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General Theory of Vibrations of 
Cylindrical Tubes t 

PART-II UNCOUPl"ED TORSIONAL VIBRATIONS OF CLOSED TUBES 

By 

A. V. KRISHNA MURTY AND C. V. JOGA RAO· 

Summary 

Th(' equations 

have heen presented. 
goveminK lorsioltal vibrations of IIllsl ~lfened {'ylindr iwl /lIht'J 

ft.1ethods proposed ill Part , are iI/lis/rated hr (,(JIlsidcrillg /he 

to,.,<;;'111al "ihralions of doubly symmetric tuhes. All exact .wlr"io/l of a simply 

S 27rs . supported luhe. lrill! the boundary of the cross .\cction given by p = '-2:;' cO.\' -So, 1.1' 

presented. A free-free tube of rec/angular cross section is analysed by using first 

order approximation equations alld the results {lrt! in' good agreement with l~arlier' 
work. 

a 
h 

ADDITIONAL NOTATION "'OR PART IJ** 

Half the width of the tube 
Half the depth of the tube 

- (":!F L~/E 

----------------_._------ --------
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P - alb 
~ -- ~/a 
~ (s--a) 

A 

-

Dirac-delta function 

Defined by Eq. (2.30) 

Defined by Eq. (2.32) 

S09 

k2 B90 

Defined by Eq. (2.28) 

2.0 Introduction 

J~vestigations on the torsional vibrations .of doubly symmetric hollow thin

walled tubes 14, 16, 16, 22* reveal that the Bredth-Batho the()ry of tor~oion is 

inadequate for the determination of natural frequencies and mode shapes ,of such 

structures, particularly when the plan 3<;P\!ct ratio is small, because the influence of 

secondary effects such as shear lag and longitudinal inertia is considerable. Hence 

refined methods which include these sec()ndary effects are essential for the accurate 

_determinatIOn of the natural frequencies and mode shapc:s of such structures. 

Kruszewski and Kordes14 sf udied the torsional vibrations of rectangular tubes 

using Rayleigh-Ritz method. These studies clearly brought out that the influence of 
sh-ear lag on natural frequency can be quite high. Hsu Lo T6 obtained the natural 

frequencies of a concentrated mass on a rectangular tube ignoring the mass of the 

tube,. Tn Ref. (18) Hsu Lo and Goulard suggested a convenient method for approxi

mate estimation of natural frequencies by assuming appropriate warp distribution 

on the peripheral direction. Mansfield2~ c\)nsidered torsional vibrations of a fou 

boom rectangular tube with shear resistant webs. Most of the earlier workers 

considered rectangular cross section only. Adequate stress has not been imposed on 
themiture of frequency spectrum and on the mode shapes. 

Recognising the necessity for a general theory which can consider an arbitrars 
cross seCIlIln and can yield clo:.cd expressions at least for good arproximate determi

nation of frequencies and mode shapes, we proposed in Part I an unified 

mathematical theory fdr the prediction of natural frequencies and mode shapes of 
, tubes wirh dosely spaced rigid and massless diaphragms. Equations governing the 

tllrsional vibrations of doubly symmetric tuhes :Ire also deduced in (Ref. 32) Part I. 

In this report torSi011<t1 vibr;lliom cf doubly symmetric umtiffened closed tube 
are sluJicd by using the ;tutlwrs' formulatlOn presented in Part 1. An exact solution 

r . I -l b . I " S 27ts . ' lor a sImp y supportcu tu c WIt 1 the cross sectIOn \?lVen bY' p = -2 Cc.s -'- IS nrc-
- . r: S t 

~cll(ed and this brings out the nature of the frequency spectrum. First order approxi-

. ---- _. --------- -----.------~-----------~ ----------
*Rc:fcn:l1ces :J.re gl \ ell in Part 1 ' 

t 'f 

~, 
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\, 
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mation equations,32 are used to obtain the natural·r;equency characteristics of free-
free rectangular tubes. The results are compared with those given in Ref. (14). 
The influence of secondary effect on natural frequencies for various plan and cross 
sectional aspect ratios are presentrd in the form of graphs. 

Jr 

t---:-----+ Z, oW' 

• 

L = I-------N 

" y 

Fig. 2.1: A simply supported tube with the boundary of the CroslI Section given 
S 27tS 

. BY p=_·cos---
27t S 

2.1 Governing equations-rigorous formulation 

T.he governing equations are given by Eqs. (1.39)* namely 
d20 2 I d OW 
- +kOe= -"-- - J-ptds 
dz2 Sea dz as 
k2' 02W + -.r.~~.+. k2 W = ~ dp de 

22.2 cs~ s ds dz 

The boundary conditions at each end are (Eqs. (1.38) ); 

either e = 0 or - + - J -pt ds = 0 de 1 oW 1 
dz S69 AS 

. h 0 2w 0 I el t er W -: or ~.' = I 1 
cZ J 

and the conI inuity condition is given by (Eq. 1.43) ) 

. ( 00: ) S=O=( 00: -) s=S 

. 
2.2 A simply supported tuhe with boundury of the cross section given by 

S' 27ts . 
P = 27t cos -S- -- exact solution 

The boundary conditions in this case, are 

0(0) = 0(1) =0 
?w(o.s) 

oz CW (~ = 0 
cZ 

... (2. J) 

... (2.2) 

... (2.4) 

'" . (2.5) 

... (2 0) 

--- _. . ---- -- ---------- ------------.---.--~----.--------,-
• Sections and equations referred as (I.) can be seen in Part 1. 
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and the continuity condition is given by 

CW (z.O) CW (z. S) .. , {2.7) 
2s 

Examination of Eqs. (2.6) and (2.7) suggests the expression for w in the form 

w= ~ I 
m= 1,2,3,... n= 1.2.3, ... 

4n .. s 
Amn cos mr.z sin --s 

. .. (2.8) 

. . fi d . 41rs 8its. 4nr.s 
so that Eqs. (2.6) and (2.7) are ~atls e ; terms like sm -S-, sin -S-,···sm 3 

have tn be used in the expansion of w in order to ensure zero warp at ongm 0 as 

well a, the doubly antiperiodic nature of warp. Substituting £q. (2.8) in fq 

(2.1) we h:nc 

00 00 

2: I 
111= 1,2,3, ... n=--1,2,3, ... 

The boundary of the cross section of the tube is given by 

S 2:-:5 
p = - cos - .. --. 2.. -S 

Substit uting Eq. (2.10) in (2.9) wc have 

dO . 2 
(iz~ .:- k eO = 0 

4n r.s 
pt cos -_ods 

S 

. .. (2.9) 

(2.10) 

... (2.11) 

Thus we see that in this case, torsional and warping vibrations are uncoupled. 

Pure torsional vibrations 

The solution of Eq. (2.11) is 

e = A sin k e z --I- B cos k e Z 

Using boundary conditions (2.5) we have 
B=O 

and ke;;-:; m .. , 

and the mode shape is 

o = A sin rn :-: Z 

w=o 

Pure w~lrp;ng vibrations 

m = 1.2,3, 

Substituting Eqs. (2.8) and (2.10) in Eq. (2.2) one has 

00 

~ 
111=1,2.3, 

I 
n = 1.2,3, ... 

. 4n:-: s 
cos III :-: Z S1I1 _oS 2!1 :-: <; dO 

S tiz ' 

1 6 n ~ -;;2 

S~ 

... (2.12) 

(2.13) 

(2.14) 

... (2.15) 

... (2.16) 
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llsing orthogonal propert ies:oC' Fourier s'eries, we ha~e 

A.. { k2 ' 2 _2 ] 6j2 ';12 + k2 } - 0 IJ - ! •• - S:.! ~- - ••. (2.17) 

For nontrivial solution one has 

k" k2 '2 2 16j2 ';12 •• 1 2 3 
'-s=' 1 .. + S2 ; I, J = , , , ... (2.18) 

nnd tl~e mode shapes are given by 

A .. . 4j.-: s 1 W= ij Sin 1 ~ Z :.In S 

8=0 . 

(2.19) 

It is interesting to note that in this case, the torsional and "'.~rping vibrations are 
uncoll.pled. In Neuber tubes pt is .constant ; in such cases uncoupled vibrations can 
logically be expected and this can also be seen from Eqs. (1.37). The tube cpnsidered 

in this re rort is not a Neuber tube. The uncoupled vi~ration in this case is due to 

i 7t s 
llie pcriodicty of p in s. A term of same periodicity namely sin S. canDot 

occur in the expansion for w as this brings innorizero warps of oppOsil(! 'shins '"at 
the {)rigin. contradicting physical features of the problem. As such; the torsional and 
warping vibrat ions are uncoupled. 

NC'lbcr tu'!)cs do Dot'\Varp under static loads: these have no coupling between 
torsional and warpiilg vibration. The present ex.ample brings out the possibility of a 
new series of tubes having no coupling between tNsional and warping vibration; In 

these tuhes thc periodicity of p in ~ is not admissible for w . 

2.3 . First order approximation ('Quations 

Thcgo\crlling rqu:ll ions in this case are obtained by putting td=ta=t in Eqs. 
( .. flO) and (1.61). The equilibrium equations are 

d 2 0 dOll 
S 00 dz'!- -- b8 8----az- -i- k ~t! J Jle;-c 0 

... (2.20) 

and 

and the bOllncLlry c0nditions at Celch end are 

(2.21 ) 

. I' dJ>q ell 1 c r <:'1):::- (l () r -..:.-.. =0- () 
dz 

". 
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The cross sectional constants in Eqs. (2.20) are defIned already in Eqs. (1.19), (1.55). 
(1.56), and (1.57) :IS 

. Bse= f\\;\ t ds 

- J( dW1 \:! 
. bu = "'ds'--J t ds (2.22) 

'- d,,'! 
b6s:=S8,= f p -· .. -t ds de; 

S66=: f p2 t ds 
If' ==" f r2 t ds 

WI has to he obtained from the rc:1ation (Eq. (1.49) ) 

\\', = rr dp ds ds 
. j J ds 

... (2.23) 

The condition of continuity of d\\'l/ds and the condil ion of zero net axial force 

determine WI uniquely from Eq. (2.23). Since "'1 has to satisfy ( see Eqs. (1.38) and 
] .50) ) 

S 

[
d'W'! dO] '- __ .I.~ + p - =-~O 

. ds 'f' dz 

I . I' l' (d \V 1) .' ( d \\'1 ) W HC I Imp les --.--- 5=:0= ---'''' 
ds ds s ~-:::S 

continuity of (d\\'I'ds) is an cs~ential condition to be sali·died. The equlltinns of equi

lihrium may be written as 

0" + k2~O- l)'!<P'8=0 

(</>"8+,,2</>8) +IL2(0'-QJ8):;c: 0 
w 

Using Eqs. (2,23) and (2.22) it can be shown that 

b08 . == SOe1 

and this is used in writing Eq. (2.25). Boundary conditions at each end are 

(2.24) 

(2.25) 

either 0 = 0 or 0' - U~</>8 = 0 (2.26) 

either rp(J = 0 or 4>'6 = 0 

,Eqs. (].24), (2.25) ~nd (2.26) involve the following notatil)n 

k~1:l k~s Jp ,'S08 

k\, - k~s.!k2 

'r hAO/SOI} 
Il.'.!. S88/k!! ]~')A 

From Eqs. (2.24) and (2.2:'), we h~\'e 

[ l~:~ + (h.~8-;-k~,,,.,\:) l~:~i L~(i (k~-:J~) l Ln or 1)8J =: 0 

where 

\'~ " (" ') :r 'r--- I 

(2.27) 

( ? 19' -.~ ) 

(2.30\ 

( 
" 



May ;t96~r' GENERAL THEORY OF 'V:JBRA TlONS OF CYLlNDRICAL TUllES 7 

The solution of Eqs. (2.24) and (2.25) IS' ·of {he form. as ma~' be scen·Jroin 

Eq, (2.29,. 

o = A) sin "IZ .+ All cos "lZ +. As "jnh '"'2Z + A4 cosh A:!Z 

tPe=A'} sin Al Z + A'2 cos '\1 Z -. A'a sinh A~ z -;- A'4 cosh <\ z ... (2.31) 

where' 

% 2 
A is ;dwa~s positive while" may be positi\'e or negative. 

.. , (2.32) 

Eqs. (2.31) are valid 
1 2 

2 
when" IS positive. It is obvious that all th~ arbitrary constants involved in Eqs. 

2 

(2.31) are not independent because they have to satisfy either one of Eqs. (2.~,4) and 

(2.25). Substituting Eq. (2.31)in Eq. (2.24) one obtains the reiatiorish.ip bet~een the 

constants as 
"I U'! 

~ 2 

-" + k ) 6 

" u
2 

A2 = --~ ~ 
-"+k 

1 (I 

____ ~2 u2 
__ 

2 2 
A -i-- k 
2' 6 

A'l \)~ 

2 ~ 

" + k 2 9 

A' 1 

A' 4 

A ' . 
3 • 

A' I 

when A is negative the expressions for 0 and tP9 ~Ire of the form 
2 

(J = At sin A, z + A2 COSA I Z -+ A3 sin A2 Z j A4 sin "2 Z 

, 

cPf) A sin AJZ -t A cos "IZ T A sm AtZ + A sin A~Z 
1 3 4 

and the relationships between the constants arc obtained 

hy SlIbslit lit ing them in Eq. (2.24) as 

" 
, k ," 

1 e 

"2 
9 u-

A + k 
2 6 

(2.33) 

.. , (2.33a) 
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3 

Eqs. (2.31) and (2.31a) or Eqs. (2.33) and (2.33a) involve four arbitrary constants. 
The four boundary conditions of any problem (Eqs. (2.26) and (2.27) ) \vi1l be 
sufficient to solve the problem. 

2.4 Cross sectional constants of a rectangular closed tube-first order approximation 
equations • 

2b 

I 
* 

..-------2Q 

fo=O 

a b (a-b) 
a +b 

Fig. 2.2: Cross SCL:tion or a rectangular Tube with \\'1 shown. 

A cross section of a rectangular closed tube is shown in Fig. (2.2). Tn this 

eros,> section, p has jump discontinuities as shown in Fig. (2.3), and in such a case 

a 
b 

A~ 

I--

o b 

I"""-

Fig. 2.3: Variation of p along the periphery. 

dp'ds can be conveniently representedJas 

--

~l~ = (a-h) {-OJ (s-h)~- a! (s - ~~2a-) --OJ (s-3b---~2;15 ;-o~ (a--3b+4a)} 

... (2."~~~ 
, x" ~ ~ " O· .-I 1 f . Wllcre 'J ,. ,) c' 'l,l alll! 0~ :l[L JraC-ue ta unctlOJh. from Eq, (J .49), we h~l\'e 

I 
I 
I 
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,-,' rr dp d' d" 
'1 =c.c J J ds S ~ 

:Ind lIsing the conditions. \\'1 (0) ::0= U ~lI1J \\", (a h) =.,..(1 

we have 

ab (a-h) 
(s!h):O ::; ~ :::; h 

(a-:- b) 

ab (" -- b) 
- ... (a+h) . 

(a·Lb-s). . . 
-.....:-~-.--. h < s <. ;1-' b 

~l ., - -- I 

9 

(2.35) 

and \\'1 is antiperiodic in s with a period (a~b). As mentioned in P'lrt I, "'1 is 

similar to Bredth-Batho warp pattern at the free end of the tube under static tip 

torque. Using Eqs. (2.35), (2.22), (2.28) and (2.30'. we have 

(a - b) 2 ( P --'1 . :! 

1)~=,: (a+bp =ceo: P+l) 

., 3 3Q~P 
~r=-= l~ ah -- V (2.36) 

where P and Q are· cross sectional and plan aspect ratios respectively an~ are 

given hy 
P =-= a/h, Q ;:-. L/:I 

~L=I 

I 
Fig:. :2 4: Frt"r-I:ret~ Re.:tangu/;\r Tuhe. 

2.5 Frcl'-frcc rcclungular tuhc··-symmctric modes 

In this case fJ is symmetric in z and CP8 is antisvmmelric in z while at the free 

end (Eqs. (2.26j and (2.27) ) 
fI' (I; '):! c/J IJ (I ) () (1.3X, 

and 

~/() II) .. - (I ., 
;1 : ,\~ > 0 

The appropriate exprc'-,sioI1s klJ'lI :lIlO cP6 are gi\'t~11 in E4S. <'2.31) ~1I102.JI;I .. 

Since H is symmetric while- oJ/j is ;l11ti~~ mmetricin z it follows 

AI .\ , 
.' 

'lP' . 

.•.. :tt 
.- . ;.~ 

l 
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Satisfying the b()undary conditions (2.39) and (2.40) and for nontrivial solution one 
ohtain:-. the characteristic equation 

::~ (----':~~---.--:~~. ') :~.: 0 
.!. \ 12 --;-- 1.1 

.. , (2.41) 
-.---~---

frnll1 which eigen \'all:es CIIl he (.'omputcJ. Impo~iJ1g the normalising the condition 
of unit free end rotation namely 

Az cos ,\) + A4 cosh A!! = I, . . '" (2.42) 

the mode sh:1pcS are given by 

II Z. 

and 

w(z. s) 

.., 
(h) ,\~ < 0 

-- I\~ + k~ 1 
---- cosh ,\., z ~ 

- I 
cos ,\...,. j 

( .- '\T ~. k~) ( I\~ .:. k~) _ { sin ,\) z 

~)2 (Af-~---~;) w1 A1 cosA1 

sinh A:! z -J 

\ cosh 1\ f ... (2.43) 

~oll()\\'ing the ~anlt' pro(:edure as' above~ we obtain the characteristic 
~quation :1<; 

t; III ,\) 

l:t n A .• 

") ') 

... : '--~~ .~ .... -~.~ - \ .. ' () 

-- '\2:" kH ) 
.,. (2.44) 

:li1J (lie nWtk ~h;lpl'~ ~lIhjcCl 10 the llorma'i~iJlg n>nditit)J1 of unit free end 
rl)tal;on are 

/1 z. __ -.... _ .. 

\\ (z. " \ \ 
, 

<,-J;I 

\\ 

. \ 
"Ill ,., 

') ( -. ,\ -

f 
L'll~ '\1 7 

. i 1 ~ 111 • i I 

I 
") -'J 

~ill -\ z 

'). 

( 
') " ~ - ) ,\~ k ~ ) ,1 

( 
.., , 

,\ 1 i·2) _.--

.-~~~~I 

.\.. "j:1 .\, I. f . . 
... (2.45) 

I 
, ~ 

r 
f , 

! 
!' 
I 

I , 
! 
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Comparison with earlier r~ults 

Table 2.1 shows the comparison of the frequency parameter kT. kT by fi~st 
approximation is obtained by using Eq. (2.41) ;and neglecting longitudinal inertia 

2 

(putting k =0 in Eq. 2.25). Th~se are compared with energy method solution of 
\1' 

Kruszewski and Kordes14 who also ignored longitudinal inertia. 

p 

3 :> 

3.6 

Q 

10 

14 

2 

6 

10 

14 

2 

6 

10 

14 

Table 2.1-Comparis~n of kT 

Mode 

Fundamental 

" 

,. 

Second 

" 

" 

Third 

" 

" 
., 

First appro xi
llulljon equation 

3.315 

3.179 

3.157 

3.150 

7.105, 

6.541 

6.398 

6.347 

11.008 

10.130 

9.775 

9.627 

Ref. (14)_ 
. ~. 

3.30 

3.18 

3.16 

3.15 

6.98 

6.53 

6.39 

6.35 

10.80 

10.02 

9.n~ 

9.65 

.~'" 

It can be seen from Table 2.1 that the differences are small. The computations 
involved in first approximation equations are very small compared to those 10 

Ref. (14). As such, t.hese may be strongly recommended for engineering. purposes. 

Influence of longitudinal inertia 

The values of kT ar.! computed by using Eys. (2.41). These include longitudi

nal inertia. These :lre compared with those obtained by ignoring longitudinal 
inertia. The contents of Table 2.2 are also shown in Fig. (2.5). 

.. 
" .. ~ 
! 
I 

'; .. 
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12-

........ 

_ LONGtl JDINAL INERTIA INCL.UDED 

-'- LONG,fUDINAL INERTIA lGNOREO 

---- EL.~MENTARY THEORY 

'---~ ~~.~~.~~==~~~~ -x lOr- __ .__ lIt MODE 

~-- ---------------
~ 

II MODE - .. --- -- ===- LULU ........... __ 

J: MODE 
""""s = _ ........ • 3 t2!i 

I I I I I t I I I J 

2 (; ,0 '4 
PLAN ASPECT RATIO Q I: &fa 

fig. 2.S: Infiuem:e of Plan Aspect Ratio on the Frequency Parameter kT for Symmetric 

Modes of a Free Rectangular Tube a/b= 3.6 

Tablt, 2.2--Jllftucncc of logllitudinal inertia on natural frequencies. 

Longitudinal inertia 

Q Mode 
Included Ignored 

kT kT 
.--_ .... _-----------_.---------- .. -._--

2 Fundamental 3.273 3.315 
n .. 3.173 3.179 

3.6 

In 3.155 3.157 
14 3.149 3.150 

') Secllnd 6.957 7.105 --
(l 6.502 6.541 

3.6 

1O 6.382 6.398 
14 6.33~ 6.347 

') Third 10.605 11.008 ... 
6 JO.()34 10.130 

3.6 

10 9.727 \}.775 

14 9.599 1}.627 
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The mode shapes are o,?tained by using Eq, (2.43). Th!e, axial variation of 
w at thecorner: (5 :-~- a) 'of the'tube isobtailled by putting 

. _ " a b (a - b) (P-- 1) 
[WI (s)]s=n=: - (a + b) - Q:! P (?+ 1) ••• (2.49) 

in second equation of Eqs. (2.43) as 

(P ,_ 1). (->.i ~- k ~) ( ~~ + k~) r sin "I Z 

W (z) at s-a = Q!!P (P...Ll) ~t-, -_. ( 2 -2)--·-·~ A cos >. 
,_ , \ I \)2 ,\ 4- II i] 1 

. I ' 2 L 
sinh A~Z } 

>'2 cosh A2 

(2.47) 

The values of () obtained by using the first equation of Eqs. (2.43) and the values of 

W obtained by using Eq. (2.47) (i) hy including k~v' (ii) by putting k; == 0 (see 
I ~~ Ztt 

Eq. 2.32) are compared in Figs. (2.6) to (2.8). These comparisons reveal that the 

-O·5~ 

e 

°T 
I.or 

0 02 

~I 
~ 

0,04 f- ~ 

(0') ~ 5::0 

0,08 

I 

'-
'-

LON(,llUOINAL INEqTlA INCLUDED 

_,_'_ L.ONGIT UOIN AL INE IP IA I (,NORED 

0,4 r, ·6 o,e 1,0 Z 

I I -1 T I 

'-. 
"-
~ 

_.---._._.--

Fig, : Il :, Fr~c Free Rectall~ular Tube S\ mnldri.: Modes L!a=2, a!b~3.6 
h:T---:~.:n3 Longitud'inal In~rtia included 
kr ),315 Longitudinal illertl~ ignured 



J4 

n~'~I~~t of longitudinal inertia effects warp considerably while there is negJigibJf, 
influence on B distribution and on the natural frequency even in the shortest tube 
considered. 

--- :'.o>:C,,'r\.:OINAL INERTIA. INCLUDED 

-I. LONGITUDINAL INeqTIA IGNORer:;, 

1·0 Z 

1·0 

O.~ 

0.1 

-0·' 

Fig 2.7 : 

New frcqucncies 

'---'-'---' ./ 

0.8 1·0 Z 

Frt:e Free Rectangular Tube Synimetric Modes L'a.o2. a/h=J6 
SecDnd Mode 

kT··(i.957 LO'gituoinal inertia included 

k T· 7.105 I.(ln~it udinal inertia ignored 

The rigorous eqllatil)ns bring out nwre frequencies Ih;ln are accounted for in the 

elementary thcur)'. The lirst order approximation equations hring out two sets of 

frequencies-one invnlving primarily rntation:t1 (!nd the other primarily warping 

motions. The elementary theory hrillgs out only the rotational set of frequencies. 

The following table shows results oht:lincd by u<;ing the firq order approximation 

equations. The number or nodal points Ins been obLti:1CJ from computed mode 
'illapes 

\. 



( 

~. 

'~' .. 

'It , ~ 

e 

0.4 

( -(..IJ') 0, 2 
)5:&0 

___ l.ONGI"VOIHA'\" S~!R""A ,NCl.UDED· 

t.ON~ljVO)N4~ i:NfRT!A IGNOREO' 

Fig. 1./l f'ree Free Rectangular Tube Symmetric Modes L/a-2. a/b-3.6 
Third Mode 
kT= 1O.5()5 Longitudinal inertia included 
kT=1J.OU8 Longitudiuai inertia ignored 

is 

Table 2.3-Frequency parameter kT for symmetric vibrations of a free-free rectangular', 
tube with P = 3.6 and Q = 2. 

Longitudinal mertia 
.---~ 

Mode Included Ignored 

Number of Number of 
kT nodal points ky nodal points 

m e in e ' ~ 
3.273 3.315 1 ., 
6.957 2 7.105 2 

]0.605 
.., 

J 1.00R 3 _1 3 
12.255 

.., , 4 
.:; 14.88l< 4 14.895 4 
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From Table2.~, i~ can h.e seen that third .and fourth frequeneies have same number 
of nodal points in O. The mode shape reveals' (Fig. (2.9) ) that at the free end (J is 
small while w is large when kT = 12.255, (while in all other cases fJ is large but w is 
small). Thus it is the first frequency of the second set of frequencies of primarily 

warping modes. " Such extra-frequencies do not appear in the solution if k~vis 

0·2 0·4 0.0 0.8 1.0 z 
O~~---r--.----r--'·---r--~--~~--~----

-2-0 

rig. 2.9: Free Free Rectangular Tube SymIlletric Modes Lja- 2.a/b .., 

Prim;]rilyWarring Mode. K-,=12.255 

Longitudin::1 inertia included 

ignored {see Table (2.3:'. The peculiar end conditi('ln ill e in mode shapes belonging 

to primarily warping m'1des 111;IY be noted (Fig.. 29). A similar feature 11:15 been 

reported by Traill-N:lsh and Collar7 in flexural vibrations for the fir:,t lime. 

I nftuen ce of aspect rat ios 

The \'al LIes (If freq ueney p;ILtmeter fl1r y:tflOUS v:tlut'S nr 1"1:1 n ~i1lJ ern '-.s 

section~1I aspect ratios arc pre~entcd in Fig, (210). 1n these cakulatillns longitudinal ~ 
inertia is included. Since it has been established that the effect of longitudin:11 :'L 
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in('fti~t is small, these reveal that the influence of shear 'jag is large in tubes with 
~ma!l plan ,asp.:'ct. ratio (short tubes). The discrepancy from the elementary theory 

- ----Et.EMENTARV THEORY 

... 
t-

c::: I P:l·6 
W ! / 
I- 81--/ P",5·6 

w ~zC P,3·, 

~~"6 
0... ci--~-

Pr:7.b 

P= 5·6 
P. 2·6 

f!iiIII.",....'2_S'!~iF=.".:Lc. h '.6 

= 

PL A N ASP E C T RAT 10, Lja = Q 

.In: MODE 

I[ MODE 

. .I MODE 
s::z:. _ 

14 

Fig, 2.10: Influence of Plan :md Cross Sectional Aspect Ratio on the Frequency 
Par:lmctcl fnr Symmetric Vibrations of Free Free Rectangular Tube. 

incre:lses with the cross sect inn:!1 ;lspect ratio. This discrepancy 1S c\'cn larger In 

higher l1lodes. 

2.6 Frl.'C'- fn'(' fC'et angular t !llw--ant isymml.'t ri c modes 
In tlli:-. l':I~C (Fi~. 2, .. t) LI j:-, :1/11i:-,ymmctric in z while <?a is symmetric 10 Z :lnd 

the bOllnd:lry CllllditiO/lS :11 the t'rcl' end ar'e (Eqs. (2.:!~)~ ('2.17) 

'") 

(a) .\~ >(1 

0'( 1) --- ,>'J1o ' I, :..·:U 

JI' fl : I! ~',,- () 

(2.48) 
(2 At,>:: 

The apprul'ri;ltc C.\.l'rc::--.~ion5 fur ti and </;0 are pv;::n in E4s. (2.31) and (2.31 ;1). 

Since If is aJl(i~\ 1llf1ll'lric alld <Po i~ s\'mmctric It fu!l()i'~ 

'.1 
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Satisfying boundary conditions given hy Eqs. (2.48) and (2.49) and for nontrivial 

solution OI~e obtains the characteristic e4u~~tion as 

( 

_.\2 _~_ k~ '\ 
tanh ,\. '.\1 1 I. • 

i~;:;h-~- '-,- ~ - A; I k[) '-" .J ... (2.51) 

The mode shapes subject to a norm~disin:; cunJiliun or unit rotation at the free 
end, are 

r ') 

k2 ') ') I .\; + - ,\" .. k-I e I 
-+- e 8(z) =, 

2 ') -< sin '\1 
sin ,\ 1 z --

~inh A2 
sinh A2 z ~ 

,\ I + A- I I 
2 l j 

und 

, .. (2.52) 

Folll)'.ving the procl"Jurc ;IS ~I\ell ;tl)()\L, olle 11bLlilh Ihe characteristic 
CLjIl:lt ion ;1" 

tan '\'! 
tan '\1 

and the mode shape,,_ "llbject to unit frce cnd rotation. ,Ire 

r 
1 

lJ(z) - ~: 
') I 

I.; l ~lll \ 

w (z. s) 
( 

.., .., 
( ? 

k~){ ,\ I ....l. kO) --- ,\; ._-
---_. ..., 

( 
..., ..., 

~ j '\,-- ,\~) 
cos ,\. 7 .) 

-- ,- --- ---- ,,\\' 

,\~ sin ,\~ J I 

I'ns ,\. z 

Al sin AI 

.. , (2.53) 

... 2.54) 

The valllc,> llf the frequcncy p:tramc:cr kr ;lrecomrutcd b\' u-;Ing Elj: (2.51). 

fnr \'<lrious v:llues of pbn and eros" c;ectil,)f];i! :l"PCCt. rJti0s. These :lrc presented in 

Fig, (2.11). These indicate lh:lt the ini1uCI1Ct: of shc;lr !a!2 I:; J,trge fM smali pi:J11 

\ .. 

\. 

\ : 

\ 
[ 
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aspect ratio tubes and increases with cross se<:tjon~1 asrccr ratios. This influence is 
even larger for higher modes. 

C%: 
IIJ .... 
IIJ 
1: 
<t 
n: 
<t c_ 6 

t 
z 
w 
:> 
() 4 
W 
0:: 
"-

2 

"- - - ELE1'-lENiARY THEORY 

JI! MODE 

--- --- - --------- - ---------

~
P=7.6 

P=S·6 
----.::::::::: .. " p:: I . 6 

"] _..;.-: __ x= -

I MODE 
/P:1.6 

=-===-:="'===-==----~- - - - - - - - - --

2 ~ 

PLAN ASPECT RATIO 

Fif!. 2.11: Influence of Plan and Cross Sectional Aspect Ratio on the Frquency . 
Parameter for anti-symmetric Vibrations of free Free Reclanf!uJar tube. 

2.7 Conclusions 

In this chapter problems of torsional vibrations of doubly s~:mmetric unstitfened 
tubes are considered. The C.\:tct snlution of a simply supported tube with cross 

S 2::s 
section given by p = -- cos -- S - IS presented. Although pt is not constant 

2:: 
here, we have uncoupled torsional and warping vibration'. This is because of the 

periodicity of p in s which is not present in w. This' example brings out the 

possibility of a new series of tubes h~ving no coupling bet\veen torsional and warpmg 
vibration. 

First order approximat ion ec; uations are simple and are most suitable for 
engmeenng use. Comparison of the natural frequencies of a free-free rectanguhlr 

tube performing symmetric modes of vibration with the result':> of Kruszewski and 

KordesH show good agreement. Hence the solution by second approximation 
equations has not heen attempted. 
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Numerical results reveal that the influenc~ oflongitudinal inertia is very small 
on natural frequency and the rotational mode shape while the effect is considerabJe 
on warping, the influence of shear lag is to inGrease natural frequen~y with cross 
sectional aspect ratio. The effect of shear lag is large for small plan aspect ratios and 

increases for higher modes. 
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