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Summary 

Based on the ease in satisfying the free edge boundary conditio/I, open tubes are 

classified into two types, A and B. Type B tuhes hal'e more complicated free-edge 
boundary condition than that of type A tubes. An alfemme formulation is evoll'ed for 

. type B tubes; this makes the free-edge boundary condition as simple as in t)'pe A _ tubes. 

A . I lb' '. I I .. h . S . 2ITS . simp y-supporte(opcn tu e wiT I tIe cross-sectulIl glvell Y p = --2 SI1l ---
:-t S 

is analysed exactly as well as by IIsing approximation equations; errors in using the first 
order approximation equations are discussed. A simply-supported open tube (~f 

I-section, representative (If type B tubes, is allalysed by !Ising first and second approxi­

mation equations . 

a, b 

---

ADDITIONAL NOTATIONH 

Typical cro~s-sectional dimen~ion~; of the tube 

w 2p L21r 
-.' - - - -.~-

E B8~ 

~l.'h 

L/a 

tThis forms part of a Thesis entitled "Vibration studies of some basic aircraft structural 
components" by A.V. Krishna Murty aoproved for the award of the Degree of Doctor of Philosophy 
in the Faculty of Engineering. 'Indian Institute of Science, R.lOgalore . 

• Lecturer and Professor of Aeronautical Engineering respectively. Indian Institute of Science. 

Banga\ore. India. 
"In add~ofl to the notation used in Part ]. 
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Error in natural frequency (Eq. 4.43) 

Error in mode shape (Eq. 444) 

Dt:fine~ by Eq. (--1.81) 

[Vol. 20, No.4 

222 
" I' "2' ,\ 3 Roots Of the polYJ1omial (sl.'e Eqs. (4.36) and 4.71) ). 

2 
f.La 

2 
f.LJ 

2 2 
f.L4' f.LS 

2 2 
u2' uJ 

4.0 IntroducHon 

Js 
._'---'-'._- ----' 

k2 BOil 

Defined by Ec!. (4.17) 

Definc:d by Eq. (4.65) 

Defined by Eq. (4.65) 

For open tubes of doubly-symmetric or doubly anti-symmetric cross-sections, 
we have uncoupled flexural a~d torsional vibrations, but each mode, generally 

involves warping motion also. Owing to the large warping associated with open 

tubes. beam theories are: inadequate. Although the rotation is a function of one 
variable only, warping displaccmcnt dcpends on two variables, and hence the analysis 
looses simplicily. 

Nevertheless the simrJirying ;,ssumption of zero centre line shear strains results 
in a cOllvenil!nt rormulati0'l for open tubes Gere's equation~29. are ha~ed on this 

~~ssumption and they may QC good enough for rn;II1Y an application like lung open 

'tubes. But short Opl!lI tubes likc t:Ul-outs or airuafl wing structures requIre the 
consideration of centre-line' shear straill~ also. 

The proposed theory consists in dL'vdoping the equations governing the natural 
vihrations of thin-w,dled cylindrical tubes of arbitrary cross-~ection. bu with the 

a~sLJmptioll of CSRMD. Kantorovich form of Rayleigh-Ritz method is invoked to 
yield equ.ltions of various ~rders of approximations. An elegant splitting of warping 

dispJac~ments results' in convenient inclJrporation of centre-line shear strains. 
~llrn1ulation of v,lrious equations is presented in Part I. 

As different rron1 the an~lIy;;j, of closed tubes, the analysis of open tubes 

iJl\olves the satisfaction of zero shear strain condition at the free-edge:. .. Warping 
di~phlcerrlellt has to satisry free-edge condition 

(;w 

2s 
---_.- ~ .. -- .. - .. - .. _-._. - - -----------------------

* Kcfc~CIlL'C' arc givt:n in Part I. 

... (4 I) 
--0 ____ . __________________ ~ ___ _ 
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and the end conditions 

w = 0 or 'Ow 
'Oz = 0 ... (4.2) 

However, if p - 0 at free-edges, Eq. (4.1) takes a simple form. The sckctbn of the 
admhsible functions for the method of section 1.6* is also simple. Such tubes are 
classified as type A (See Fig. 4.1). Neverthekss if p =F 0 at free-edge, it i'\ not easy 

o 
------""--~~ X 

y ~y y 
Fig. 4.1: Open tubes of type A. 

to select admissible fuuctions satisfying the free-edge condition, Such tubes are 
classified as type B (See Fig. 4.2). A modificati()O in the equatil)I1S, reduces the 

1: 

y y 
Fig. 42: Open tubes of type B. 

application of the method of solution of section 1.6 to type B tubes as casy and 
~traight forward as for type A tubes; these modifications are di~cussed in sec­
tion (4.4). 

This paper includes an exact solution of simply ~L1ppOrled Opl:Jl tube of tyre A 

. I " . b S, 2 -;-: S 
wIth t 1e cross-sectIOn gIven y p = ~=- sIn -S-'" 

... 11. 

The same tube .is analysed 

using first order approximation equations u'nd the error in the natural frequency l~ 

discussed. A "imply supported tllbe of I-<..ectinn. reprc-;entative of type B tubes, IS 
an~lIysed using first and second order arrro\im~t!i,)n c'ou;lti,)n", 

-Eq ua 1 i, illS and secl ions ref ared 10 as \ 1.) can be ,een in Pa ,I I. 
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4.1 Governing equations for op:en tubes of type A-rigorous formulation 

The governing equations in this case are the same- as those for closed tubes 

(section 2.1)*; one of the boundary conditions· here is the zero shear condition at _~ 
free edges. The equations of e'quilibrium are 

d20 2 d £ oW 
dz2 +kBO = - ---- :J' ;-s p t ds 

,S68 dz u 

k.2 02W + 02W, + "k2w = _ dp dB 
OZ2 OS2 ,s ds dz 

and the boundary conditions at each end are 

either B = 0 or dO + 
dz - Se6 

oW 
either W = 0 or - = 0 az 
and 

;£ OW :r - pt ds = 0 as 

aw · 
;- = 0 at free edges. 
uS 

(4.3) 

(4.4) 

(4.5) 

4.2 Simply supported open tube with the boundary of the cross section given 

S . 21ts 
by p = 27t SIn -S- -Exact solution 

The bound;lry conditions in this c[lse are 

o (0) =, 0 () = 0 

CW (0. s) =-~ ?~j~~ ==~ 0 oS as 
~W(Z, 0) = ~_\V (z,~ -~) = 0 
cS as, 

Fqs. (47) and (48) suggest expression for w in the form 

00 

w - 2: 2: 2n 7t S 
Amn cos (m1tz) cos---

S m =- ), 2. J. , .. n= I, 2, 3, ... 

Substitution of Eq. (4.9), in the first equation of £1is~ (4'.3) yields 
I 

00 00 ., -> 2: 2mn-;,2 
§ 2n 1tS ds 

(j" -r- k- () --- Arnn --S-s';i-- sin (m1tz) pt sin H 
.. .....J S 
III =-~ J 11=) ., ..... 

. - -.. -...... ---.-:------------~:....---. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

"E4tJ:ltion~ or sections refcrrc'd to as (2. ) appeared in Part II. ------------

( 
'. 
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From geometry, we have 

S . 27ts 
P = 27t SID -S-

Using Eq. (4.11), Eq. (4.10) can be written as 

00 00 

(J" + k~O = - 2: 2: 

.. , (4.11) 

A 
' " mn 7t St, .. 

, I;DQ OlD 2S" SID (m7tz) 

m=l, 2,3, ... n= I, 2, 3, ... 

where 81n is the Kronecker delta. 

The solution or Eq (4.12) is 
00 

e =-= AI sin ksz + A2 cos ksz - 2: 

. .. (4.12) 

00 
~ BIn mn 7t sin (m7tz) _ 

m= I, 2, 3, 
LJ AmD 2S,,( - m2 1t!!' + k;) ,,= I, 2~ 3, 

(4.13) 

S~tisfaction of the end conditions on 0 namely Eqs. (4.6) yields 

AI = A2 = 0 ... (4.14) 

Hence 

00 

B= L 
m= 1.2, 3, ... 

Since 

where 
2 81t2 

(J.3 = 3R:!' R =Sjt 

we have 

00 00 

0=-L L 
m=I,2.3 ... n=-I.2.3 ... 

00 

L 
n=I,2,3 .... 

BID mnrrSt sin (m7tz) 

AmD 2Sss( -m21t2 + k;) 

... (4.15) 

... (4.16) 

(4.17) 

Substituting Eq. (4.18) in the second equation of Eqs. (4.3) and using the orthogonal 
properties of Fourier series one finds 

( 
4n2 1t

2 2 ) 
Amn. -- k2 m!! ~2 - ~ + ks -

/ ' 

. ;.* 
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The natural frequencies are obtained for nontrivial values of A~s as 

( 
_ k2 2? 4n2 .. 2 .. k2 .~ ) m1t----+ -

s~· S : 
=0 

m, n = 1, 2, 3, ... 00 (4.2L) 

and the corresponding mode shapes ale 

i 2n 1t S 
W = Amn cos (m1t;Z) cos s 

(4.21) 

Noticing that.f.l~~ I'in: most ll( the practical tubes, it can be readily seen 

that the numerical results are goin!! to be nearly s<ime i( (1'3 is set equal to zero. 

Numerical results of a analogo,us equation (Eq. (3.19))* are discussed in section (3.2). 

Hence these will not he repeat~d here. 

4.3 Open tuhes of type A-fitst order approximation equations 

The governing eqllatioq~ in this case are the same as those for closed tubes 

(section 2.1); however. thc op~n cdgc condition 

dW:J _ .... __ . = () 
ds 

has. to he incorporated while evaluating ,WI from Eq. (2.33). It can be shown that 

solution of the simply supported open tube with the cross-section given hy 

S . 2 T. S L... C . • . • • f b 
p =-:i~-- Sin -. s III' r!rst order ;lpprOXllnatlon equatIOn 0 open tu es of type A \ ." :: ,; , , , .' 

is same as the n = 1 case 'of exact solutions (Eqs. (4.20) and (4.21) ). 

4.4 Gov('rning eqllations for ()~pen tulws of type B-rigorolls formulation 

As men! inned earlier, the governing equations of closed tubes or open tubes of 

type A govern open tubes of t)'pe B also. But there is some difficulty 111 using the 

method of sect ion 1.6. In the case of an open tube, the conditions to be satisfied 
" ~ . 

by W, are_ .- r! 

oW de 
+ p - =.= 0 ~t open edges as di (4.22) 

and 

?w 
either w = 0 or -'. = 0 at ends. 

Ci Z (4.23) 
,w __ • " ___ .. _ ..... _. ______________ • _._ •• __ •• _____ • _____ • _____ ~ __ • _____ • __ •• ___ _ 

* EquJ.tions or secl i0ns referred 'to as (3. ) can be seen in Part III. 

.( 
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, 
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Since the above equations involve e also, it is not possible to select a function for w 
to satisfy Eqs. (422) and (4.23) at the beginning itself, which is a pre-requisite for 

using method of section 1.6. 

However. it may be mentioned here, if one chooses to use the R~yleigh-Rltz 
method, the formulation of open tubes of type A can also be used here. 

The difficulty in selecting a suitable function for wcan be avoided by effecting 

the transformation of the governing equations using the relationship 

where 

de 
W = -w-

d 
+ WI (z, s) 

1 Z 

WI = J P ds 

... (423a) 

: .. (4.24) 

hecausc, in this case, B will be eliminated from Eq. (4.22). The constant of integra­

tion in Eq. (4.24) is obtained from the condition of zero net axial force at any cross 

section due to the first term of Eq. (-l.23a), that is 

f wt t ds = 0 . ...(4.25) 

The expression for W in Eq. (4.23a), but for WI (z, s) is same as that used in the well 

known torsion-bending analysis of open tubes. 

Substituting Eq. (4.23a) in the second of Eqs; (4.3), we have 

- Z = k 2-- - W - + W +-_ 02 
. { dO } 02 

OZ2 I dz I - OS2 { -WI~· + WI} dz 

+k -w -+W + --=0 2 { dO } dp dO 
s I dz ] ds dz ... (4.26a) 

and noting that dWl/ds = p we get the second of Eqs. (4.27). Substituting Eq. 

(4.23a) in the first of Eqs. (4.3) and using the condition that 

f Z WI ds = () ... (4.26b) 

one obtains the first of eqs. (4.27). 

Thus the equations of equilibrium are 

( 
. d 4 8 2 d 28 ) 

k2 Bee --dz4 + ks Bee dz2 -

.) d 2 fOWl - d k2 d th - t d = k- -- - WI t s +' -::J' WI WI s 
dz:! oZ s dz 

+ k W = k2w .-- + k -2 ( d
3e 2 d8 ) 

S I 1 dz3 W dz 

••. (4.27) 

~-~~-
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and the boundary conditions at each end are (these are obtained from Eqs. (4.4) by 
adopting the same procedure used in obtaining Eqs. (4.27) from Eqs. (4.3) ). 

. d3B ,2 de . de 
either 6 = 0 or k2B'M dz3 + k S 899 dz - Js dz 

- k2 d~ § ~:<~\ t ds - k; § WI wt t ds = 0 

2 ~ aWl - d 0 either e' = 0 or k2B69 6" - k ' :J' . -~-.- WI t s = 
co' 

and 

OW1 = 0 at open edges. as 
Cross-sectional constants in Eqs. (4.27) and (4.28) are defined ~y 

B86 = § wit ds 

Jp -. § r2t ds 

Js = + § t
3 ds 

... (4.28) 

...(4.29) 

... (4.30) 

Now if we choose a suitable expression for WI to satisfy Eq. (4.29), we are left with 
four end conditions in all, nam'ely Eqs. (4.28). Suhstituting this expression for WI in 
lirst equation of Eqs. (4.27) an1d solving for e. the solution involves four additional 
arbitrary constants and these chn be determined using Eq. (4.28). Thus, we will be 
having expressions for 0 and W'I satisfying all the boundary conditions and the first 
equation of Eqs. (4.27). As s~ggested in section 1.6, either the error in second of 
Eqs. (4.27) can he minimised, or the orthogonality properties can be used (0 gene. 
rate simultaneous equations; using these the eigen values and eigen vectors may be 
computed. 

4.5 Open tubes of type B-first order approximation . ' 

The governing equation in this case is obtained by putting w1=0 in Eqs. (4.27) 
;lOd llsing Eq. (4.26b) as 

d'IO 2 I d28 ( d202 ) 
k

2 
B88 dz4 + ks :B99 dz2 - .Is dz~ + ks IpO =0 

and the boundary conditions at each end :Ire 

either 0 = 0 or k2B8 " -dd_z~ .. -~"l + k2B dO - Js~{) 
<7 's eo dz ' dz 

either 0' = 0 or (Y = 0 

o 

" (4.31) 

... (4 32) 

( 
\ 

,~ 
( 
" 

.' 

I 
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Eqs. (4.31) and (4.32) may be simplified to yield 

Ol\' + k~ew - f.l~ ( e" + k~.e ) = 0 

the boundary conditions at each end arc 

either e = 0 or 6"'+ k~B' - f.l~8' = 0 

either a' = 0 or 8" = 0 

2 J8 
f.le = k2B66 . where 

(4.31 a) 

(4.32a) 

(4.33) 

The equations used by Gere29 while dealing with torsional vibrations of open tubes 
. 2 

can be obtained from Eqs. (431) and (4.32; by putting ks = O. 

4.6 Simply supported open tube with the boundary of the cross section given by 

S .. 27ts .( I' bt' d· b . fi· . d P . ~ SIn -S- -- so uhons oalne y usmg rst or er approximation 

equations developed for type B) 
Althou~h th~ tube under analysis is an open tube oftype A, the equations of 

.. type B are used in order to assess the error, in using these equations; the error is dis-

cussed in section (4.7). 

The boundary· conditions in thisca~c are (Fig. 4_3) 

8(0) = 0(1) = 0 

(1"(0) = e" (1) = 0; 

, . 
....... -.--;.--..... z· ~. ~ 

... .' 'VJ 

...-----L=I - 2..._...-
21T 

y 

(4.34) 

Fig. 4.3: A sirr.ply supported open tube with the boundry of the cross section given by -

5 . 2;-:5 
p= -2~- SIn -5-

---- --- - -.~--""? 

, .. 
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the solution of Eq. (4.31) is 

.. () = AJ sin ~lZ + A! cos ~IZ + A3 sinh ~2Z + A, cosh ~2Z 
(4.35) 

where, -~i and ~~ are the ro;ots of the quadratic equation 

;2 + ( k~ - ~~ ) ~ - 1L~ k ~ = 0 ( 4.36) 

Using the boundary conditions t4.34), it can be shown that for nontrivial solution 

sin AI -:- 0 

2 
or .\ I = m 2 it2 . (m = I, 2, 3, ... 00) 

(4.37) 

and the mode shapes are given by. 

o = AI sin (mitz): 

. .. . S!!m 2itS 
W = AI ---- cos--

S 
cos (mitz) . 4it 

(4.38) 

4.7 Error in using first order approximation equations of open tubes of type B 

The first order Clppro;ltilnation equations as formulated for open tubes of type B 
have heen widely us.ed in literature for many kinds of open tubes 29~ 30. The object 

of this section is to estim:-tte the error introduced. by using these well known equa­
tions already shown to be associated with type B for obtaining solutions for tubes of; 

type A. .When· this is done besides the error associated with the neglect of WI 

(section 4.5) an additional error is introduced. This is due to the use of equation 

dO 
w = - WI dz 

., 

(which is used in ohtaining firistorder approximation equation of type B), while a 
more appropriate expressi?n is 

w ~ wl r/>o ; 

¢8 need not necessarily be equal' to dO/dz. r/>s IS used In the equation 01 tubes 
of type A. 

In the case of the example considered in sections (4.2), (4.3) and (4.6) we found 
that first order approximation equations for tubes of type A gave exact solutions for 

the case n -:-1 (sections (4.2) and (4.3) ) while the first order approximation equations. 
derived fortuhes of type B introduce an error when Clpplied to tubes of type. A. 
Longitudinal inertia is neglected in the following because its influence is smal')' The 
errors are evaluated as follows. 

Exact solution 

Putting k; = 0 and n =., in Eq. (4.2() Clnd Ignoring !.I.~ (because. i..l.~ ~ I) 



( 
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! 
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one has 

2 

k* -
8 

•• I, 

m2 -2 
" 

and the assoociated mode sh<;lpes have (Eqs. 4.21) . 

Om 41t 

First order approximation equations of tubes of type B . 

Putting ~ 
2 - m2 1t2 in Eq. (4.36) and - AI = 

2 • k2 
m2 1t2 8 

k* - m2 1t2 
---. = E" e 2 ~ 

VB 

and the mode shapes have the same d istributiori as 

(4.38) ). 

wrn 

Error 

The error in nat ural frequency is 

and the error in the ratio of maximum amplitudes is 

(4.39) 

(4.40) 

letting 
2 

kw = 0, we have 

(4.41) 

In exact solution, but (Eqs. 

(4.42) . 

( 4.43) 

(4.44) 

Fig. (4.4) shows the variatjon of e:f and e:m with the length of the tube. From this, 
it can be seen that the first order approximation equations of tubes of type B, can 
also he used for type A with small error provided the tube is long. particularly for 

lower m()des. 

4.8 Cross sectional constants of an I-section-first order approximation equations of 
. '.' . 

open tubes of type B 
. It can be seen from Fi~. 4.5, thal since the tube is doubly s) mmetric, WI 1S 

doubly antisymmeti-ic. Since \V 1 is antisymmetric about BE; it follows that ~'l in BE 

':~j 
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2 

---- PERCENTAGE 

ERROR \ IN NATURAL 

FREQUENCY ~ X 100 
E1 

- --- PERCENTAGE ERROR 

6 

IN THE RATIO OF 

MAXIMUM _AMPLITUDES 

IN T HE MODE SH APE 

I MODE 

8 10 

Fig. 4.4: Variation of percentage errors with length. 

I 
5 

is zero. Therefore, it is sufficient if we consider the region AB for obtaining WI since 

in other regions WI can be obtained by l)sing above features. In obtaining WI. it i" 

es ... ential to consider the sign of p; p is positive if the tangential displacement Vt due 
to a positive rotation 0 is in the positive direction of s. 

----- ---_. - -------------------

I 

I 
i 
I 
I 
I 
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2b o t---------~ x 

y 

Fig. 4.5 WI In I Section 

p in the region A B is b, WI in this. region may be obtained from Eq. (4.24) 

WI = J p ds 

with the condition that WI at B is zero; as 

WI = + b (s '- a) in AB ... (4.45) 

The distribution of WI on the section is as shown in Fig 4.5. Note that it satisfies 

't--' ____ ...;....--.------t' ~~2 a r_ 
z 2b 

j~' . t 
L= J -----.~ .. 1 

y y 

Fig. 4.6: A simply supported tube of I section 

- I 

.,' 
i 
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the condition of zero net axial force due to \V
I 

system. 

sectional constants may be computed as (Eq. 4.30). 
Using Eq. (4.4~), the cross 

18 -; (2a + b)ta .•• (4.46) 

Is> =; t (2a3 + b3 + 2b2a) 

4.9 Simply supported tube of I-section-first order approximation equations of type B 

and 

2 18 
I 

f1.0. k2B09 = 
(P+I)2Q2 

2k2 R2 P 

k
2 
w 

T= 
o 

GJ 
EJ p 

2 
= k~i -

(2P+ I) 

where P = alb, Q = L/a, R = hIt 

The natural frequencies in this case can be obtained by sub.stituting 

t: 2 . <) 2 
~ = -"I = - 1n"7t 

, 
in Eg. (4.36) and using Eqs. (4.47) and (4.48) as 

or 

2 
2 k e 

k* --
() -- '--,,-. 

m7t2 

2 
m2

7t
2 + f1.e 

2 +' . 2 2 k2 
f1.0 m 7t Ii 

Neglecting longitudinal inertia one finds 

.•. (4.47) 

... (4.48) 

... (4.49) 

" (4.50) 

and this is same as the expression given hy Gere 29. Equations (449) aud (4.50) 

can be written In terms of ~: which is appropriate for short open tubes. K~ is 

defined as 

... (4.)1) 

( 

( 
~ -"') 

I 
, i, 

.\ 
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Eq. (4.49) becomes 

2 2 2 

( , ) 4 k* fLo fLO 'm2 ,.2 + U. 

K* - 0 I() 

0 m 2 ,.2 - m2 ,.2 2 2 
!L()+m2

,.2 k('i 

... (4.52) 

Neglecting longitudinal inertia, we have ( k~i= 0 ) 

2 
4 fLa 

Ke* = 1 + ----
. m 2 ,.2 (4.53) 

Neglecting St. Venant torsion, fL9 = 0 and hence 

(4.54) 

4 

Figs. (4.8), (4.9) and (4.10) show the variation of KO with the· plan aspect ratio. 

These revearthat the effect of St. Venant torsion is negligible for short open tubes, 

and this influence is even smaller at higher frequencies. The influence of longitudinal 

inertia is. small for long tube, but considerable when the tube is short. Thus a 

scpara te simplified analysis can be suggested for short and long tubes. The analysis 

of long tubes must include St. Venant torsion but no I,ongitudinal inertia. Tile 

governing equation in this case, as obtained by Gere33
, can be got by putting 

k 2 = 0 in Eq. (4.3 I a) 
W 

.OlV _ fL~ t 8" - k~ (j) = 0 (4.55) 

The analysis of short tuhes must include longitudinal inertia and no S1. Venant 

torsion. The g,overnlng equation in this case is obtailled by putting J5 = 0 in 

Eq. (4.31:), as 

(4.56) 

From the numericai results presented in Figs. (4.8), (4.9) and (4.10); it can he seen 

that if the distance between two successive nodal points is less than ten times the 

flange width, the tube can be treated as short otherwi5e as long. Further discussion 

is included in section (4.11), 

4.10 Open tubes of type B-second order approximation equations. 

~ The appropriate expression for w in the second order approximation is 
..M 

dO 
w=-w--­

I dz ( 4.57) 
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W'>,9 has to be obtained from the relation (section (1.]3» 

"'!!6 = - J f WI ds ds. 

[Vol. 20, No.4 

(4.58a) 

dW t • 

Noticing -- - p the consnmts of integration are evaluated from the zero shear ds -

strain condition, 

dW~.9. d '-- =0 at free e ges 
ds 

Substituting Eq. (4.57) in the second of Eqs. (4.3) one obtains 

(4.58b) 

- _. ,2 (12 { _ d 8 _ } 02 
{' _ de} 

- Z - k --,,- - WI d-- w 2 • 9'¥9 + -2 - W 1d- - w2 , (}'1'(} + 
2z- . Z as Z 

k2 { __ W de 
s . 1 dz 

IT),} d p -d e _ 0 
- "'2< (} T (J . + ds dz -

Instead of satisfying Eq. (4.59a), we choose to satisfy 

§ i WI ds = 0 
-§ Z W2 , 8 ds =: 0 

( 4.59a) 

(4.59b) 

Substituting Eq. (4 57)il1 the first of Eqs. (4.3), llsing Eqs. (4.59b) and noticing 

dW I b . . f 'I'b . ---(f';- = p, we 0 tam the equatIons 0 equl 1 num as 

k2 Bn(} dlO _I. k 2 d
2
0 -.1_ k2188 (d311~ .. t- k2 _~ IV 9 ) '" d ,I [ 1" -, 1.1 d ., 1 z w ( z- z·> W (Z 

(4. (0) 

., -. (lP (I 2 dO) ( d 2 '¥ '.., ) 
k-Loo dil : kw~iz + FL68 dz:- + k: 'V9 --- L90 o/t1 = 0 

Thebonn(Liry conditions at e;lch end are (these are obtained from Eqs. (4.4) by 

adopting the same procedure used in getting Eqs. (4.60) .from Eqs. (4.3) ). 

. ., (d 30 2d8) .:. (d211~6 2 ) eIther. 0 = 0 or k-BlIlI -.+ k - + k2L89 -----,; - -!- k. 1VO 
dz:! W dz· dz- w 

. I de 
CIt ler dz = 0 or 

o 
(4.61 ) 

-----? 

: 
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The following notation is used in Eqs. (4.60) and (4.61) 

§ 
2 

BOO wt ds 
I 

Leo - § wt w2,8 t ds 

Leo § _2 
t ds - \\' 

2,(j 

Ip -- § r 2t ds 

Js = .1 § t 3 ds :\ (4.62) 

L09 = § (9 W2
'
OY ds 

t ds 

WI = J I; us (4.63) 

w2·6 _ - J J WI ds ds (4.64) 

The constant of integration in Eq. (4.63) is obtained from the condition of -no net 

axial force whIle the integration constants in Eq. (4.64) are obtained from the 

d·· 'dW2.6 0 f d con ItlOn --_._ .... - = at ree e ges. 
ds 

Illtroducing the notation 

k2 J 
s p 

k2 o -
2 -

v2 = B80/~90 ; 

2 
!.t4 -

2 -
v3 = ~o9IBo9; 

J H • 

k2i~;-8 · 
2 LOO 

fJ.5 - k2tOO ; 
Eqs. (4.60) hecome 

/jlv + k~8w -+ 'Ii ('V ~W + k~ '1"0 ) - fl~ ( 8" + k~8 )=0 

2 ? '" 2 2 
O'''+kwfl' -+ '12 (IFe +kw IVa) - !J. s 'l"(1 = 0 

;Ind the boundary conditions at each end are (from Eqs. (4.61) ) . 
? ~"2 2 

el'tller A = 0 0f (I'" +·k~ H' ---1_ ../- (\V + k IV 8 )._. e' = 0 
. \\' -1 :3 A w fJ.4 

? 
e i I her n = w _ 0 r (I" --; 'J::I I I' Ii =-cc 0 

Comhining the two equations of Eqs. (4.66), one finds 

(D6 + aID' -+ ;l,D~ -~ <1:l ) (0 or 'I' O)=() 

(4.65) 

(4.66) 

(4.67) 

(4.68) 
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where 

. 4 (fL~ v~ + fL~). 2 a2 = k - . k + 
w 2 2 w 

v - v3 2 _ 

2 2 fL4 fLS 

From Eq. (4.68) the form of ~xpressions for () and 'Y8 are 

8= A1 sin "IZ +A 2 cos "IZ + A3 sinh "2Z + A4 cosh "2Z + 
. As sinh "3Z + A6 cosh "3Z 

\f-"() = A: sin "lZ+A~ cos "lZ+A~ sinh "2Z+A! cosh "2Z+ 
J . I 

A5 sinh "'3z+A6 cosh "3Z 

where --'- "i,"~ and "~are th'e roots of the cubic equation 

[Vol. 20, No.4 

( 4.69) 

(470) 

~3 + 3 1 ~2 + a2 ~ + a 3 =0 (4.71) 

In writing. Eq. (4.70), it is ~ssumed that AT'''~ and ,,~ are positive. As the 

present interest is limited to assessing the influence of shear lag on the natural 

frequen~ies associated with primarily rotational motion, additional frequencies arising . ! 

f . 2 d 2 d· . r· b. out 0 negatIve "'2 an II] are excluded from the present Iscusslon. t IS 0 VIOUS 

that all arbitrary constants involved in Eqs. (4.70) are not independent since, they 

have to satisfy anyone of: Eqs. (4.66). Satisfaction of the second of Eqs. (4.66) 
requires the following relationships between the constants. 

( 



I 

.~ 

( 
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( 
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2( 2 + k~ ) 2 
v2 "2 - (1-2 

Al A, -
."2 ( A~ + 'k;) 3 

2 (2 2 ) 2 
As 

'12 "3 + kw - (1-2 I 
- ------.. ---- - ------------- ----- A 

"3 (,,~ + k;) 6 
2 - 2 

k; ) 
2 

'12 ( "3 + (1-2 
Al As -

"3 ( A~ k
2 

) 
5 + w 

4.11 Cross sectional constants - of I-section-second order approximation equations 

for open tube of type '8' 

The expression for WI has been discussed in section (4.8). Since the tube is 

doubly symmetric warp will be antisymmetric about BE and x-axis. It is sufficient 
if we consider·AB for evaluating w2 .O as the expression for w2 • () in other regions can 
be obtained by using the above features. w2 • e in AB can be obtained from 

w2:e = -fJw1 ds ds 

and using the conditions (Eq. (4.58b) ) 

dW2.9 
---- = 0 at A 

ds 
~nd 

w2.0 =0 at B 

W2• A == - ~ ( S3 + a3 
- 3as2 

) In A B 
(4.73 ) 

W2.0 in I-section is shown in Fig .. (4.7). Using (4.73) in Eqs. (4.62)"one obtains 

- 8 - 68 
1:.00 _ f5 bZa

:l t, LOO = -315 b2 
a

7
t (4.74) 

8 
LOB = -b2 a5t . ) 5 ' 

other cross-sectional constants are given in Eq. (4.46). 

4.12 A simply supported tube of I-section -.second order approximation equations or 
open tube of type '8' 

The boundary conditiolJs in this case (Fig. 4.6) are 
I 

9(0) = 9" (0) = 'Y 8 (0) :-- 0 

I 

f) ( I) = W (I) = IFf} (I) = 0 

The appropriate expressions for 0 and \}'°fl are given in Eqs. 
boundary conditions (4.73) and using Eqs. (4.72), one finds 

A~ = A4 = Afi = A:= A~. A~ = 0 

(4.75) 

(4.76 ) 

(4.70). Satisfying the 

(4 77) 

•. ; .j 

.:' 
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26 Ot----------.. 

y 

Fig. 4.7: W'!..8 In I section 

Satisfying Eqs. (4.76) and USi(lg Eqs. (4.77) one obtains 
AI sin Al + A3 sinh A2 + As sinh A3 = 0 

- AT At sin Al + A~ Ajl sinh All + A~ Afi sinh A3 = 0 

- Al Ai sin Al + A2 A! sinh All -f- A:I A~ sinh A3 = 0 

[Vol. 20, No.4 

x 

" 

(4.78) 

Using Eq. (4.72) one linus fOl; the nontrival values of constants in Eqs. (4.78), ~-f 

sin Al sinh A'!. sinh Aa = 3 ... (4.79) " 
or 

AI ;:::: m;:; m --.:. I, 2, 3, ... 00 ... (480) 

Neglecting longitudind incniil a simple expression fer natural frequency can be 

0htaincd. Sllb~tltlltin!!.~ = - AT = - m:! ,,2 in Eq. (4.71), putting k~ = 0 and 

using the notation 

r 2 
3 

y 2 
.., 4 -

2 
"2 

'2 
"2 

... (4.8 I) 
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one obtains 

or 

2 2 
fL4 - fLO 

2 

k* e 

4 

K* -e -

... (4.82) 

Using Eqs. (4:74). (4.65), (4.81), (4.47) and (4.48) and considering the C(1se of a/b= I, 
it can be shown. that 

2 
fle 

~ ~ -- 85 

4 

... (4.83) 

the variations of k{j ,given in Eq. (4.R2), with plan aspect ratio IS presented in 

Figs. (4.8), (4.9) and (4.10). These show that the influence of shear lag is small in 

long tubes; as slIch Eq. (4.55) can be used. But the influence of shear lag in short 

tubes is considerable. Hence in short tubes, Eqs. (4.66) have to be used; neglect 

of JR involves only small error. 

4.13 Conclusions 

In this part, problems of torsional vibnttions of open tubes are discussed. The 

governing equations of open tubes are same as those for closed tubes, but for minor 

modiiications. Unless the tube is such that p = 0 at open edges (open tuhes of 

type A) the method of solution of section 1.6, cannot be used. To facilitate the use 

of this method of section 1.6 modified governing- equatiollsare derived (for tubes of 

type B) .. The exact· solution of a simply-supported tube with the boundary of cross 
. S . 2 7t S b . d bl . fi . . f sectIon given hy p = -2it- SIn -s· f1ngs out a ou y In mte set of reque-

ncies, hesides an infinite set of frequencies associated with primarily rotational 

motion .. One infinite set of these additional frequencies involves small rotations 

. also while the others are pure warping modes. 

The s:tme example is worked out using first order approximation equations of 

oren tuhes of tyre B. :lnd the results are compared \vithexact solutions. This 

comparison shows tl1:\t tile fir~t arproximation equations of tubes of type B give 

adequate accur:lcy even f,)r tube~ of type A. when the length of the tube is large. 
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Influence of plan aspect ratio on the frequency parameter for a simply 
supported tuqeof l section with a/be 1, fundamental. 

A simply suprorted (ube of I-section is analysed by using: first and second 

approximation equations of (lubes of type n. The rc<;uits of this case show that in 
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Fig. 4.9 Influence of plan aspect ratio on the frequency parameter for a 
simply supported tube of I section with a/b= 1, second mode 

long tubes, shear lag and longitudinal inertia arc negligible while St. Yenallt torsion 

plays an import;lI1t role; but in short tubes St. Venant tClrsion cireet is small while 

~hcar lag and longituuinal inertia have cnnsidcrable effect. ['erending Cln the 

nU1l1cric:d rC'IlIt" prc~L;' Ii, \)11<: L';111 ~ay, that if the di~tance between two sllcees"ive 
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1.2 

- - ~- - - TORSION BENDI"'G INCLUDED, 

FIRST ORDER APPROXIMATION. 

SHEAR LAG. TORSION BENDING AND ST. V. 

TORSION INCLUDED, SECOND ORDER APPROXIMATION. 

-.---- TORSION BENDING. ST.V. TORSION AND 

LONGITUDINAL INERTIA INCLUDED. 

FIRST ORDER APPROXIMATION. 

-··:--··-TORSION BENDING AND ST. V. TORSION 

INCLUDED, FIRST ORDER APPROXIMATION. 
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60 
30 

Fig. 4.10: Influ~nce of plan aspect ratio on the frequency parameter for a 
simply supported tube of I section with a/b= 1, third mode. 

Q 

nodal points is Jess than ten times the flange width it may be classified a~ a short 
tuhe ; otherwise it is to be treated as a long tuhe. 
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