘ﬂ'j|
= 2 - —_ —_ (12
>‘P,N 6N [1 cos —— / 2 +C0S 2N 4

where X, y is the frequency parameter for the p-th mode obtained from an N-element solution.
We now propose that the second part of Eq. (9) be multiplied by

or

_ S 2 -1 e
-N
R = [T_A{(_zgz.%)_— ] . (13)°

where A is a positive scalar parameter, in order to inflate the inertial matrix and thus modify the kinetic
energy. This leads to a modified value for the eigenvalue parameter,

! _ a1
Ap.n=FR 2p N

= 6N2[1-A{%ﬂz 2] b—cos(zg_lj)v]/kﬁ-cos(z%;&w] (14)

As A is positive, Apn < ApN

In Fig. 3, the first mode values )¢, are plotted against N for different values of A in the range A=0
10 0.11. We note in the passing that the figure can be generalised for A’y by labelling the ordinate as
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FIG.3 FREQUENCY OF A UNIFORM SHAFT
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Ao n/ (2P—1)2 and abscissa as N/(2p-1). The curve A =0, i.e., XM ,N by Eq. (12) shows monotonic
convergence from above. The curves for X'y using A < 0.07 all show the same trend. On the other hand
for A > 0.09 the convergence is monotonic but from below. One may therefore expect that a horizontal-
converging sequence should be achieved for a value between .07 and .09. But it can be seen intuitively and
proved rigourously that a horizontal line cannot arise from Eq. (14). So we anticipate that there is a smal!
range of A within which the convergence is non-monotonic. We can examine this directly because the exact
solution for the problem isreadily determined either directly from the differential equation or by a limiting
process from Eq. (12) as 2
(2p—1 r
Np = 22U T | (15)
4

Thus X',  is in error by

epN = Np.n— Np

e

? (2p-1)2 72 } [2 +cos (’2p—‘|)7r}

{16}

4 2N

From this expression it follows that the error ep,N in the p-th eigenvalue estimated from the N element
idealisation has the following dependence on the choice of A,

2
p-1)TT
€p,nZ0as AS AN N1)27r2}+ % - ;— cosec’ (___2p4 N) } (17)

Table [. Cross-over Values of the Parameter ‘A’

\_\ o ) >
N
1 0.07195 -
2 C.08070 0.05383
3 0.08218 0.07195
4 0.08269 0.07628
5 0.08292 0.07990
6 0.08305 - 0:08070
7 0.08312 . 0.08138
8 0.08317 , 0.08187
9 0.08321 0.08218
10 0.08323 0.08239
o 1/12 1/12

The crossover values of A for the errors in the first and second modes are given in Table |. It can readily be
shown that for large N/{2p-1}, the crossover A approaches 1/12. The trends observed in Fig. 3 are now
clearly explained. Further, it is seen that for values of A in the neighbourhood of 1/12 the convergence for
Xen ./{2p-1} is monotonic beyond some N/{2p-1). For instance considering the first mode, taking A = .08
the error is negative for N = 1 is positive for N > 2 and is monotonicaily convergent from above for N > 3.
If the modifying function is well chosen then the convergence of Xp:; should exhibit a monotonic trend
from a relatively sifiall number of elements, i.e:, small*N/T2p-1)." 175 |sc S0 to be noted that when tie
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original solution is available for a large number of elements, it is preferable to obtain the bounds by using
values of A which are not too close, for then one avoids the region in which the convergence trend is
uncertain.

3.2 Choice of Modifying Functions

in the foregoing example we.chose a simple modifying function which depends on the order of the
eigenvalue and the order of approximation (N) but is identical for all elements. The factor (2p-1)}/2N in
the function can be recognised as a measure of the ratio of the element length to the wave length of the
mode, a ratio which influences the error. In addition Rp.N, the modifying function for the p-th mode of

an N-element idealisation, tends to unity monotonically with increasing N and therefore exhibits three
characteristics:

1. Rp,N > Rp ,N+1, forany N,
2. RpN>1 , forany N,
3. Rp,N—1 as N - oo.

For successful application of the method these three conditions are necessary to satisfy. But R can be
made different for each element of the structure.In fact recognising that R is essentially a weighting
function, it can be chosen to depend on the mode shape. A simple way of doing this is to link it to the
end displacements 88, 8¢ of each eilement BC obtained from the normalised eigenvector and write

, -1 e
Rge =[1-A" (65 -6.)" (18)
BC » .

where A is constant for all elements of the shaft and N is a suitable positive number. Asab initio, 68, 6C
are unknown, a choice of this type involves iteration in the solution. The procedure can be extended to
two dimensional problems such as vibration of plates. For instance the modifying function for
parallelogram element idealisation can be written as
-1
-1 2

2 2

R = [1-—A2(V.4“V23) } [1-A (V3q=Vig) ] (19

where Vjj = (Vi + ViM2 (i,j=1,23.4) and Vj is the displacement for the i-th node of an element obtained
from eigenvector. ’

Finally we recognise that a parallel procedure can be developed for obtaining close bounds from a ‘
solution which. yields a lower bound sequence. In this case, the inertial terms in £q. (5) for Ap are to be
deflated by dividing the mass matrix by functions of the type

(2p-1°7*y
R = [1+A > o (13a)
J
or 4N
. (18a)
R = [1+Af‘(ea—ec)“] >1 e

Application of the suggested procedure to two problems will be presented in the following subsections.
3.3  Procedure

As the modification function R given in Egs. (18) or (19) contains the displacements, the method of

. numerical solution becomes iterative. The sequence of operatoins are as explained in the simplified flow

chart in Fig. 4. 1t is our experience that normatlly one does not need many iterations. !n the examples to
be presented only 2 or 3 iterations were required. ’

To economise on the computational effort, it is necessary to first fix, without excessive effort a pair of
vatues of A which will yield a pair of close over and under estimating sequences. This is best done by using
solutoins with small numbers of elements (say 2 and 4 for beam type structures). Then one can obtain
the converging sequences with these two values of A and use this information as the basis for chosing
other values of A for further refinement of the bounds using larger values of N as needed.

3.4 Numerical Examples

The method of energy modification has been successfully applied to a large number of beam and palte
vibration and stability problems [6]. We present here two examples, one of beam vibrations and the other
of column stability.

3.4.1 Vibration of a uniform cantilever beam: The use of non-consistent elements yields a lower bound
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R =[1+%2(vc—vo)2} (20)

provides a simple modifying function. V¢ and Vp are the elements of the eigenvector corresponding to
the nodes C and D. Fig. 5 shows the original curve (A=0) and modified converging curves {A = 0.4, 0.6,
0.8) for frequency parameter \y. It is seen that A = 0.4 yields a substantially refined lower bound curve
and A = 0.6 yields a good upper bound sequence. With 10 elements A= 0.4 and A = 0.6 yields a good
bound between 12.3620 and 12.3841 where the true vaiue is 12.3624.

3.4.2 Stability of linearly tapered circular column: |n the stability problems the mass matrix of vibration
problem is replaced by the geometric stiffness matrix. The buckling load parameter for a linearly tapered
circular column (with taper ratio = 0.6) was initially analysed by FEM with nonconsistent elements.

The result is an upper bound converging sequence. Using again the modifying function of Eq. (21) with
A=02,03,0.4,0.5, 0.6 and 0.7 we obtained a series of converging curves yielding refined upper

(A < 0.4) and lower (A > 0.5) bound sequences. These are shown in Fig. 6. With 10 elements A = 0.5
and 0.4 bound the parameter within 1/8% between 1.3082 and 1.3098.

R = [1_%2(\/;—\/0)2]_1 @

4. METHOD OF DIRECT MODIFICATIONS )

A detailed study of the example in Section 3.1 suggests a more basic approach than that developed in
Section 3 to obtain close bounds by direct modification of an available monotonically converging sequence.
This method does not concern itself with the details of the actual problem, but concerns itseif directly with

properties of the convergence curve. As such it is applicable for both local and global values in a wide range
of problems.

4.1 Basis

Consider the basic curve (A = 0) in Fig. 3. This is a monotonically converging lumped inertia finite
element solution for the torsional frequency parameter of a uniform cantilever shaft. In view of the fact
that the curve exhibits monotonic convergence, it can be expressed by an equatlon

N _xp[_Nm; R : (22)

with the provisos

1. misa positive integer
2. Xp.,N — Ap monotonically as N — oo

3. a,B, - .. arepositive constants.

It is readily appreciated that with monotonic convergence from above and particularly with rapid conver-
gence, the terms beyond o/N™ are negiigible when N exceeds a reasonable value. Thus we can closely

approximate Xo n by
>\p,Ni >\r-‘ [1.+ ﬁﬁ] (23)

where a/N™ may be treated as the principel error in the original solution. As yet a and m are not known.

Let us modify the above expression by applying a deflating factor {1 - A/NM] which has two free constants
A and n, so that we have a modified sequence .

Np.N = >\p[1+ N"‘] [1—A]

Nn
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The modified error is closely represented by

1 qQ A
ep,N ="M A

NN TN [N""”_A]z—L [Q"A] (25)

The three possibilities k = (m - m) % 0, which we designate as over, equal and under modifications yield
three distinct types of modified sequences.

4.2 Overmaodification (k > G, m > n)
Let N1 be a number (integral or fractional) for which e = 0,s0 that a/N¥ = A, or

N1 = (a/Aa)V/k (26)

We can readily see from the error equation {24} that for N § N1, e % 0. Thus for any given combination
of A and n, there exists a number N1 beyond which the error in the modified sequences consistently
negative and betlow which it is consistently positive. It can also be shown that the modified curve has a
minimum at a value
| Kk /K )
N=N=N(1+7) >N (27)

-

To summarise:

{a) An over modified curve for an upper bound sequence is recognised by its
exhibiting a minimum value followed by an asymptotic trend;
(b} Beyond the minimum point this overmodifying curve yields lower bound
approximation.
4.3 Equal Modification (k =0, m = n}
With equal modification the error e = (a - A}/N" and it is consistently positive { a > A } or negative
{a < A) so that every modified curve is monotonic either from above or from below except that when
a~ A =0, in view of the approximation in the error Eq. (25}, one obtains oscillatory trends and these
curves should be ignored.
4.4 Undermodification (k <0, m <n)
Following an argument paraiiel to that in section 4.2, we find that when an upper bound sequence is

undermodified the error e%O for N % N2 = (A/a)k and a minimum occurs at N3 = N, (1 +k/n)"/*> N,
Thus :

(a) An undermodified curve from an upper bound sequence is recognised by its.
exhibiting a maximum value followed by an asymptotic trend;
(b) Beyond the maximum this undermodified curve yields an upper bound value.

4.5 Lower Bound Approximations .

When we start with a lower bound approximation for the quantity under study the original curve is a
monotonically increasing one. The modified curves are obtained by applying an inflation factor {1 + A/N").
By extending the discussions of Sections 4.2 to 4.4 it is clear that one will again have over, equal and under
modifications dependingon k = m - n % Orespectively and that equa!l modification leads to purely
monotonic curves. But here an overmodified curve will exhibit a maximum beyond which one is assured
of upper bounds while the under modified curve shows a minimum beyond which it will generate refined
tower bounds. But a modified curve will exhibit a maximum or minimum depending on whether it is over
or under modified.

4.6 Consolidation

The resuits of our foregoing discussion are consolidated in Table I1. In practice we may follow the
following steps for determining close bounds to a desired quantity in a problem:

{a) Choose a procedure for the problem that yields a monotonically converging approximation for the
desired quantity A and obtain the converging sequence for a few values of N {terms or elements) in the
range N, to N _ ...

(b} Apply a muitiplying factor R = [ 1% A/N"] to this curve, where the negative or positive sign is
used as the original curve is an upper or a lower bound curve, n is assigned a small integral value say 2 and
A is assigned a convenient positive value say 1. [f the modified curve does not exhibit clear characteristics,

A is suitabti®alteréd until a curve'is obtained exhibiting clear characteristics of a Finimum-maximar and

o
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Table t. Bounds by the Method of Direct Modifications

MODIFICATION OVER :
ORGINAL _[FACTOR| OVER i U OER
SEQUENCE
UPPER | . _ A '|(a) MINI(MUM|(a) MONOTONIC (@) MAXIMUM
BOUNDS N" [(b) LOWER |(b) REFINED UPPER |(b) REFINED
: BOUNDS & LOWER BOUNDS|  UPPER
BOUNDS
A |(@MAXIMUM (@) MONOTONIC  [(a)MINIMUM

LOWER |,4 A
BOUNDS NP |(b) UPPER [(b) REFINED LOWER |(b) LOWER
: BOUNDS | & UPPER BOUNDS | BOUNDS

(a) : IDENTIFICATION CHARACTERISTIC
(b): EFFECT OF MODIFICATION FOR LARGE N

ORIGINAL CURVE: X\ [, .9 (a,m notnecessarily
P.N= AP 1= N™ identified )

_ a - A
e =np[1 ¢ ik - |
n : STIPULATED, GENERALLY A SMALL INTEGER.

A [ A SCALAR PARAMETER. BY VARYING IT, OBTAIN DIFFERENT
MODIFIED CURVES. '

IN EACH CASE, THERE IS A MINIMUM VALUE OF A ,WHICH WILL EXHIBIT
THE ABOVE CHARACTERISTICS WITHIN THE DESIRED RANGE OF N .

MODIFICATION CURVE :

an asymptotic approach beyond this mini-max point. ldentify the nature of the curve and the bound
obtained therefrom by reference to Table 1. :

{e) Repeat operation (b) with such judicious combinations of nand A as will yield a pair of upper and
lower bounds which are sufficiently close.

The above procedure can be refined by first fitting a curve AN = A [1 £ aN"™] 1o the original sequence,
preferably weighting the fit in favour of the larger values of N in the Nrin to N, range. With a knowledge
of m (which need not be an integer) one can a priori choose the style of modification by fixing a suitable
value for n. The value of ‘a’ obtained gives guidance for suitable initial values for A. Putting A’ = aN®_,
for equal modification the initial vaiue of A should be on either side of A’ Simitarly for under modification
Ainiviar = A’ and for over modification A iar <A, :

Finaily there are two 'i—mpcnam points to note in recognising mini-max position on each curve. In each
case the focation of the mini-max point and the local curvature of the curve depend on the value of A.

As A increases the value of N for the mini-max, increases for undermodified curves and decreases for
overmodified curves. Also as A increases, the curvature at the mini-max location varies as A™ 22
For undermodification n > m and for a range of overmodification m > n > m/2 -1 this curvature decreases
with increasing A and so it becomes progressively difficult to fecognise the mini-max location from the
curves. On the other hand for overmodification in the range n < m/2 -1 the curvature increases with
increasing A and it becomes easier to recognise the mini-max location.

4.7 Numerical Examples

The direct modification has been applied to many problems in structural mechanics, starting with an
initial converging sequence either from the literature or from our work. We now present five examples
to bring out various aspects of the procedure and to indicate the method of interpreting the modified
curves. The numerical results achieved confirm that this mehtod is strikingly simple and effective in a
achieving close bounds from an initially.monotonic converging sequence for any parametere.:

;v;_q‘-‘-’;*.ﬂ:: k.
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4.7.1 Stability of uniform circular cantilever column: The buckling load parameter of a uniform
circular column is known exactly; it is 72/4 or 2.4674. An FEM solution {12] with nonconsistent equal
length elements has resulted in an upper bound sequence converging monotonically with the number of
elements (curve marked A = 0 in Fig. 7). The 10 element solution indicates an upper bound of 2.4724

(i.e., +0.2%) for the $tability parameter. This example lends itself well to a demonstration of the effects
of over equal and under modifications.

| Exact®*2.4673 _—
2-4724
o~ 2.4480
A=01 P— ~2.4360
B A=0-15 . .
] 1 ] 1

2 4 6 N 8 10

(a) OVER MODIFICATION

. | ]
6 8 10
EQUAL MODIFICATION

26

o5 }

2:4724

xs o Exact® 2.4e74

2.4

23

| | | I
2 4 6 . 8 10
iz~ (6) . UNDER-MODIFIGATION: < e esis .

FIG.7 STABILITY OF A UNIFORM CANTILEVER COLUMN




To the curve A = 0, these modifying functions (a)1 - K/N (b) 1 - A/N? and (c) 1 - A/N*

BOUNDS AND ERROR CONTROL FOR EIGENVALUES -

and the corresponding results are shown in Figs. 7 (a), (b), and (c), respectively.

Refer first to Fig. 7 (a), in which the modifying function R = 1 -A/N is applied with A = 0.10 and 0.15.
These curvés both show, minima around N = 4 and thereafter a monotonic rise with an asymptotic trend.
Following Table It, we recognise this as a case of overmodification, yielding (with N = 10, A = 0.1) a lower

bound of 2.448 for the stability parameter. The error at

Similarly by studying the trends in Fig. 7 {b) with R = 1.-A/N?, we recognise that R = 1 - A/N? provides
equalmodification, i.e., the principal error in the originat FEM approximation is a/N?. This can be
independently confirmed by an analysis of the FEM formulation. Using 10 elements A = 0.2 refines upper
bound to 2.4675 and A = 0.25 yields a close lower bound of 2.4663. Thus the true value is bounded

between + .004% and -.045%.

Figure 7(c} confirms that R = 1 - A/N* results in undermodification. The curves with A = 1, 2, 3 exhibit R
maxima at about N = 4 and thereafter show asymptotic fall. However the 10 element upper bound of ’
2.4724 is not noticeably modified by any of them indicating that either that the upper bound is extremely -~
close or there is excessive undermodification requiring compensation by the use of substantially large values

this stage is -0.8%.

are applied
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for A. But using A = 10, it becomes difficult to locate mini-max location. In fact this figure indicates that
one should apply a miider undermodification factor of (1 -~ A/N*) to seek clear indications and reliable -

results.

4.7.2  Stability of stiffened panel: Dawe [13] applied a finite element procedure and obtained a
monotonically converging sequence for the stability parameter of a centrally stiffened panel Fig. 8.
This sequence appears to be a lower bound curve. A modifying function R = 1+ A/N? is chosen to test
this sequence and the stability parameter if possible. The curves for A = 0.1, 0.5 and 1.0 are shown in
Fig. 8. The curve for A= 0.1 agrees with a known upper bound of 9.35[14]. Thus the required parameter

is seen to be bounded between 9.334 and 9.35, i.e., within 1/6%.

4.7.3 Stability of clamped rhombic plates: Mahabaliraja and Durvasula [ 15] have applied the
Rayleigh-Ritz method and obtained an upper bound sequence for the stability parameters of clamped
rhombic plates under inplane direct and shear loads. Figure 9 shows the results of applying the modifying
y parameters) to the results for the highly swept
30° rhombus. It is seen from the curves for A = G to 8 that in both case (of direct loads and shear loads)

1 - A/N? results in overmodification. The stability parameters are now bounded between 35.13 and 34.18

function R = 1 - A/N? (where N is the number of arbitrar

for direct loads and 51.75 and 50.35 for the shear load.
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35.13
34-18
33-72

(a)

6 8 - 10 12 N
UNDER INPLANE DIRECT LOADS
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| ] ]

5175
50-35
49-68

6
(b)

8 - 10 12 N
UNDER INPLANE SHEAR LOADS
FIG.9  BUCKLING OF CLAMPED RHOMBIC PLATE .

4.7.4  Supersonic flutter: Next, we study a lower bound converging sequence of coalescence values

for supersonic flutter of a simply supported square plate obtained by an FEM [16]). The modifying
function R = 1 + A/N? is applied and the resulting curves are shown in Fig. 10. The results indicate that

we have achjeved.-equal modification..- The upper and lower beunds-for.coalescence value:are 1848.99 and:. ...

1846.13, respectively, whereas the exact value is 1848.21.

o
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FIG. 10 COALESCENCE VALUE-SUPERSONIC FLUTTER OF
SIMPLY SUPPORTED SQUARE PANEL |

4.7.5 Bending of clamped rhombic ptate under uniform pressure: Monforton [17] analysed the
bending of the clamped rhombic plate under uniform pressure by FEM and obtained 2 smooth lower
bound curve for the central deflection. This is now modified by the function R = 1+ A/N? as shcwn in
Fig. 11. The trend of the curves indicates that we have effected equal modification.. In other words, the
predominant error in the basic solution is of the order 1/N*. From this study the upper and lower bounds
are found to be 7.691 x 107% and 7.683 x 10™%. Rajaiah {5] applied a highly accurate analytical procedure
and obtained 7.6898 x 10* for this parameter.
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FIG.11 DEFLECTION OF A CLAMPED RHOMBIC PLATE
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5. CONCLUDING REMARKS

The cost of an analytical solution increases rapidly with the degree of accuracy demanded. It is further-.
multiplied when one desires close bounds for different parameters of the problem. In this paper we have
presented three successful attempts to reduce the effort and cost for achieving close bounds in a wide range
of problems. The first method has been developed in respect of the direct method of analysis for boundaw"
value problems. The second is applicable to finite element methods. The third is more versatile and o
comprehensive in its applicability. Here we start with any monotonically convergent sequence of
approximations, with no restrictions on the source of this sequence and operate on the properties of the
converging curve {without necessarily determining them) to achieve close bounds with negligible effort.
For application of this method, solutions with relatively small number of terms or elements are sufficient,
the only restriction being that the original sequences for the desired quantities should be monotonically
convergent. The method now opens up an opportunity to analyse a large amount of data on diverse
problems aiready available in literature to obtain clear bounds for relevant quantities with insignificant
effort. R s

The value of the last mentioned powerful method is vastly enhanced if it can be extended for applic'atiqn A
to oscillatory convergence. Preliminary studies have confirmed the possibility and further studies are
currently under way to formulate the procedure and apply it to typical probiems.
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