General Theory of Vibrations of
- Cyhindrical Tubes'

PART—-]i: UNCOUPLED TORSIONAL VIBRATIONS OF CLOSED TUBES

By
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Summary

The equations governing torsional vibrations of wnstiffened cvlindrical i1ubes
have been presented. Methods proposed in Part I are illustrated by considering the
torsional vibrations of doubly symmetric tubes. An exact solution of a simply

supported tube. with the boundary of the cross section given by -p

presented. A free-free tube of rectangular cross section is analysed by using first
order approximation equations and the results are in good agreement with earlier

~

wor[c.
ADDITIONAL NOTATION FOR PART I1**
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P = a/b

Q =L ‘ .

8 (s—a)  Dirac-delta function . : b

A Defined by Eq. (2.30)

A ? , /\3 Defined by Eq. (2.32)

L2 S See

‘ k* Bgg . L

v Defined by Eq. (2.28) I

2.0 Introduction o
Investigations on the torsional vibrations .of doubly. symmetric hollow thin- (/ ‘

walled tubes 14, 16, 16, 22* reveal that the Bredth-Batho theory of torsion is !

inadequate for the determination of natural frequencies and mode shapes  of such

structures, particularly when the plan aspect ratio is small, because the influence of -

secondary effects such as shear lag and longitudinal inertia is considerable. Hence
refined mcthods which include these secondary effects are essential for the accurate
. determination of the natural frequencies and mode shapes of such structures.

Kruszewski and Kordes™ studied the torsional vibrations of rectangular tubes
using Rayleigh-Ritz method. These studies clearly brought out that the influence of
shear lag on natural frequency can be quite high. Hsu Lo'® obtained the natural
frequencies of a concentrated mass on a rectangular tube ignoring the mass of the
tube. In Ref. (18) Hsu Lo and Goulard suggested a convenient method for approxi-
mate estimation of natural frequencies by assuming appropriate warp distribution
on the peripheral direction. Mansfield>* considered torsional vibrations of atou
boom rectangular tube with shear resistant webs. Most of the earlicr workers
considered rectangular cross section only. Adequate stress has not been imposed on
the nature of frequency spectrum and on the mode shapes.

Recognising the necessity for a general theory which can consider an arbitrars
cross section and can yield closed expressions at least for good approximate determi-
nation of frequencies and mode shapes, we proposed in Part | an unified
mathematical theory for the prediction of natural frequencies and mode shapes of

“tubes with closely spaced rigid and massless diaphragms.  Equations governing the
torsional vibrations of doubly symmetric tubes are also deduced in (Ref. 32) Part I.

In this report torsional vibrations of doubly symmetric unstiffened closed tube
are studied by using the authors’ formulation presented in Part 1. An exact solution

. . . . S 2ns |
for a simply supporied tube with the cross section given by p = S5 Cos \S‘ Is pre-

. sented and this brings out the nature of the frequency spectrum. First order approxi-

*References are given in Party .
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mation equations® are used to obtain the natlira'lnf;é?quency characteristics of free-

free rectangular tubes. The results are compared with those giVen in Ref. (14).
e The inﬁuenog of secondary effect on natural frequencies for various plan and cross
é sectional aspect ratios are presented in the form of graphs.

$‘ . L=1 —

(" Y., v

Fig. 2.1: A simply supported tube with the boundary of the Cross Section given

b T S 2=S
n o BY P= T cos S

2.1 Governing cquations—rigorous formulation

The governing equations are given by Egs. (1.39)* namely ' , ‘ :él
da: 2 1 d ,aw . T ’
g 0= T g S s e '
- 92w 22w 2 dp do )
2 Y — . 4Yp dv L
k '(‘722 + asz ; kS w dS dZ ces (2.2)

The boundary conditions at each end are (Egs. (1.38) ):

Seg

[p¥]

, _ do 1 ow _ |
elther-ﬂ-— 0or o TS ¥ -géptds——O\L
!
1

w

% eitherw = 0 or

(

=0 |

and the continuity condition is given by (Eq. 1.43))

( aav: )szoz(%‘)szs | L e

2.2 A simply supported tube with boundury of the cross section given by

= cos Zs - x. ct solution
.p ~2x S exa

N

The boundary conditions in this case, are

0(0) = 0(1)=0 L (2)5)
: cwlos) 7 oew(l.s) '
o Tz T ~ =0 . (2.0)

—_— .

* Sections and equations referred as {1.) can be scen in Part I.
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and the continuity condition is given by
w(z0)  ew(z59) 27

es s _
Examination of Eqs. (2.6) and (2.7) suggests the expression for w in the form

(=)

. 4n=ws
W = Amn €OS MRZSin T g
m=1.23,... n=1.23,... ' .. (2.8)
- . } . 4 ) T . 4nTs
so that Eqs. (2.6) and (2.7) are satisfied; tcrms like sin ——gi, sin —%i-,...Sln g >

have to be used in the expansion of w in order to ensure zero warp at origin 0 as
well as the doubly antiperiodic nature of warp. Substituting Eq. (2.8) in Eq
(2.1) we have :

d26 2, < & 4mn 72 sin M=z 4n =S
dT—l"kee = z 2 Amn '—"—“S‘“‘S‘ée'_ e § pt cos '—S——“dS
m==1,23,... n=1,23,... ‘ _
_ : ... 2.9)
The boundary of the cross section of the tube is given by
S 27s A
— gl : ... (2.10
p =5 c0s —¢ (2.10)
Substituting Eq. (2.10) in (2.9) we have
do 2
[, il - et “en 2.11
k=0 (2.11)
Thus we see that in this case, torsional and warping vibrations are uncoupled.
Pure torsional vibrations
The solution of Eq. (2.11) 1s
GzAsinkez--}— B coskyz ‘ . (2.12)
Using boundary conditions (2.5) we have
_ B=20 .. (2.13)
and ke == m =, m=12,3, ' e (2.14)
and the mode shape is
0 =Asinm=z - :
w = 0 .. (2.15)
Pure warping vibrations
Substituting Eqs. (2.8) and (2.10) in Eq. (2.2) one has
o0 ool
o o _a e 2
2 $\ A nmn '-“k- m- =- — ]6 n_, -—{— k
) L S~ S
m=1,2,3, ... n=1.23, ..
COS M = Z Sin anzs s<in 2n s 4o, R
S x» VAN g = &1 'S;'"-— "aZ‘. ) » (._.16)

&

PRROUVE Y
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using orthogonal. properties’of -Fourier series, we have

; 1672 =2 ‘
Aij {*1@ R k”f} =0 e (217)
- For nontrivial solution one has '

Kes=K? 2 22 o ’61 T =123 | ‘ o (2.18)

and the mode shapes are given by

.. . 41w
w= A..siniTz>sin J
1 _ S

... (2.19)
8 =0

-

It is interesting to note that in this case, the torsional and warping vibrations are
uncoupled. In Neuber tubes pt is constant ; in such cases uncoupled vibrations can
logicaily be expected and this can also be seen from Egs. (1.37). The tube considered
in this rerort is not a Neuber tube. The uncoupled vibration in this case is due to

e .. - TS
the periodicty of p in s. A term of same periodicity namely sin —g— cannot

occur in the expansion for w as this brings in nonzero warps of opposite signs “at
the origin, contradicting physical features of the problem. As such; the torsional and
warping vibrations are uncoupled.

Ncuber tubes do not-warp under static loads; these have no coupling between
torsional and warping vibration. The present example brings out the possibility of a
new series of tubes having no coupling between torsional and warpmg vibration; in
these tubes the periodicity of p in s is not admissible for w. ‘

2.3 First order approximation cquations

The: governing equations in this case are obtained by. putting ta=ts=t ln Eqs.
(..60) and (1.61).  The cquilibrium equatnons are

d2 0 dty

S0 az= Tbee—y,

7 K 16-:0 . (2.20)

o

. d dm = dé -
and Kk Bgg —Z— - (S - ;)4 k% B =0
in k* Bgs q7e 1 (Scc —5— — bas pe) 4 88 o=
and the bdund:xry conditions at cach end are

; dé
cither =0 or SOG d—z“'bee,d'eTﬂ

. ! d(l’)q
cither hg =0 or = == ()
dz
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The cross sectional constants in Eqs. (2 20) are dehned already in Egs. (1.19), (1.55),
(1.56), and (1.57) as
Bga= W2 t ds
dw, \?

~B’9:’§("a§“’ Jres e (222)
< dw, |
bgeg —=Sea= ¢ p -a;--—t ds

Ses=§ p*tds
Ip = f r2 t ds

W, has to be obtained from the relation (Eq. (1.49) )

W, 3”@2_ ds ds _ .. (2.23)
) ids A

The condition of continuity of dw;/ds and the condition of zero net axial force
determine W, uniquely from Eq. (2.23). Since W, has to satisfy ( see Egs. (1.38) and

1.50) )
!: - —q\—\*‘-sl'e + p de ]‘:—0

‘which imolies { 990 o0 Ei_ff.!__ :
which xmplles( s ) $=0== ( I )s:::S

continuity of (dw; ds) is an essential condition to be satislied. The equations of equi-
librium may be written as '

0”+k240—-u2<,5'9=0 ' ... (2.24)
CHE L2 W) 1 (0 —dg) = 0 : e (2.25)
Using Eqs. (2. 23) and (2.22) it can be shown that
boe == Sas
and this is used in writing Eq. (2.25). Boundary conditions at each end are
cither 0 = 0 or 0’ — vi¢g = 0 : . ... (2.26)
Cithcr ¢9 e 0 or ‘ﬁ’e - 0 “ee (2.27)

_Egs. (2.24), (2.25) and (2.26) involve the following notation
k7 = k% Ip'Sqe :

k"’\\‘ = kis:,'k2 cee (228)
v == bag/Ses
0l = Sgg'k' B,:g
From Eqs. (2.24) and (2.25). we have
ds p) d: 2 :
——e — 2 il - - - \? (& —-4,‘: ( 5 Pyt N
[: an 4+ (K%g - k\\' A — e P Ky U\\\‘ “ )] '[i or dg] 0 — (2.29)

where
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The solution of Egs. (2.24) and (2.25) is of the form. as mav be seen-from

Eq. (2.29),
§ = A, sin A,z + A, cos A;z + Ay sinh 4,z + A, cosh A,z
do=A'ysinA; z + A'ycos A,z - A'gsinhd;z - A", cosh Az L (2.3))
where’ ' ' -
2 2 1 2 T ]
I GO DT —

(2.3
2 2
A is alwavs positive while A may be positive or negative. Eqgs. (2.31) are valid
1 i 2

2 . .
when A is positive. It is obvious that all th? arbitrary constants involved in Eqgs.
2

(2.31) are not independent because they have to satisfy either one of Eqs. (2.24) and ‘
(2.25). Substituting Eq. (2.31)in Eq. (2.24) one obtains the relationship between the:

constants as :

A= - A,
—A 4k
1 (-]
A v? p
A, = —— A
— A+ k
1
A, v2 , ’
Ay = —— A, (2.31y;
A+ k "
2 L]
A7 u? &
Ay = 5 2 ‘3 : %&
24k k'

2
when A s negative the expressions for ¢ and ¢¢ are of the form
7, .

0 = A, sind, z 4 A, cosA; 7z + Aysin}, z 1 A, sind, z

d9 —= A sin Az 4 A cos Az + A sin Az +A sin Az
1 2 3 4 .

and the relationships between the constants are obtained

by substituting them in Eq. (2.24) as

- . 2 -
A, = ;\l S A’y
— :\ 'J._ k2

1 2]
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- 2 -/
A, =N ¥ 3
— A+ k s

2 o

Eqs. (2.31) and (2.31a) or Eqgs. (2.33) and (2.33a) involve four arbitrary constants.

The four boundary conditions of any problem (Eqs. (2.26) and (2.27)) will be
sufficient to solve the problem.

2.4 Cross sectional constants of a rectangular closed tube—first order approximation
equations.

Fig. 2.2: Cross Section of a rectangular Tube with W, shown.

A cross section of a rectangular closed tube is shown in Fig. (2.2). TIn this
cross scction, p has jump discontinuities as shown in Fig. (2.3), and in such a case

g

—
' O b b+¢2a 3b+2a 3Ab+40S ﬁ
Fig. 2.3 : Variation of p along the periphery.

dp'ds can be conveniently representedias

g’l— (t—h) {—o, (3—h) = &, (s — b--2a) —38, (s—3b-- 2a) -3, (;1—~3b+;1:1;}

(23

where 3,, 3,04, and 3, are Dirac-delta functions.  From I g. (1.49), we have

e
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ﬁ-‘ - gg gl: ds ds

and using the conditions, W, {0} = @ and ¥, {a  bH)=0
we have ’
' _ ab (a—b)
= e s/h: 0 s <CbH
(a—;b) ( I ) e —
(2.35)
ab {a-~b) (a--b—s)
— 2 : hb<s-Za+b
(a+b) a =7

and W, is antiperiodic in s with a period (a-~b). As mentioned in Part 1, W, is
similar to Bredth-Batho warp pattern at the free cnd of the tube under static tip

torque. Using Egs. (2.35), (2.22), (2.28) and (2.30). we have
., (a—b)? ( P-—1 )
Vo= o ==
(a--b)? P-1
3Q%P
k2
12 ab 12 Q- P-

A2 _ —_

TR (a4p) k2P
Wh_cre P and Q are cross sectional and plan aspect ratios respectively and are

given by
P = a/b, Q= Lja

t4__1_=;__...___ L=l —

0

T

Fig. 24 Free-I'ree Rectangular Tube.

2.5 Frec-free rectangular tube-—symmetric modes
In this case ¢ is symmetric in z and ¢g is antisvmmetric in z while at the free
end (Eqs. (2.26; and (2.27) )
8" {1, - »2dg(h)y 0
and
g i) = 0
2
11'1 4\') = 0
The appropriate expressions for ¢ and ¢g are given i Eqgs. 12.31) and

Since # is svmmetric whilc dy 1s antissmmetric’in z it follows

A A

| 3
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Satisfying the boundary conditions (2.39) and (2.40) and ior nontrivial solution one
~obtains the characteristic equation

l:m,‘\l ‘ AT - kg,‘

————— e -

N ... (2.41)
tank ,\2 - kd

from which eigen values can be computed.  Imposing the normalising the condition
of unit free end rotation namely
A,cos Ay + A cosh A, = 1, . .. (2.42)

the mode shapes are given by

2,2
~—,\l-;~k0

]
cosh A, z ‘>
J

Cos A,

_ sin A, z
w4z
1A, cos A,

sinh 4, 7
A, cosh A, |

2
(MY AT 20

Following the same procedure us' abovel we obtain the characteristic
cquation as -

tan 4, . (2.44)
tan A,

aind the mode shapes

rocition are

COSN 4\1 7

A SNy
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Comparison with earlier results _ _

Table 2.1 shows the comparison of the frequency parameter kr. kr by first
approximation is obtained by using Eq. (2.41) and meglectihg fongitudinal inertia

2
(putting kX =0 in Eq. 2.25). These are compared with energy method solution of
w :

Kruszewski and Kordes' who also ignored iongitudinal inertia.

Table 2.1—Comparison of ky

L g ke T

kr = ————-wgfl” by
P Q Mode m[:xilris(:naepglrlg?ii(;n Ref". (14);, '
3.6 2 Fundamental 3.315 3.30 ;
6 . 3.179 3.18
10 3.157 3.16
14 3.150 3.15 g
35 2 Second 7.105 - 6.98 ?
6 . 6.541 6.53 3
10 . 6.398 6.39
14 " 6.347 635%
3.6 2 Third 11.008 10.80
6 . 10.130 10.02
10 " 9.775 9.78
14 " 9.627 9.65

It can be seen from Table 2.1 that the differences are small. The computations
involved in first approximation equations are very small compared to those in

Influence of longitudinal inertia

nal inertia.
inertia.

Ref. (14). As'such, these may be strongly recommended for engineering_purposes.

The values of kr are computed by using Egs. (2.41). These iﬁclude longitudi-
These are compared with those obtained by ignoring longitudinal
The contents of Table 2.2 are also shown in Fig. (2.5).
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LONE:H JDINAL INERTIA INCLUDED
N ~— -— LONG:TUDINAL INERTIA 1GNORED
: - —- ELEMENTARY THEORY
12+
»\.
b%\
ol -~ I MODE
x 10 —
« T
w
L's
.8
<
(1 4
<
a
6
.
Q
z
5
a 4
w
o;
w
2}~
i ) 1 i 1 | 1 1 | 1 1 1 ]
2 6 \O \4
PLAN ASPECT RATIO a=Y4
Fig. 2.5: 1influence of Plan Aspect Ratio on the Frequency Parameter k,r for Symmetric
Modes of a Free Rectanguiar Tube a/b=13.6
Table 2.2—-Jufluence of lognitudinal inertia on natural frequencies.
Longitudinal inertia
Included Tgnored
P Q Mode Kt kt
3.6 2 Fundamental 3.273 3.315
6 . 3.173 3.179
10 .- 3.155 3.157
14 - 3.149 3.150
3.6 2 Second 6.957 7.105
O “ 6.502 6.541
10 .- 6.382 6.398
14 - - 6.33% 6.347
3.6 2 Third 10.605 11.008
6 10.034 10.130
10 . 9.721 9.775
14 . 9.599 9.627

0
NS

¥
Vs




;

May 1963] GENERAL THEORY OF VIBRATIONS CYLINDRICAL TUBES _ 13

The mode shapes are .obtained by using Eq. {2.43). The. axial variation of

w at the corner {s == a) of the’ tube is obtained by putting

oo _abfa—b R -1 -
(% Oks= =55y T @PEFD e (249
in second equation of Eqs (2.43) as
w (2) = (P———‘“ D EI A - 0) ( A +kﬂ) sin A, z
at s=a QWP (P+1) 2 "X, COS Ay
| SE I
sinh A.Z . (2.47)
T X, cosh A,
The values of 8 obtained by using the first equatmn of Egs. (2.43) and thc values of

w obtamed by using Eq. (2 47) (1) by including kw , {(ii) by putting k = 0 (see

Eq 2 32) are comparcd in Figs. (2.6) to (2 8). These comparisons reveal that the

LONGQ TUDINAL INERTiIA INCLUDED

1.0 )
e LONG!TUDINAL INERTIA IGNORED

-0-51

1O
o Q2 O-4 -6 O-8 1-O Zz
—f 77 1+ 1 ' 1 T |
o.car—
(v« |
5=Q
Q.08+
L
Fig. 206 Free Free Rectangular Tube Sy mmetric Modes Lja=2. a;b—3.6

kT--3.273 Longitudinal inertia included
kT 3315 L ongnudlml inertia ignored

L
EETERS © O AT

b

P

5 b g
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nééléét of &oﬁéitudinal inertia effects warp considerably while there is negligible
influence on 8 distribution and on the natural frequency even in the shortest tube
considered. '

LOMNGITUDINAL INERTIA  INCLUDED
— =~ LONGITUDINAL INERTIA IGNOREY

-1.0b—

Fig. 27:  Free Free Rectangular Tube Symimetric Modes L u= 2. a/b=236
Second Mode
KT:~6.957 Lo-gitudinal inertia included
KT =7.105 Longitudinal inertia ignored

New frequencies

The rigorous equations bring out more frequencies than are accounted for in the
elementary theory.  The first order approximation equations bring out two sets of
frequencies—one mvelving primarily rotational and the other primarily warping
motions., The elementary theory brines out only the rotational set of frequencics.
‘The following table shows results obtained by wusing the first order approximation
equations.  The number of nodal points has been obiained from computed mode
shapes. ’

5
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15
LONGITUDINAL SNERTIA INCLUDED:
——— LONGITUDINAL PNERTIA IGNORED -

Fig. 2.8 Free Free Rectangular Tube Synmmetric Modes L/a=2, a/b=3.6
Third Mode
kT=10.505 Longitudinal inertia included
kT=:11.008 Longitudiual incrtia ignored

Table 2.3—Frequency parameter kr for symmetric vibrations of a free-free rectangular

tube with P = 3.6 and Q = 2.

Longitudinal nertia

Mode . Included , lgnored
Number of Number of
kT nodal points kT nodal points
in 0 ~ ing -
1 3.273 O 3.315 1
2 6.957 2 7.105 2
3 10.605 3 11.008 3
4 12.255 3 — —
3 14.888 4 14.895 4

"

iy,

e
B
i

-

o A . MR - -

i

P, ﬂ*é&m*‘rﬁ‘- -
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From Table 2.3, it can be seen that third and fourth frequeneies have same number
of nodal points in 8. The mode shape reveals (Fig. (2.9)) that at the free end 0 is
small while w is large when kr = 12.255, (while in all other cases 8 is large but w is
small). Thus it is the first frequency of the second set of frequencies of primarily

: . . . el
warping modes. Such extra-frequencies do not appear in the solution if kG, is

1.0
® L N A B |
0.6 0.8 1.0 r4
- 1.0
~2.0F .
: .2 C.4 0.6 0.8 1.0 z
o T T T [ T I ] I T ]
©wy) -LO—
)
- 2.0

Fig. 2.9: Free Free Rectangular Tube Symmetric Modes Lja=- 2. a/b 2

Primarily Warping Mode. K =12.255
Longitudinzi inertia included

ignored (see Table (2.3'. The peculiar end condition in € in mode shapes belonging
to primarily warping modes may be noted (Fig. 29). A similar feature hus been
reported by Traill-Nash and Collar” in flexural vibrations for the first time.

Influence of aspect ratios

The values of frequeney parameter for various values of plan and  cross
sectional aspect ratios arc presented in Fig. (2.10).  In these calculations longitudinal
inertia is included. Since it has been established that the effect of longitudinal
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inertia is small, these reveal that  the influence of shear iag 1s large in tubes with
small plan aspeet ratio {short tubes).  The discrepancy from the elementary theory

— —em~ ELEMENTARY THEORY

i N ey g p——— e S '
~ P=1-6
W /
w Pz=3-6
{ z _— Pz1.6
\ (é I MODe
o :._.__..__________.__._.__.______.______._::3._
/5 C
,Ah ; >
L4 >
< L]
w
3
o I MODE
(x e e | G Srm— — — —— ———
L
2P
1 1 1 J‘ 1 1 1 1 1 1 1 I
2 [ 1O 14

PLAN ASPECT RATIO, Y5 =Q

Fig. 2.10: Influence of Plan and Cross Scctional Aspect Ratio on the Frequency
Parametes for Symmetric Vibrations of Free Free Rectangular Tube.

e . i
r‘*'»v increases with the cross sectional aspect ratio.  This discrepancy 1s even. larger In

higher modes.

2.6 Free-free rectangular tube-—antisymmetric modes

In this case (Fig. 2.4) ¢ is antisymmetric in z while ¢y is symmetric 1n z and

the bounduary conditions at the free end are (Egs. (2.2, (2.27) )
1) —uidyg i1, =0 '

APIEE NS i

... (2.48)
... (2.49;
-

(1) A5 >0

The appropriate expressions for ¢ and ¢g are given in Eqs. (2.31) and (2.31a).

Since 4 is antiss mmetric and dg is svmmeiric it tolfows

P 7

"i*o‘ A A - A=A =0 L (2.50)
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Satisfying boundary conditions given by Eqgs. (2.48) and {2.49) and for nontrivial
solution ore obtains the characteristic equition as

wohd, A [ T T My
tanh ;\1 LA, /\2 kf‘ ) A (2.51)
27T Mg

The mode shapes subject to a normulising condition of unit rotation at the free
end, are

) 2 o
IR SR
9(2) =, \2 n /\2 {l S Sma, z — -‘—;W sinh A, Z j
1 2L
and '
2. .2 2 N[
o (=2 +x) (5= }‘0><' cos A, 2
W(Z, Sizz - \\)¢9_—, 13 ( \2 ]\2 ) /\, CON /\;
J YT Ry L

. (2.52)

by A <0

Following the procedure as given ubove, one obtains  the characteristic

eguation as

\= RN
tan A, N TN R _ 0
an A, ) N \2 12 o (2.53)
and the mode shapes. subject to unit free end rotation. are
> 2 o) 9
[ — A ]
9ip) I ! 2 0 . \; B B \ !
A - B T R ™y s R LI SO
" 2L . J
2.2 2 2
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cos A,z )
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A8,

The values of the frequency parameter hy ire computed by using Eg: (2.31),

for various values of plan and cross sections! aspect ratios. These are presented in

Fig. (2.11). These indicate that the influence of shear lag ix large for smali plun

T ) e
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aspect ratio tubes and increases with cross sectional aspect ratios. This influence 1s
even larger for higher modes.
— - - ELEMENTARY THEORY

S

FREQUENCY PARAMETER k,

PLAN ASPECT RATIO

Fig. 2.11: Influence of Plan and Cross Sectional Aspcct Ratio on the Freyuency |
Paramcter for anti-symmetric Vibrations of Free Free Rectangular tube.

2.7 Conclusions

In this chapter problems of torsional vibrations of doubly summetric unstiffened
tubes are considered. The exact solution of a simply supported tube with cross

\

. . 2ns . .

scction given by p = ——;_— cos —-S\- is presented. Although pt is not constant
here, we have uncoupled torsional and warping vibration. This is because of the
periodicity of p in s which is not present in w. This example brings out the
possibility of a new series of tubes having no coupling between torsional and warping

vibration,

First order approximation ecuations arc simple and are most suitable for
engineering use. Comparison of the natural frequencies of a frec-free rectangular
tube performing symmetric modes of wvibrdation with the results of Kruszewski and
Kordes! show good agreecment. Hence the solution by second approximation
equations has not been attempted.
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Numerical results reveal that the influence of Jongitudinal inertia is very small
on natural frequency and the rotational mode shape while the effect is. considerable
on warping, the influence of shear lag is to increase natural frequency with cross
scctional aspect ratio. The effect of shear lag is large for small plan aspect ratios and
increases for higher modes.
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