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ABSTRACT
Three dimensional solutions for naturél frequencies and mode
shapes of layered composite shells obtained by using the finite

layer method, are presented in this paper. Higher order theories
for laminated shells are discussed. :
I

INTRODUCTION

Usage of layered composite fibre reinforced shells in modern
engineering applications is increasing day. by day. Design
considerations of such structural elements are very different
from similar metallic components, and so it is necessary that
the theoretical models for the analysis of such components must
have the capability to include second order effects such as
shear deformation and rotory inertia, and to predict the
frequency spectrum and the interlaminar stresses etc. Thus a new
challange has emerged in modelling lsminates, from .various
points of view. In this paper, we discuss the modelling of
laminated cylindrical shells from the point of view of its
natural vibrational behaviour and the development of higher
order shear deformation theory. |
l
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Three—dimensional elasto-dynamic formulation is obviously,
the most appropriate model, for the study of laminated shells.
Unfortunately, it is not possible to utilize this very often,
because of the difficulties associated with numerical work and
computational limitations. On the other hand, it is much simpler
and cheaper to use two-dimensional models if appropriate models
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are available. The classical laminated shell theory is generally
believed to be inadequate due to non-inclusion of shear
deformation and rotory inertia effects, and so the development
of higher order models are being pursued. Three-dimensional
elasto-dynemic solutions 4re useful in assessing the performance
of such two-dimensional models. In this paper, we present the
natural frequencies and qode shapes of typical isotropic and 3
layered composite shells, using the finite layer method.

|
ANATYSTS OF LAMINATED CYLINDRICAL SHELLS
BY THEIFINITE LAYER METHOD

Figure 1 shows a thick leminated cylindrical shell with the
coordinate system employed. The material is assumed to be
elastic, the deformations are congidered to be small and three-
dimensional theory of el@sto—dynamics is used for the analysis.
The boundary conditions at x = 0 and x = L are taken to be

- = % V=0;W=0 | (1)
xx |

which corresponds to a for@ of simply supported end condition.
At z = + h/2 the shell is stress free i.e.,

o =0 g =0 g = 0. (2)
z2 2X ; 2

Satisfying Eq. (1), the diéplacemént field in’the shell, when it
is performing natural oscillations with a circular frequency,
rad/cec, may be written as%
'mITXx
U (z) Cos i Cos n
F L
]mY?x
V' (z) Sin -—— Sin n
L
}mwrx
w= W{z) Sin Cos n (3)
L

Fig. 1 shows a finité lgyer sub-division of the shell. The

displacement field is chosen in terms of nodal (surface in the
present case) variables {qﬂ. :




where

C.c 0
[f] = 0 S.s
0 0
mmnx nmux
with C = Cos y S = 8in
L 1 !
c=Csng, s=S8inne
[
F 0 0 F 0 0
1 2
[Aq] = 0 F 0 0 F 0
1 >
0 0 P 0 0 F
L 1 2
with P =1-% and P =&
1 2

~

The element stiffness matrix takes the for

T -1 '
k= j“[Bq] (s ][Bg] Rde dx dz
where, . '
(Bal = [T 1 [£f] [aq]
with. i
Vz
1 2 1
0 —_— -
R 29 R
0 0 2
'[F]‘: Vz
1
BRI 2 0
1) dx
2 0 B
‘bz bx
2 1 1
0 O

m
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where [T] is a matrix which depend upon'the fiber angle and
[s] is compliance | matrix of the ith ply with reference to the
material axes., which is taken as,.
1 1
S == -, |S = 8§ = =
1 E | 22 3% E |
L o T ¢
S =8 =8, =% =8 =39 ='DLT/E
i2 21 Bl 13 23 32 L
a 1 C2(1+Vm)
S =8 =Te——; 8 = —_—
44 55 G 66 . E .
LT pu
All other corponents of the [S] matrix are zero and the ply =
indicator (i) is |omitted for simplicity. L refers to the
longitudinal direction of the fiber and T to the transverse
. direction of the fiber. C
) Five elastic constants E , E , G , ) and G
L T LT LT T g
required to define the matrix [S ] are taken as, ’ : 3
N N
E=Z Vv B M —O :_O :z \
L i=1,2 n q LT TT n=1,2 n n
1 1
E = ;G =
T N T N
L2 _ (v /) >5— (/)
n=1.2 n n n=1,2 n n
where N is the number of constituent materials in the ply. V
are . volume fractions E, G and - are the Young's and shear
moduli and Poisson's ratio of the nth constituent of the ply
material., o
Similarly! the mass matrix is evaluated as,

e

[m] = X H[Aqf [f]A?1 [f]- [Aq] R do dz dx

i ;
where © is the mass density of the ith ply, given by

i N ’
€ = 2 _ ¢ v
n=1,2 n n

s

- The Test of "thé procédure is standard. = ' o R
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Table 1 gives frequency parameter of an isotropic shell by
considering the thickness direction of the shell as a single
finite 1layer element and these results are in close agreement
with Ref. (1). Table 3 gives the natural trequencies of three
composite shells and Table 2 contains the material properties
used. The results given are obtained by donsidering the tnree
plies as three finite layer elements. A typical set of mode
shapes are shown in Fig. 2.

i

HIGHER ORDER MODELS FOR LAMINATED .SHELLS

The shell theory attempts to provide a two-dimensional
formulation to an essentially three-dimensional phenomenon.
Following the recent developments in the modelling laminated
plates, three modelling approaches, namely the displacement
based (2),  local-global (3) and  iterativé modelling
possibilities (4) may be contemplated. The last two are not yet
examined for their application to shells. The first one, is by
far the simplest, readily amenable for finite element adaptation
and have received considerable attention. ‘In this approach the
displacements are expressed in a series form in terms of

"thickness-wise coordinates. Retaining a finite number of terms

and using the energy and/or equilibrium principles the necessary
governing equations are generated. The most crucial step is the
choice of the displacement field. Basic; principles of ,this
approach seems to have been stated as. early as 1890 Ref (2) and
over the years a number of modelling possibilities specialised
from expressions of the type,
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- i
U (x,y,2) = 5:: z U (x,y) .
i i=1, i
. {
have beer. exemined. This expression is imbroved in Refs. (5,6)
such that the displacement field satisfies zero shear stresd
conditions at the two surface of the shell. However no model
seems to be available, at this time which%satisfies the normal
stress conditions also at the surface of the shell.
|

Iu Ref (5), natural frequencies and mode shapes estimated by
higher order models are compared with three-dimensional elasto-
dynamics solutions. Results indicated that as far as the
frequency spectrum is concerned, the zeroﬁh order approximation
which corresponds. to the classical laminated shell theory, is
good enough for all practical purposes. Comparison of the mode
shapes indicated more significant differerces.
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LOWEST FREQUENCY PARAMETER ¢ PFOR ISOTROPIC SHELLS
(m = 1, n=31,0=0.3, (/0 w/(z\r‘;_zrf(;/?) » B= miTRo[L

r=0.5 o | r=0.98

B ‘resent study Ref (1_) Present study Ref (1)

|
0.1 0.0%0 : 0.0% 0.111 o 0.117

0.2 0.175 ; 0.175 0.214 0.208 o
0.3 0.254 | 0.250 0.304 0.292 |
0.4  0.324 0.318 0.378 0.370 ,‘;;,
0.5 0387 | 0.3 0.439 0.431
0.6 0.440 0.438 0.487 - 0480 »i§
0.7 0.483% 0.483% 0.525 0.519 f
0.8 0525 | 0.519 0.55  0.552 :
0.9 0.558 0.551 0.578 0.578. :%
1.0 0.587 | . 0.580 0.594 - 0.607 %

a}

!
TABLE - 2

l ' .
PROPERTIES OF MATERIALS USED

’ '

" Materials Subscript Mass Density Youngs modulus Poisson's

S et CRRET by g B
oo SRR SRR S

used -4 6 ratio

; 10 10 PSi
Epoxy e | 1.047 0.5 0.35
Glass g } - 2.418 10.6 0.22
Steel s 7.400 -30.0 0.30 f
Boron b 2.247 60.0 0.20 .
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. | TABLE - 3 |
% Natural Frequencies of Composite Shells (CPS)
Cg R=50" R/h=20, L/R=4, m=11 3 Layers.
Compos;ite Shells
s Number of  Isotropic + } + +
5 circumfe~ gteel \ 0.4 . 0.4 0.4
B8 rential shell e. ' :
L waves - v 0 0.6 0.6
: | g | |
x i iF
% ; :
& & 0 12.2 127.26 | 120.6 212.0
s 3 o S |
;% 1 172.7 87.24 | 79.6 117.6
Xl 81.6 56.51 | 46.6 54.1

i 40.6 52.2
149.0 65.1 | 58.2 83.8
234.7 %.3
- 339.8 135.3 127.6 185.5
465.0 | 183.3 173.7 250.8
603.7 238.5 226.4 324.8 -
761 .2 300.5 285.6 407 .1
934.9 369.1 : 350.8 - 497.0
1123.9 444.0 . 422.0 594.0
498.8 . 697.8
581 .0 807.6

838.2 . 49.80

et YA

88.7 129.5

O OO 1 o Uy o~ NN

—_
—_

12 1327.7 524.8

i “:waﬁ-m;«w:&.lﬁ?ﬁﬁ*%ﬁ’fﬁ?‘ﬁaéﬁm e
o

13 1545.5 611.3
14 1776.7  703.2 . 668.3 923.1
15 2020.4 80.3 = 760.5  1043.8

+ Fibre Orientation 0/0/0 ++ Fibre Oriientation +45/0-45
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Fig.1.

L/R=4,R/h= 20,n’1,lm 1 R 50"

A Composite_ cyli
idealisation.

\A Typ

pical finite layer element

3-Layers (45/0/-45) |

l~0[— 0.114 0.349 i 0-340
0.110 0-349 l 0-34]
0.5} |
0-105 0-349 : 0-34}
oL o.i00 0.349 ! 0.34]
f=17.63 |
1.0 r 0.322 0.328 0!-2!6
. i
0-393 0.320 ' 221
0.5 | _
0.316 0-311 izzs ~-032
oL 0-3i8 0-301 0:229-0.43
f =590.78 l
!
I:0T"~0.0253 o.sfzs 0.0084
-0-0i28 0-29;8 0.005!
05}~ |
0-0132 ‘ 0-0048
ol o0.0259] 0.0078

s of composite

3 /NOde“) (U1V1W1)'

ndrical shell with finite ‘syer element

» Glass/Epoxy (0.6/0:4)

0.365 0-180
0369 0.178
0373 |lo-165
0.377 0.158
f=336.18
0.622 0.0258
0315 |o.0123
-0-0134|
-0-0265
f=10149
-0.0125 [0.0156
0:0038  |~0.0047
. o-‘oo<‘;o ~0-0081
~0.0124 lo.oi15)
. f=17386

cylinder

0.289

0.289

0.290

0-0060

0-0037

0.0036

0.0032

0.674

0-3159

-0.318

-0-640

0.29)

J!‘.




L

B bie % e

i

CONCLUSIONS

In this paper, some three—dimensiqnal elasto-dynamic
snlutions for simply-supported laminated shells are presented.
Two-dimensional modelling possibilities are briefly discussed.
It is recognised that a large variety of modelling possibilities
exist and in this context, the example of simply-supported shell
is ideally suited for assessing the new models, in view of its
amenability for three-dimensional solution.

There are several aspects and criteria, with reference to

which  there is 2 need to assess the usefulness of higher order
theories and establish an appropriatei model for each
application. Some of these important aspects include frequency
spectrum, mode shapes, interlaminar stresse% and strains.

As far as the frequency spectrum is conéerned, the classical
laminated plate theory may be.considered adgquate for practical
purposes. Further - rvestigations to assess various levels of
higher order models, with regard to mode‘shapes and dynamic
stress estimation are useful.
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