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Control and estimation of errors are important but difficult aspects of any analysis from which the 
numerical results are necessarily approximate. The order of difficulty is greater for local or distributed 
quantities like stresses and displacements than for global Of integrated parameter~ like eigenvalues and 
stiffnesses. To really bound a desired quantity between a pair of dose upper and 'iower bounds one should 
obtain either an oscillatory but clear convergence or, preferably, two rapidly converging sequences one 
from above and the other from below. Application of the two complementary variational principles of 
energy and complimentary energy, when both are possible to apply, do yield upper al"ld lower bound 
approximations. But these or other alternate methods are gen€faily expensive. On th€ other hand it would 
be advaotageous if one basic procedure could be perturbed in a simple manner to provide both lower and 
upper bounds and to refine the solution and control the errors without undue effort. This paper discusses 
this concept and presents three powerful methods to closely bound any desired parameter in a problem. 
These are particularly valuable for eigenvalue problems. 

1. INTRODUCTION 
Control of errors and assessment of accuracy are important .but difficult aspects of any (numerically) 

satisfactory-approximatiHmalysis. The order of difficulty is grsrter for local or distributed quantities like 
stresses and displacements than for global or integraTed parameters like eigenvalues or stiffnesses. An upper 
or lower hound is assured for global quantities (only), if a van·ational principle is app!'ied in its "pure" form. 
Where-the complerr:rentary principles of displacement and force can both be applied comfortably, one can 
bau.o.d a.gJ.obal quantity between two limits;as for example in Veubeke[l.2J. In principle such bounds.may 
be refined to the desired degree of closeness by increasing the number of parameters in the variational 
formulation; in practice, ti'le total effort involved is often considerable. In other cases, a reliable estimate 
of errors in a particular solution is often a matter of judgem.en:t Where a proof of convergence exists aAd 
the convergence trend with increasing number of terms or elements is known, in prfnciple, the true value 
can be estimated from the convergence curve. But in practice the information is generally insufficient to 
obtain an:accuratevaltie'or ta establish reliable bounds with r~0.nable computational·eft.ort. Thus, to 
realty bound a desired quantity between an overestimate. and an underestima:t€, one should obtain either 
an oscillatory (clear) convergence or, preferably, two converging sequences., one from above and the other 
from below. Such a procedure, as yet, involves a certain amount of search for a suitable technique (or pairs 
of techniques) and, even when possible, is expensive. In view of the above position a further search for 
economical techniques to control and estimate errors is desirable. In particular, it wou!d be advantageous 
if the same basic procedure could be perturbed in a simple manner to provide both upper and lower bounds 
and to refine the solution and control the errors without undue additional effort. 

In the first instance our attention was focussed on the analysis of two-dimensional elasticity problems 
by the direct (or boundary) method in which the differential equation is exactly satisfied, while those 
boundary conditions (or parts thereof) which cannot be identically satisfied are approximately satisfied. 
Techniques were successfully evolved for determining close·bounds for both loca'.and global values in 
various problems [3-5J . 
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In finite element formu:'ations neither the differential equation in the entire field, nor the boundary 
conditions are identically :satisfied. So the procedures developed for the direct method cannot be 
translated directly to the finite element methods. A different approach was evolved for the determination 
of eigenvalues by the FEN'! [5]. In this, one artificially introduces a parameter into the formulation of the 
problem and perturbs this parameter systematically so as to modify the kinetic(or potential) energy 
without affecting the strain energy of the system or vice versa. 

A study of methods forr obtaining bounds using the continuum and finite element methods and the 
results therefrom lent strength to a feeling that if .one has a monotonically converging curve for a parameter 
in a problem it should be I!!>ossible to start witi:J this curve and operate on it directly to refine it or to obtain 
the other bound, so thafcDlOse bounds could be achieved for that parameter with little further effort. 
This approach also proved fruitful and it would appear to be most useful and economical procedure 
available. It is possible to (establish analytical justification for the foregoing procedures. 

Lynn, Ramey and Dhill~n have shown an independent appreciation of the line of thought in our 
approach and have proposed procedures to either obtain the opposite bound 17] or to refine the available 
bounds (8] for an eigenva~:ue. The technique of .Lindberg and Olson [9] is also of interest in the context of 
bounding the eigenvalues_ The approach to be described in the present paper will beseent'O be more 
comprehensive and applicable to local and global quantities in a wide range of pfOblems. 

2. THE DIRECT (BOUNDARY) METHOD OF CONTINUUM ANALYSIS 
We will first briefly consider the procedure for obtaining bounds by direct methods of continuum 

analysis. It is convenient to present the approach through a typical example. Consider a simply supported 
regular polygoml plate of n sides (each of length 'a') awl flexural rigidity '0', under uniform pressure q [5]. 
Referring to the inset in Fig. 1, and using the parameter' w = Dw/qa4

, the governing differential equation is 

(1) 

and the boundary conditions are 

Vii = 0, V2 iN = 0 along the periphery. (2i 

A series solution is conveniently written in pol.ar coordinates as 
M-1 

iN = r 4/64 04 + L (Am + 8m r2) r"ln cos (mn8) 
m~O , 

(3) 

where Am, Bm are unknown parameters to be determined. iN satisfiesidenticaily the differentia! equation 
and the multiple symmetry of the problem. The constants Am, 8m are to be evaluated by approximately 
satisfying. the boundary conditions on the polygonal edge by a suitable procedure. Any procedure leads to 
~ set of Ijnearsimuttaneous equations in Am, Bm. A convergiqg sequence-o.f solutions is ob.rained by -­
systematica"Y progressing the stage of tru ncation (i.e., by increasing M). Considering a parameter of the 
problem, each pl'Ocedure yields a different converging trend. With a given procedure, the convergence 
trends are different for different parameters. 

There are many standard procedures for such approximate satisfaction of boundary conditions. 
Collocation, Tay!or expansion (also described in the present context as polynomial expansion), least 
squares and successive integration provide a sufficient range of bask techniqueson account of the 
differences in the analyticai and mathematical details and in the di~ribution of residual errors on the 
boundary. The Taylor expansion method results in the boundary error .increasing away from the origin 
for expansk;n. The collocation method has zero error at predetermined locations. The other methods 
yieid zero errors at points determined by the analysis. 

For the regular hexagon under study, convergence by the expansion (P), collocation (C) and integration 
(S) methods is shown in Figs. 1 (a) and (b) for central deflection and central moment, respectively. 

Consider now the Taylor expansion procedure used. The edge error in each of the two boundary 
conditions increases from zero at the mid point of the side to a maximum at the corners. This characteristic_ 
distribution of the edge error can be altered by. imposing a constraint that the errors at the corners should 
also be zero. Correspondi ng~y, the convergence curves will be altered from P to Pc in Fig. 1. In th is case 
P and its variant Pc are both monotonic and prqvide lower and upper bounds respectively for the central 
deflection and moment. With equidistant collocation, the original solution (C) includes corner collocation 
and the convergence yields a lower bound. Relaxing the collocation at the corner by deleting the 
corresponding equations yields an upper bound curve (Cel. In the successive integration procedure the 
original solution (S) yields a converging over-estimate while the. variant (Sel yields underestimates. 
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-. 

The advantage with the techllique used is obyious. i~e programme for the original pmIl!!JfuneJcaQ' include 
a simple instruction for incl~s{on or deletion of a p"1iftlcdl~tWi of equations to yield ~)crenverg:ing 
sequences. The constraints are generally obvious from physical considerations. ,They ma¥,' be;natural 
(force) or kinematic in nature. 
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The foregoing method has been applied extensively with success. Early applications were to problems of 
St. Venant torsion, plate flexure and stress concentrations in perforated plates [3-5J. The results of a 
simple example of a square sectioned shaft under St. Venant torsion [3J is shown in Fig. 2. Here we notice 
that all the basic procedures applied and their variants (achieved by applying constraints) yield monotonic 
convergence for the torsion constant J which is a global quantity, but some of them yield oscillatory 
convergence for a local quantity like the maximum shear stress. 
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3. AN ENERGY PERTURBATION METHOD FOR EIGENVALUES 
For purposes of discussion, we can consider a vibration problem without any loss of generality. 

The governing equation for natural vibration takes the form, 

mi(+kx=Q (4) 

which in matrix notation is written as 

[K] :V: = A [H] :V I (5) 

\'Jhere [K I is the elastic stiffness matrix, [H] is the mass matrix, : V: is the vector of kinematic freedoms 
and ~. the eigenvalue, This equation provides as many eigenvalues as there are kinematic freedoms. 
In vieVI' of the errors implicit in the finite element formulation, the eigenvalues are obtained only 
approximately, the fractional errors increasing progressively with the order of the eigenvalue. If in a 
formulation. : Vp: is the eigen mode corresponding to the p·th eigenvalue Ap, tne.onhogo·naiity between 
:he modes leads to the relationship 

{Vp}TCKJ {Vp} 

{Vp}T [H] {Vp} 

E!astic Energy 

Kinetic Energy 
(6) 

An examination of this expression suggests a simple method of perturbing Ap. If a suitable scalar 
parameter A is introduced into the formulation of either K or H, the value of Ap is modified. If one takes 
an upper bound solution and introduces A such that the kinetic energy is increased, it leads to a reduction 
in :'I p . If one has a converging sequence of upper bounds for Ap by systematically increasing the number of 
eiements, then, by introducing the parameter A and giving it various values in steps, one may obtain 
refined upper bound sequences and also lower bound sequences. Thus from two close values of A, one can 
obtain close bounds for Ap' This possibility is explored in the rest of the section. It is obvious that by a 
parallel procedure of decreasing the kinetic energy one can obtain an upper bound sequence from a lower 
bound sequence. It is also evident that in a simiiar manner one could perturb K to a!te, the elastic energy 
in the numerator of Eq. (6). 

3.1 Torsional Vibration of a Uniform Cantilever Shaft 

A pre! im inary understanding of the proposed method may be achieved by consjdering a lumped inertia 
finite elemem solution of the simple problem of torsionai vibration of a uniform cantilever shaft [1 OJ. 
For a shaft oi length L, mass denSity p, torsional constant J, shear modulus G, and polar momBrTt of inertia 
I, Tn" governing equation is 

2 
G J 6" + P w 18 = 0 (7) 

where e is the angle of twist, w is the angular frequency and the primes denote differ,entiotion with respect 
to axial distnace. We define a frequency parameter A as 

(8) 

It is shown in Hef. 11 tllat if the'shaft is divided into N elements of equal length QN, Eq, (7) may be 
!'ep,esented by algebraic recurrence equations 

or 

o , n < N (10) 

where 

or 

together with the boundary conditions 
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80 = 0 ; 28N - 1 - (2-8) 8 N = 0 (11) 

The exact solution to Eqs. (10) and (.11) yi.elds (with p ~ Nl. 

Op,N = 2 [1-COS((2P-1)7T/2N)] 

or 

2 [ (2P-1)7T]/[ (2P-1)7T] 
Ap,N = 6 N 1-cos 2N 2+cos 2N (12) 

where \,.N is the frequency parameter for the p-th mode obtained from an N·element solution. 
We now propose that the second part of Eq. (9) be multiplied by 

.'[' .. { (2 ~ ':"1 ) 7T}2 J-1 
R 1 A (13) • =.- 2N 

where A is a positive scalar parameter, in order to inflate the inertial matrix and thus modify the kinetic 
energy. This leads to a modified value for the eigenvalue parameter, 

\1 -1" ........ - _. .-----

I\P,N = R Ap,N . 

= 6 N 2 [1-A{ (2~~1)7T r] [1- cos (2~-~) 1T ]/[2+ cos (2i-~1T] (14) 

As A is positive, X'p.N ~ Xp.N 

In Fig. 3, the first mode values X'1 ,N are plotted against N for different values of A in the range A = 0 
to 0.11. We note in the passing that the figure can be generalised for X' p,N by labelling the ordinate as 
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X'p,N/ (2P-l)2 and abscissa as N/(2p-ll. The curve A = 0, Le., Al,N by Eq. (12) shows monotonic 
convergence from above. The curves for A'l.N using A ~ 0.07 all show the same trend. oh the other hand 
for A L 0.09 the convergence is monotonic but from below. One may therefore expect that a horizontal· 
converging sequence should be achieved for a value between .07 and .09. But it can be seen intuitively and 
proved rigourously that a horizontal line cannot arise from Eq. (14). So we anticipate that there is a small 
range of A within which the convergence is non-monotonic. We can examine this directly because the exact 
solution for the problem is readily determined either directly from the differential equation or by a limiting 
process from Eq. (12) as 

2 2 
Ap = (2p-l)7T 

4 
(15) 

Thus X'P.N is in error by 

(16) 

3 (2p-1)2 7T2 JV[ (2p -1) 7T J 
4 

2 +cos 
2N 

From this expression it follows that the error ep,N in the p-th eigenvalue estimated from 1tte N element 
idealisation has the following dependence on the choice of A, 

2 

ep N ~ 0 as A :sr_4 N 1+.1.. _.1. cosec2 (2~-~7TJ 
' < >k2p_1)27T 2J 6 4 

Table I. Cross-over Values of the Parameter 'A' 

I I 

I 1 I 
I -~ 

I : 
I 6 

I : 
10 

0.07195 

0.08070 

0.08218 

0.08269 

0.08292 

0,08305 

O.083l2 

0.08317 

0.08321 

0.08323 

1/12 

2 

0.05383 

0.07195 

0.07628 

0.07990 

0.;08070 

0.08138 

0.081.:87 

0.08218 

0.08239 

1/12 

(17) 

I 
The crossover values of A for the errors in the first and second modes are given in Table I. It can readily be 
shown that for large N/(2p- 1), the crossover A approaches 1/12. The trends observed in Fig. 3 are now 
clearly explained, Further, it is seen that for values of A in the neighbourhood of 1/12 the convergence for 
X'P,N • /(2p- 1) is monotonic beyond some N/(2p-l). For instance consideri ng the first mode, taking A = .08 
the error is negative for N = 1 is positive for N > 2 and is monotonically convergent from above for N L 3, 
If the modifying function is well chosen then the convergence of X'pr" should exhibit a monotonic trend 
from a relatively si'f;;Jil number of elements, i.e:, small"Nmp-l) ,~It IS-~·SO to be noted th~t:when th~ 
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original solution is available for a large number of elements, it is preferable to obtain the bounds by using 
values of A which are not too close, for then one avoids the region in which the convergence trend is 
uncertain. 

3.2 Choice of Modifying Functions 

In the foregoing example we. chose a simple modifying function which depends on the order of the 
eigenvalue and the order of approximation (N) but is identical for all elements. The factor (2p- 1 )/2N in 
the function can be recognised as a measure of the ratio of the element length to the wave length of the 
mode, a ratio which influences the error. In addition Rp,N, the modifying function for the p·th mode of 
an N·element idealisation, tends to unity monotonically with increasing N and therefore exhibits three 
characteristics: 

1. Rp,N> Rp,N+t. for any N, 

2. Rp,N> 1 , for any N, 

3. Rp,N ~ 1 as N ~ <Xl. 

For successful application of the method these three conditions are necessary to satisfy. But R can be 
made different for each element of the structure. In fact recognising that R is essentially a weighting 
function, it can be chosen to depend on the mode shape. A simple way of doing this is to link it to the 
end displacements eB, eC of each element BC obtained from the normalised eigenvector and write 

- --- - (18) 

where A is constant for all elements of the shaft and N is a suitab-Ie positive number. As ab initio, eS, eC 
are unknown, a choice of this type involves iteration in the solution. The procedure can be extended to 
two dimensional problems such as vibration of plates. For instance the modifying function for 
parallelogram elelTlef:lt idealisation can be written as 

2 -1 2 2 
R = [1-A2(VI4-V23)] [1-A (V34 -VI2 ) ]

-1 

(19) 

where Vij= (Vi + Vj)/2 (i,j = 1,2,3,4) and Vi is the displacement for the i-th node of an element obtained 
from eigenvector. ' 

Finally we recognise that a pa-rallel procedure can be developed for obtaining close bounds from a 
soltltion which yields a lower bound sequence, In this case, the inertial terms in Eq. (5) for Ap are to be 
deflated by dividing the mass matrix by functiOr:ls of the type 

. 2 2 

R = [1 +A (2P~1~27T ] > 1 (13a-) 

or 

R = [1+An(8B -8c)n] >1 
ii8a) 

Application of the suggested procedure to two problems will be presented in the following subsections, 
3.3 ,Procedure -

As the modification function R given in Eqs'. (18) or (19) contains the displacements, the method of 
numerical solution becomes iterative, The sequence of operatoins are as explained in the simplified ·flow 
chart in Fig. 4, It is our experience that normally one does not need many iterations, In the examples to 
be presented only 2 or 3 iterations were required. 

To economise on the computational effort, it is necessary to first fix, without excessive effort a pair of 
values of A which will yield a pair of close over and under estimating sequences, This is best done by using 
solutoins with small numbers of elements (say 2 and 4 for beam type structures), Then one can obtain 
the converging sequences with these two values of A and use this information as the basis for chosing 
other values of A for further refinement of the bounds using larger values of N as needed. 

3.4 Numerical Examples 
The method of energy modification has been successfully applied to a large number of beam and palte 

vibration and stability problems [6J, We present here two examples, one of.beam vibrations and the other 
of column stability, 

3.4,1 Vibration of a uniform cantilever beam: The use of non-consistent elements yields a lower bound 
'~uence forthidii.stfr'equericyof trans'';'-erse''ilibratibns ofa uniform'caMtilever beam, For this problem 
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(20) 

provides a simple modifying function. Vc and VD are the elements of the eigenvector corresponding to 
the nodes C and D. Fig. 5 shows the original curve (A=O) and modified converging curves (A = 0.4, 0.6, 
0.8) for frequency parameter XV. It is seen that A = 0.4 yields a substantially refined lower bound curve 
and A = 0.6 yields a good upper bound sequence. With 10 elements A = 0.4 and A = 0.6 yields a good 
bound between 12.3620 and 12.3841 where the true value is 12.3624. 

3.4.2 Stability of linearly tapered circular column: In the stability problems the mass matrix of vibrati'on 
problem is replaced by the geometric stiffness matrix. The buckling load parameter for a linearly tapered 
circular column (with taper ratio = 0.6) was initially analysed by FEM with nonconsistent elements. 
The result is an upper bound converging sequence. Using again the modifying function of Eq. (21) with 
A = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 we obtained a series of converging c;urves yielding refined upper 
(A ~ 0.4) and lower (A L 0.5) bound sequences, These are shown in Fig. 6. With 10 elements A = 0.5 
and 0.4 bound the parameter within 1/8% between 1.3082 and 1.3098. 

(21 ) 

4. METHOD OF DIRECT MODIFICATIONS 
A detailed study of the example in Section 3.1 suggests a more basic approach than that developed in 

Section 3 to obtain close bounds by direct modification of an available monotonically converging sequence. 
This method does not concern itself with the details of the actual problem, but concerns itself directly with 
properties of the convergence curve. As such it is applicable for both local and global values in a wide range 
of problems. 

4.1 Basis 

Consider the basic curve (A = 0) in Fig. 3. This is a monotonically converging lumped inertia finite 
element solution for the torsional frequency parameter of a uniform cantilever shaft. In view of the fact 
that the curve exhibits monotonic convergence, it can be expressed tty an equation· 

A - A r, + ~ ± ~ ± ..... ] 
p.N- P L - Nm Nm+l (22) 

with the provisos 

1. m is a positive integer 

2. >.: p.N - Xp monotonically as N - 00 

3. 01, (3, •.. are positive constants. 

It is readily appreciated that with monotonic convergence from above and particularly with rap·id conver. 
gence, the terms-beyond OI/Nm are negiigible when N exceeds a reasonable value. Thus we can closely 
approximate Ap .. N by 

A N= A p [1 + am] P. N (23) 

where a/Nm may be treated as the principei error in the original solution. As yet a and m are not known. 
Let us modify the above expression by applying a deflating factor [1 - A/Nn) which has two free constants 
A and n, SO that we have a mod·ified sequence 

(24) 

~J 
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The modified error is closely rep. 'resented by 

e~.N = NOm - N~ = ~n [ N~-n - A] = (25) 

The three possibilities k = (m - n) ~ 0, which we designate as over, equal and under modifications yield 
three distinct types of modified sequences. 

4.2 Overmodification (k > O. m > n) 
Let N1 be a number (integral or fractional) for which e = O,SO that a/N~ = A, or 

N1 = (a/A)l/k (26) 

We can readily see from the errOl" equation (24) that for N ~ N 1, e ~ O. Thus for any given combination" 
of A and n, there exists a numbel!" N 1 beyond which the error in the modified sequences consistently 
negative and below which it is consistently positive. It can also be shown that the modified curve has a 
minimum at a value 

To summarise: 

I k 11k 
N = N: = N (1 + -) ;> N '., 1 . n . 1· (27) 

(a) An over modified curve for an upper bound sequence is recognised by its 
exhibiting a minimum value followed by an asymptotic trend; 

(b) Beyond the minimum point this overmodifying curve yields lower bound 
approximation. 

4.3 Equal Modification (k = D, m = n) 
With equal modification the error e = (a - A)/Nn and it is consistently positive ( a > A ) or negative 

(a < A) so that every modified curve is monotonic either from above or from below except that when 
a - A = 0, in view of the approximation in the error Eq. (25), one obtains oscillatory trends and these 
curves should be ignored. 

4.4 Undermodification (k < 0, m < n) 

Following an argument parallel to that in section 4.2, we find that when an upper bound sequence is 
undermodified the error e ~O for N ~ N2 = (A!a),k and a minimum occurs at N; = N2 (1 + kin) 11k> N2" 
Thus 

(a) 

(b) 

An undermoditied curve from an upper bound sequence is recognised by its. 
exhibiting a maximum va1ue followed by an asymptotic trend; 
Beyond the maximum this undermodified curve yields an upper bound value. 

4.5 Lower Bound Approximations 
When we start with a lower bound approximation for the quantity under study the original curve is a 

monotonically increasing one. The modified curves are obtained by applying an inflation factor (1 + A/N n ). 

By extending the discussions of Sections 4.2 to 4.4 it is clear that one will again have over, equal and under 
modifi'cations depending on k = m - n ~ 0 respectiw;iy and that equal modification leads to purely 
monotonic curves. But here an overmodified curve will exhibit a maximum beyond which one is assured 
of upper bounds while the under modified curve shows a minimum beyond which it will generate refined 
lower bounds. But a modified curve will exhibit a maximum or minimum depending on whether it is over 
or under modified. 

4.6 Consolidation 
The results of our foregoing discussion are consolidated in Table II. In practice we may follow the 

following steps for determining close bounds to a desired qu'antity in a problem: 
(a) Choose a procedure for the problem that yields a monotonically converging approximation for the 

desired quantity A and obtain the converging sequence for a few values of N (terms or el~ments) in the 
range N min toN max . 

(b) Applya multiplying factor R = [ 1 + A/Nn ] to this curve, where the negative or positive sign is 
used as the original curve is an upper or a lower bound curve, n is assigned a small integral value say 2 and 
A is aSSigned a convenient positive value say 1. If the modified curve does not exhibit clear characteristics, 
A is suita~alteflid untii a cUrVe'is'obtained exhibiting' clear cha-racteristic~oYa'inini-m-um"m-a3iiiTll:HTf and'~ 

, 
',. 
" 

., , 
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Table II. Bounds by the Method of Direct Modifications 

MODIFICATION 

ORGINAL FACTOR QVER EQUAL 

SEQUENCE m > n m = n 

UPPER A· (0) MINiMUM (a) MONOTONIC 1--BOUNDS Nn (b) LOWER (b) REFINED UPPER 
BOUNDS f.. LOWER BOUNDS 

1+A 
(a) MAXIMUM (a) MONOTONIC 

LOWER 
BOUNDS. Nn (b) UPPER (b) REFINED LOWER 

BOUNDS E. UPPER BOUNDS 

(a) 

(b) 
IDENTIFICATION CHARACTER ISTIC 

EFFECT OF MODIFICATION FOR LARGE N 

UNDER 
m < n 

(a) MAXIMUM 

(b) REFINED 
UPPER 

BOUNDS 

(a) MINIMUM 

(b) LOWER 
BOUNDS 

ORIGINAL CURVE: A A·[ 0] (a,m not necessarily 
P,N= . P 1 ± N m identified) 

MODIFICATION CURVE: Ap N = Ap[1 ± _0_] [1 + ....L] 
, Nffi Nn 

n STIPULATED, GENERALLY A SMALL INTEGER. 
A A SCALAR PARAMETER. BY VARYING IT, OBTAIN DIFFERENT 

MODIFIED CURVES. 

IN EACH CASE, THERE IS A MINIMUM VALUE OF A,WHICH WILL EXHIBIT 
THE ABOVE CHARA'CTERISnCS WITHIN THE DESIRED RANGE OF N. 

an asymptotic approach beyond this mini-max point. Identify the nature of the curve and the bound 
obtained therefrom by reference to Table It. 

(c) Repeat operation (b) with such judicious combinatians of n and A as will yield a pair of upper and 
lower bounds which are sufHcienT!y c!ose .. 

31.7 

The above procedure can be refined by first fitting a curve AN.= A [1 ± aN· m] to the original sequence, 
preferably weighting the fit in favour of·the larger values of N .in the Nm;n to N""", range. With a knowledge 
of m (which need not be an integer) one can a priori choose the style of modification by fixing a suitable 
value for n. The valuenf 'a' obtained gives guidance for suitable initial values for A. Putting A' = aN~, 
for equal modification the initia.! Ilalue of A should be on -either side of A'. Similarly for under modi.fication 
A;n;t;al > A' and for over modification A;n,,;al < A'. 

Finaily there are two important points to note in recognising mini-max position on each curve. In each 
case the location of the mini-max point and the local curvature of the curve depend on the value of A. 
As A increases the value of N for the mini-max, increases for undermodified curves and decreases for 
overmodified curves. Also as A increases, the cLJrvature at the mini-max location varies as Am.2n.2. 
For undermodification n > m and for a range of overmodification m > n > m/2 -1 this curvature decreases 
with increaSing A and so it becomes progressively difficult to recognise the mini·max location from the 
curves. On the other hand for overmodification in the range n < m/2 -1 the curvature increases with 
increasing A and it becomes easier to recognise the mini-max location. 

4.7 Numerical Examples 

The direct modification has been applied to' many problems in structural mechanics, starting with an 
initial converging sequence either from the literature or from our work. We now present five examples 
to bring out various aspects of the procedure and to indicate the method of interpreting the modified 
curves. The numerical results achieved confirm that this mehtod is strikingly simple and e'fective in a 
achieving close bounds from an initially-monotonic converging sequence for any parameter:;.,.", 
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4.7.1 Stability of uniform circular cantilever column: The buckling load parameter of a uniform 
circular column is known exactly; it is 7r 2 /4 or 2.4674. An F EM solution [121 with nonconsistent equal 
length elements has resulted in an upper bound sequence converging monotonically with the number of 
elements (curve marked A = 0 in Fig.7). The 10 element solution indicates an upper bound of 2.4724 
(i.e., +0.2%) for the 'stability parameter. This example lends itself well to a demonstration of the effects 
of over equal and under modifications. 

2'6~ l-l L -~.r-p.:p- Xi' R ~C{ L2 

=0 . TR=l·O· 

2.5 - R= 1-~ 
\' Exact84 2.4874 
I\. 2.4724 

5 ---~51"---==============-2.4480 A=0·1 ..... 2.4360 
2-4 ~ A=0'15 

I I I 

2 4 6 N 8 10 

. (a) OVER MODIFICATION 
2·6 

2· 5 .~~====c~~~;;;;;;;;;;;;;;;;;;;;;iiiiiiiiiiiiiiiiiiiiiiiiiii~ __ -t 2·4724 \' 2·4675 
I\. 5 ~2.4663 

2-4 
2·4651 

2 4 6 N 8 10 

( b) EQUAL MODIFICATION 

2·6 .:------------------, 

2·3 

2 

_ . .,..-:.i.~:'-.'. 

FIG. 7 

4 6 N' 8 10 

. ; .- eel.· UNGER-MODfF~CATiION,·-;:·---··.;""'O:.'~--e.~ 

STABILITY OF A UNIFORM CANTILEVER COLUMN 
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To the curve A = 0, these modifying functions '(a) 1 ~ A/N, (b) 1 - A/N 2 and Ic) 1 - A/N4 are applied 
and the corresponding results are shown in Figs. 7 (a), (b), and (c), respectively. 

Refer first to Fig. 7 (a), in which the mod ifying function R = 1 -A/N is applied with A = 0.10 and 0.15. 
These curves both show, minima around N = 4 arid thereafter a monotonic rise with an asymptotic trend. 
Following Table II, we recognise this as a case of overmodification, yielding (with N = 10, A = 0.1) a lower 
bound of 2.448 for the stability parameter. The error at this stage is -':'0.8%. 

Similarly by studying the trends in Fig. 7 (b) with R = 1 .-A/N2, we recognise that R = 1 - A/N 2 provides 
equalmodification, i.e., the principal error in the original F EM approximation is a/N 2. This can be 
independently confirmed by an analysis of the F EM formulation. Using 10 elements A = 0.2 refines upper 
bound to 2.4675 and A = 0.25 yields a close lower b{)und of 2.4663. Thus the true value is bounded 
between + .004% and - .045%. 

Figure 7(c) confirms that R = 1 - A/N4 fesu Its in undermodification. The curves with A = 1, 2, 3 exhibit 
maxima at about N = 4 and thereafter show asymptotic fall. However the 10 element upper bound of 
2.4724 is not noticeably modified by any of them indicating that either that the upper bound is extremely 
close or there is excessive undermod-ification requiring compensation by the use of subs~a.ntially large values 
for A. But using A = lO, it becomes difficult to locate m~ni·max location. In fact this figure indicates that 
one shou Id apply a miider undermodification factor of (1 - A/NJ) to seek clear indications and reliable 
results. 

4.7.2 Stability of stiffened panel: Dawe [13) applied a finite element procedure and obtained a 
monotonically converging sequence for the stability parameter of a centrally stiffened panel Fig. 8. 
This sequence appears to be a lower bound curve. A modifying function R = 1 + A/N2 is chosen to test 
this sequence and the stability parameter if possible. The curves for A = 0.1, 0.5 and 1.0 are shown in 
Fig. 8. The curve for A = 0.1 agrees with a known upper bound of 9.35 [141. Thus the required parameter 
is seen to be bounded between 9.334 and 9.35, i.e., within 1/6%. 

4.7.3 Stability of clamped rhombic plates: Mahabaliraja and Durvasula [1-5) have applied the 
R-ay leigh- R itz method and obtai ned an upper bou nd sequence for the stabil ity parameters of clam ped 
rhombic plates under inplane direct and shear loads. Figure 9 shows the results of applying the modifying 
function R = 1 - A/N2 (where N is the number of arbitrary parameters) to the results for the highly swept 
30° rhombus. It is seen from the curves for A = 0 to 8 that in both case (oJ direct loads and shear I{)ads) 
1 - A/N 2 results in overmodification. The stability parameters are now bounded between 35.13 and 34.18 
for direct loads and 51.75 and 50.35 for the shear load. 

10·10 + 
L(J" --iiI==r==="- (J" 

t 

9'98 

9.482 

A=0·1 9·407 84 

~========~~~;:==============~Upperbound 
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9'92~ __________ ~ __________ ~ ______ ~ 
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BUCKLING OF CLAMPED RHOMBIC PLATE. 

4.7.4 Supersonic flutter: Next, we study a lower bound converging sequence of coalescence values 
for supersonic flutter of a simply supported square plate obtained by an F EM [16). The modifying 
function R = 1 + A/N

4 
is applied and the resulting curves are shown in Fig. 10. The results indicate that 

we bilve acbL~~~qual modification.·. T.he upp.erar:)d low~r bounds·foccoalescence value;areJ848.99 and .. 
1846.13, respecr.iveJy, whereas the exact value is 1848.21. 

.'iII 
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4.7.5 Bending of clamped rhombic plate under uniform pressure: Monforton [17] analysed the 
bending of the clamped rhombic plate under uniform pressure by FEM and obtained a smooth lower 
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bound curve for the central deflection. This is now modified by the function R = 1 + A/N~ as shown in 
Fig. 11. The trend of the curves indicates that we have effected equal modification. _ In other words, the 
predominant error in the basic _solution is of the order T/N 4 

_ From this study the upper and lower bounds 
are found to be 7.691 x 1.0-4 and 7.683 x 10-4

• Rajaiah [51applfed a highly accurate analytical procedure 
and-obtained 7.6898 x 10-4 for this parameter. 
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5. CONCLUDING REMARKS 

The cost of an analytical solution increases rapidly with the degree of accuracy demanded. It is further' 
multiplied when one desires close bounds for different parameters of the problem. In this paper we have 
presented three successful anempts to reduce the effort and cost for achieving close bounds in a wide 
of problems. The first method has been developed in respect of the direct method of analysis for boun 
value problems. The second is applicable to finite element methods. The third is more versatile and 
comprehensive in its applicability. Here we start with any monotonically convergent sequence of 
approximations, with no restrictions on the source of this sequence and operate on the properties of the 
converging curve (without necessarily determining them) to achieve close bounds with negligible effort. 
For application of this method, solutions with relatively small number of terms or elements are sufficient, 
the only restriction being that the original sequences for the desired quantities should be monotonicaliV 
convergent. The method now opens up an opportunity to analyse a large amount of data on diverse 
problems already available in literature to obtain clear bounds for relevant quantities with insignificant 

effort. . .. J' ••• 

The value of the last mentioned powerful method is vastly enhanced if it can be extended for applicati<?n ' 
to oscillatory convergence. Preliminary studies have confirmed the possibility and further studies are 
currently under way to formulate the procedure and apply it to typical problems. 
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