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NONEXISTENCE OF ARITHMETIC FAKE COMPACT HERMITIAN SYMMETRC
SPACES OF TYPE OTHER THAM, (n < 4)

GoraL PrAasaD AND Sa1-KEE Y EUNG

Abstract. The quotient of a hermitian symmetric space of non-compaet by a torsion-
free cocompact arithmetic subgroup of the identity compbiwé the group of isometries
of the symmetric space is called an arithmetic fake compeahhian symmetric space if
it has the same Betti numbers as the compact dual of the hamsigmmetric space. This
is a natural generalization of the notion of “fake projeaiplanes ” to higher dimensions.
Study of arithmetic fake compact hermitian symmetric spaddype A with even n has
been completed ifPY1], [PY2]. The results of this paper, combined with thos¢Rf2],
imply that there does not exist any arithmetic fake compaamitian symmetric space of
type other than A n < 4 (see Theorems 1 and 2 in the Introduction below and Theorem
2 of [PY2]). The proof involves the volume formula giverjj, the Bruhat-Tits theory of
reductive p-adic groups, and delicate estimates of varimusber theoretic invariants.
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1. Introduction

1.1. Let % be a connected real semi-simple Lie group with trivial ceated with no non-
trivial compact normal subgroups, ande its Lie algebra. The group Adf) (=Aut(a))

of automorphisms of is a Lie group with finitely many connected components, asd it
identity component i¥. We will denote the identity component of A@] in the Zariski-
topologyby Int(#). Let X be the symmetric space &f (X is the space of maximal compact
subgroups of7), andX, be the compact dual of. There is a natural identification of the
group of isometries oK with Aut(¢). We assume in this paper thét(and hencexy) is
hermitian. Then every holomorphic automorphismXos an isometry. The group Hof{

of holomorphic automorphisms of is a subgroup of finite index of the group A#t( of
isometries, and it is known (see [Ta], the remar) that Hol(X) N Int(¥) = 4.

1.2. We will say that the quotienX/IT of X by atorsion-freecocompact discrete subgroup

I1 of ¢ is afake compact hermitian symmetric spaoeafake X, if its Betti numbers are
same as that aK,; X/II is anarithmetic fake compact hermitian symmetric spamean
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2 NONEXISTENCE OF ARITHMETIC FAKE COMPACT HERMITIAN SYMMERIC SPACES

arithmetic fake X, if, moreover[l is irreducible (i.e., no subgroup ©f of finite ingex is a
direct product of two infinite normal subgroups) and it is athanetic subgroup o¥. Any
such space can be endowed with the structure of a smooth eripigjective variety.

We note that if4 contains an irreducible arithmetic subgroup, then the Eirfgztors of
its complexification are isomorphic to each other, see [JJ&grollary 4.5 in Ch. IX. Also,
if R-rank of ¢ is at least 2, which is the case for &lto be considered iI§§4—7 of this
paper, then by Margulis’ arithmeticity theorem ([Marg], .QX]), any irreducible discrete
cocompact subgroup &f (in fact, any irreducible lattice) is arithmetic.

If ITis a torsion-free cocompact discrete subgrouf ghen there is a natural embedding
of H*(Xy, C) in H*(X/II, C), see [B], 3.1 and 10.2, and henkglI is a fakeX, if and only
if this embedding is an isomorphism.

1.3. Let¥, X andX, be as above, and I&t be a torsion-free cocompact discrete subgroup
of 4. LetZ = X/I. If Z is a fakeX,, then the Euler-Poincaré characterigti@) of Z, and

so the Euler-Poincaré characterigi@I) of I, equalsy(Xy). As X has been assumed to be
hermitian, the Euler-Poincaré characteristicégfis positive. On the other hand, it follows
from Hirzebruch proportionality principle, see [Ser], Position 23, that the Euler-Poincaré
characteristic oX/II is positive if and only if the complex dimension Kfis even. Using
the results of [BP], we can easily conclude that there arg finitely many irreducible
arithmetic fake compact hermitian symmetric spaces ofgyjiker thar;. It is of interest

to determine them all.

1.4. Hermitian symmetric spaces have been cIassifie&IhyCartan; see [H], Ch. IX. We
recall that the noncompact irreducible hermitian symrefpaces are the symmetric spaces
of Lie groups SUf+1—m, m), SO(2 2n-1), Sp(2), SO(22n-2), SO(2n), an absolutely

simple real Lie group of typ&s with Tits index?ELS, and an absolutely simple real Lie

group of typeEz with Tits index E$83 (for Tits indices see Table Il in [Til]). The complex
dimensions of these spaces ane+(1 — mm, 2n— 1, n(n + 1)/2, 2n - 2, n(n - 1)/2, 16
and 27 respectively. The Lie groups listed above are of a3, Cy, Dp, Dy, Es andE7
respectively. We will say that a symmetric space is one ddaftgpes if it is a product of
symmetric spaces of noncompact simple Lie groups of that, tgpd say that a hermitian
locally symmetric space is of one of these types if its singagnected cover is a hermitian
symmetric space of that type.

The purpose of this paper is to prove the following two thewse

Theorem 1. There does not exist an irreducible arithmetic fake compaamitian symmet-
ric space of type other than,A

Regarding spaces of ty@g,, we have the following result.

Theorem 2. There does not exist an irreducible arithmetic fake compaamitian symmet-
ric space of type Awith n> 4.

The proof of Theorem 1 is carried out§g4—7. Arithmetic fake compact hermitian sym-
metric spaces of typ&,,, with n even, have been studied in detail in [PY1] and [PY2]. In
[PY1] we have given a classification of “fake projective at) the first of which was con-
structed by David Mumford in [Mu] using-adic uniformization. Note that fake projective
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planes are arithmetic fake compact hermitian symmetricepaf typeA,. Using inge-
nious computer-assisted group theoretic computationgyw@ght and Steger ([CS]) have
shown that the twenty eight classes of fake projective @arfgPY1] altogether contain
fifty distinct fake projective planes up to isometry with resgedhe Poincaré metric [CS].
Since each of them supports two distinct complex structii¢ks§5], there are exactlgne
hundredfake projective planes counted up to biholomorphism. InZP%e have shown
that arithmetic fake compact hermitian symmetric spaceagpsf A,, with n even, can exist
only forn = 2, 4, and have constructed four arithmetic fél%, four arithmetic fake Grass-
mannianGr s, and five (irreducible) arithmetic fal? x PZ. (FakeP? and fakeGr 5 are
of type A4 and every fakePé X Pé is of typeAy.) To prove Theorem 2 we therefore assume
thatnis odd and> 3. The proof occupie§$8—9. We also prove some results foe 3, see
Proposition 3 at the end ¢B, and 9.3.

In the following subsection we will explain the strategy bétproof, and fix notation
which will be used throughout the paper.

15. Let%9, X, Xy be as in 1.1X will be assumed to be a hermitian symmetric space of one
of the following types:A, with n > 3 odd, By, Cy, D, Eg andE7. Assume, if possible, that
¢ contains a cocompact irreducible arithmetic subgrbiuwhose orbifold Euler-Poincarée
characteristicy(IT) equalsy(Xy). Then there exist a number fiek] a connected adjoint
absolutely simple algebraicgroupG of same type a¥, real placess, ...,V of k such
that G(k,) is compact for every real placedifferent fromva, ..., v;, ¢ is isomorphic to

E=1 G(k\,j)o (and will be identified with it), andT is an arithmetic subgroup contained in

G(K). It is obvious from this thak is totally real. IfG is either of typeA, (n > 1 arbitrary)
or D, with n odd, or of typeEg, then for every real place of k, G is an outer form over
kv, and hence the unique quadratic extengiof k over whichG is an inner form is totally
complex. IfG is of type D, with n even, and it imot a triality form of type D4, then at
every real place of k, G is an inner form, and hence eith@ris an innerk-form, or the
unique quadratic extensighover whichG is an inner form is a totally real field. & is a
triality form of type D4, let¢ be a fixed cubic extension &fcontained in the smallest Galois
extension ok over whichG is an inner form. For triality forms occuring in this papéis
totally real. AslI is cocompact, by Godement compactness criteBda anisotropic over
k (i.e., itsk-rank is 0).

Letx : G — G be the simply connected cover 6fdefined ovek. The kernel of the
isogenyr is the centelC of the simply connectell-groupG.

Description of C: For a positive integea, let u, be the kernel of the endomorphism
X - X2 of GL;. Then ifG is of type2A,, its center isk-isomorphic to the kernel of the
norm mapNz/k : Rek(tns1) — pns1, and ifG is of type2Eg, its center ik-isomorphic to
the kernel of the norm mal;/x : Rex(us) — us. If Gis of type By, C, or E7, thenC is
k-isomorphic tauy. If G is an innerk-form of type D, with n even, therC is k-isomorphic
to o X up, and ifG is a non-triality outer form of typ®y, C is k-isomorphic toRk(uz2) or
to the kernel of the norm maldy i : Rek(ua) — wa according as is even or odd. IS is a
triality form of type Dy, let the cubic extensiofi of k be as above. The@ is k-isomorphic
to the kernel of the norm maldyk : Re(u2) — uo.
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Itis known, and easy to see using the above descripti@h tifat for any real placeof k,
the order of the kernel of the induced homomorph@(k,) — G(k,) isn+ 1 if G is of type
27, is of order 2 ifG is of typeB,, C,, or E7, is of order 4 ifG is of typeD,,, and of order 3 if
it is of type®Ee. Moreover, as3(k,) is connectedz(G(ky)) = G(k,)°. Let? = [}_; G(k,),
and letII be the inverse image f in 4. Then the kernel of the homomorphism ¥ —
¢ is of orders’, and hence the orbifold Euler-Poincaré characterjgtid) of I equals
x(ID)/s" = x(Xy)/s, where here, and in the sequsl= n+ 1 if G is of typeA,, s = 2 if
Gis of typeBy, C, 0or E7, s = 4 if Gis of typeD,, ands = 3 if G is of type Eg. Now
letT" be a maximal discrete subgroup?ﬁfcontainingﬁ. Then the orbifold Euler-Poincaré
characteristig/(I') of I is a submultipld of y(II) = y(X,)/s". Using the volume formula
of [P], some nontrivial number theoretic estimates, theh@ttrits theory, and the Hasse
principle for semi-simple groups (Proposition 7.1 of [PRRye will show that¥ does not
contain such a subgrodp This will prove Theorems 1 and 2.

2. Preliminaries

2.1. We will use the notations introduced in 1.5. THuill be a totally real number field,

G an absolutely simple simply connected algebiagroup (of one of the following nine

types: 2A, with n(> 3) odd, By, Cp, 1Dy, 2Dp, 3Da, 6Da, 2Es, andEy), C its center =
E:l G(ky,)- We will think of G(k) as a subgroup of in terms of its diagonal embedding.

Vs (resp.V.) will denote the set of nonarchimedean (resp., archimédaanes ok. As
k admits at least distinct real places, see 1.&,= [k : Q] > r. Forv € Vs, q, will denote
the cardinality of the residue fiefg of k,. If G is an outer form¢ will denote the quadratic
or cubic extension df as in 1.5. IfG is an inner form, let = k.

As explained in 1.5, to prove Theorems 1 and 2 it wilffi@me to show tha®# does not
contain a maximal arithmetic subgrotip(I" arithmetic with respect to thlke-structure on
G) whose orbifold Euler-Poincaré characteristic is a subipia of y(X,)/s. Assume, if
possible, that suchlaexists. Them := I' N G(K) is a “principal” arithmetic subgroup, i.e.,
for every nonarchimedean plaeef k, the closureP, of A in G(ky) is a parahoric subgroup
andA = G(k) N []vey, Py, moreover[ is the normalizer of\ in ¢; see Proposition 1.4(iv)
of [BP]. Let the “type”®, of P, be as in [BP], 2.2, an&g, be as in 2.8 there. IPy is
hyperspecial, theBg, is trivial. The order ot=g, is always a divisor ok (sas in 1.5). We
note that for all but finitely many € V¢, P, is hyperspecial.

In terms of the normalized Haar-measwen ¥ = Hﬁzl G(ky,;) used in [P] and [BP],
and to be used in this papéy(I)| = x(Xu)u(¥4/T) (see [BP], 4.2). Thus the condition that
x () is a submultiple of(X,)/s" is equivalent to the condition tha{% /T') is a submultiple
of 1/s". We will show below that# does not contain a maximal arithmetic subgréiguich
thatu(¢/T) is a submultiple of 1s".

For a comprehensive survey of the basic notions and the rasirts of the Bruhat-Tits
theory of reductive groups over nonarchimedean local fielsied in this paper, see [Ti2].

1given two nonzero real numbexsandy, we say thay is asubmultipleof x if x/y is an integer
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2.2. All unexplained notations are as in [BP] and [P]. Thus for anber fieldK, Dk will
denote the absolute value of its discrimindm,its class number, i.e., the order of its class
groupCI(K). We will denote byhk s the order of the subgroup @fI(K) consisting of the
elements of order dividing, where, asin 1.5s = n+ 1 if Gis of typeA,, s=2if Gis

of type B, or C,, s= 4 if Gis of typeDy, ands = 3 if G is of typeEg. Thenhk lhx. We
will denote byUy the multiplicative-group of units oK, and byKg the subgroup oK*
consisting of the elementssuch that for every normalized valuatismf K, v(X) € $Z.

2.3. For a parahoric subgrouB, of G(k,), we definee(P,) and € (P,) by the following
formulae (cf. Theorem 3.7 of [P]):

dimm,+dim>z,)/2

(l) TV

_ #%v(fv) dim™,-dim7zy2 #4(G)
2 ¢(P,) = &Py W)
(2) (Pv) = e(Py) - q\C/ilm///v )

24. Letmy,...,m, (M < --- < my), wheren is the absolute rank @, be the exponents of
the Weyl group ofG. For typeA,, m; = |, for typesB, andC,, m; = 2j -1, for typeD,, the
exponents are 1, 3,5, ...n2 5, 2n — 3 andn — 1 (the multiplicity ofn — 1 is two whenn
is even); for typeEg, the exponents are 1, 4, 5, 7, 8 and 11; and for &gpehe exponents
arel,5,7,911, 13 and 17. Then

o if either G is of inner type, ov completely splits irt,

1
gPy) = +1);
o if vdoes not split irf andG is of type?A, with n odd, then

(n-1)/2

1 1 1
¢(Py) = e(P)(1- W) H (1- @)(1 + W),

v

or
(n+1)/2

1
¢P)=ePy) | | (1-)
j=1 Qv
according ay does nobr doesramify in ¢.
o if G is of type?D,, andv does not split ir?,

H

n

e(Py) = e(P)(1
j=1
or

¢(P) =P | (1- )

according ay does nobr doesramify in ¢.
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o if G is a triality form (i.e., of type’D4 or D) andv does not completely split iy, let w
be a nontrivial cube root of unity, then

(i) if &y := € ® ky is a (cubic) field extension d;,

1 ) w? 1
gPy)=eP)1l-=)1-=)1-=)1-=)
) =PI (- )1 - S )
or
1 1
€Py) =eP)1-5)(1- =
v v ( q\%)( q\?)
according ag, is aunramifiedor aramifiedextension ok,,
(i) if €@ ky is a direct product ok, and a quadratic field extension kaf then

1 1 1 1
¢(P,) = e(Py)(1+ %)(1 - %)(1 - %)(1 - ﬁ)’

o 1 1 1
¢(P) =e(P)(1- %)(1‘ @)(1— @)

according as the quadratic extensionimsamifiedor ramified

o if G is of type?Eg andv does not split ir?,

, 1 1 1 1 1 1
d(P,) = e(Pu)(1- @)(1 + g)(l - @)(1 - @)(1 + @)(1 - @)’
or
1 1 1 1
¢(Py) = (Py)(1- @)(1 - @)(1 - @)(1 - @)
according ay does nobr doesramify in ¢.

25. SinceqdM% > #7,(f) (cf. 2.6 of [P]),&(P,) < &Py). It is not dificult to check

by case-by-case computations, using (2) and the Bruhatfigory, thafor all v € V¢, and
an arbitrary parahoric subgroup Pof G(k,), € (P,) is an integer.lf, for example, eithelG

is quasi-split ovek, and splits over the maximal unramified extensiorkpofequivalently,
G(k,) contains a hyperspecial parahoric subgroup), or it doéspld over the maximal
unramified extension d,, then explicit computations can be avoided using the faattttie
order of a subgroup of a finite group divides the order of thiedaan analogue (see [Gi])
for reductive groups over finite fields of a result of Borel &edSiebenthal on subgroups of
maximal rank of a compact Lie group, and the fact that overiteffield f, the groups of-
rational points of connected absolutely simplgroups of type8,, andC,,, for an arbitrary
m, have equal order. A detailed proof of the integralityetfiP,) for groups of typeA, is
given in [GM].

2.6. Now we will use the volume formula of [P] to write down the pisscvalue ofu(¥/A).
As the Tamagawa numbeg(G) of G equals 1 Theorem 3.7 of [P] (recalled in 3.7 of [BP]),
for S = V,,, provides us the following:

n

sdime, ke T M
® w9180 =0} D{ || e
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wheren is the absolute rank @, s is (n— 1)(n+ 2)/2 if G is of type2A, with nodd, Zh— 1
if G is of type2D,, 7 if G is a triality form (i.e., of type’D4 or 6D,), 26 if G is of type?Es,
and 0 for all other groups under consideration in this pagoet,

&= 1]eP.

veVi

with e(P,) as in 2.3.

2.7. Let{, £ be the Dedekind zeta-functionslohnd¢ respectively. We will let,x denote
the functionZ,/lk. If € is a quadratic extension & which will often be the case in this
paper,{qk is the Heckel-function associated to the nontrivial Dirichlet charaadé ¢/k.

Recall that 1
a@ =[] (1-g) "

veVi

and if¢ is a quadratic extension &f

’ 1.-1 ” 1.-1
=TT 37 T 2

where[]" is the product over the nonarchimedean placetk which splitin¢, and[]” is
the product over the nonarchimedean placesich do not split and also do not ramify in
£. We will let the reader write down a similar product expreasior ;k(a) = {¢(a)/ k()
when( is a cubic extension .

Using the values o (P,) given in 2.4 we will rewrite the Euler produét appearing in
(3). For this purpose we define

& = n{k(mj +1)
=1

if G is of inner type;
(n-1)/2

7 =an+1) || &@iia@i+1)

j=1
if G is of type?A, with n odd;

n-1

Z = o) | | an(2i)

i=1
if G is of type?Dy,;
Z = (2)ok(4)k(6)
if G is a triality form;
Z = L(2)ex(5)k(6)k(8)rk(9)¢k(12)
if G is of type?Es. Then for allG,
(4) e=2[]ePy.

veVi
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2.8. If Gis of inner type, let

(5) # =2 [ | d(-m).
j=1
If Gis of type?A, with n odd, let
(n-1)/2
(6) Z =2 [ - 20)m(-2i).

j=1

If Gis of type?D, (recall that¢ is totally real or totally complex according ass even
or odd), let

n-1
(7) Z =27 -n) | | 4@ -2j)1
j=1
If Gis atriality form (then¢ is a totally real cubic extension &}, let
8) Z = 26~ 1)ew(=3)ek(-5).
If G is of type?Es (then( is a totally complex quadratic extensionkf let
) % = 2% 0~ Dok~ D=5) o= T)e(-8) (- 11).

Using the following functional equations for any totallyat& and respectively a totally
real extension of arbitrary degree and a totally complexdptec extensiorf of k,

1_0a,(-1 a22a—1 2a
adza) =0} (S - 2a)
D a—% —1)ap%a-1,2a K=
{ond22) = (D_:)2 (((;aT)T e 1)§f|k(1 — 2a),
and I
D a+% _1 a2 a a+
tna+ 1) = () (2N L (2a),

D, (2a)!
for every positive integea, and the fact that dir® = n + 2 3, m;, the volume formula (3)
and the explicit value of’ given for each case in 2.7, we find that

(10) u@IN) =7 | €P),
veVi
whereZ is as above.
2.9. We have the following
w(@ /Ny 7 e, €(Py)
[T:A] [T:A]
Let sbe as in 1.5. Proposition 2.9 of [BP] applied® = G andI” = I" implies that any
prime divisor of [ : A] dividess. Now sinceg’ (P,) is an integer for al € V¢, we conclude
from (11) that ifu(¢/T) is a submultiple of 1, then any prime which divides the nuatear

of the rational numbe#Z is a divisor ofs. We record this observation as the following
proposition.

(11) u@r) =



NONEXISTENCE OF ARITHMETIC FAKE COMPACT HERMITIAN SYMMETRC SPACES 9

Proposition 1. If u(%¢/T') is a submultiple ol (or, equivalently, the orbifold Euler-Poincaré
characteristic y(I') of T is a submultiple of(X,)), then every prime divisor of the numer-
ator of the rational numbe#? divides s.

2.10. Let .7 be the set of all nonarchimedean plaves k such thateither (i) v does not
ramify in ¢ (equivalently,G splits over the maximal unramified extensionkgf and P, is
not a hyperspecial parahoric subgroupagk,), or (i) v ramifies in¢, G is quasi-split over
ky andPy is not special. It can be easily seen, using the relativd IDgakin diagram of
G/ky given in 4.3 of [Ti2], that ifv ¢ .7, thenZg, is trivial; if v € .7 ramifies in¢, then
#Ze, < 2.

If for a v € Vi, Py is hyperspecial, then obviousl/(P,) = 1. On the other hand, it
is not dfficult to see, by direct computation, thei{P,) > sfor all v e 7. Therefore,
& = [lvev, &Pv) > [1vev, €(Py) > s*7 (cf. 2.5), and hence, we see from (3) that

idimaG [£:K\Ls om! d T
(12) w@/A)>D; " (D/DI M)z (g (Zﬂ)mj+l) 7.
Sinceu(9/T) = u(@/A)/[T : A] is a submultiple of 1s" (see 2.1), we conclude that
u(@/A) <[I': A]/S. From bound (12) we now obtain:

jdime [Ky s oMl d g :
(13) D27 (D,/DLH) (g(zn)mﬁl)s# <[T:A]/S.

3. Discriminant bounds

We will recall discriminant bounds required in later dissiogs. We defineM,(d) =
mink DlK/d, where the minimum is taken over all totally real number fiddsf degreed.
Similarly, we defineM(d) = ming DlK/d, by taking the minimum over all totally complex
number fieldK of degreed.

The precise values d¥l,(d), Mc(d) for low values ofd are given in the following table
(cf. [ND).

d: 2 3 4 5 6 7 8
M (d): 5 49 725 14641 300125 20134393 282300416
Mc(d)?: 3 117 9747 1257728

The following proposition can be proved in the same way apésition 2 in [PY2] has
been proved.

Proposition 2. Let k andf be a totally real number field and a totally complex humbedfiel
of degree d respectively.

vo> 2 3 4 5 6 7 8
D/%> 223 365 518 68 818 1105 1138
DY4> 173 328 462 578,

4. G of type B, or C,
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4.1. In this section we assume thatis of type B, or C, with n > 1. Then its dimension is
n(2n+1). Thej-th exponentm; = 2j-1,s = 0, and the complex dimension of the symmetric
spaceX of ¥ = Hﬁzl G(ky,) isr(2n - 1) if G is of type By, and isrn(n + 1)/2 if G is of
type C,. The centecC of G is k-isomorphic tau, ands = 2. The Galois cohomology group
H1(k, C) is isomorphic td*/k*2. The order of the first term of the short exact sequence of
Proposition 2.9 of [BP], folG’ = G andS = V., is 2~1. From the proof of Proposition
0.12 of [BP], we easily conclude thak#k*? < he»29. Let 7 be as in 2.10. We can adapt
the argument used to prove Proposition 5.1 in [BP], and thamaent in 5.5 of [BP], for

S =V, andG’ = G, to derive the following bound from Proposition 2.9 of [BP]:

(14) [ : A] < hy o207
Hence, from (13) we obtain

1/d (27)?! \d hk2 g
(15) D/ < fi(n.d. heo) = [ 12 ]_[( 1)| 7] .

According to the Brauer-Siegel Theorem, for a totally reaniver fieldk of degreed,
and all reab > 0,

1-d do_—dmy &2
(16) hRe < 277%6(1L+ I (L + 6)/2) (7 "Dx) 2 &(1+9),
whereR is the regulator ok. Now from (15) we get the following bound:

17) DY < f2(n,d. Ry, 5)

T((1+6)/2)(1 + 6) (27r)2J 5(1 +0) 1 oris
- [{ (1+0)/2 n 2] 1)| Re }d]( "

sincei(1 + 6) < £(1 + 6)Y, wherel = g. Usmg the lower bound®, > 0.04e>48, for a
totally real number field, due to R. Zimmert [Z], we obtain the following bound from 17

(18) D/? < f3(n.d, 6)

I'((1+9)/2)¢(1 +9)
- [ 7(1+6)/20.46

(21)” e
]_[( — b+ {255(1 + 8)}3 ¢ ),

4.2. Itis obvious that for fixedh > 2 ands € [0.04, 9], f3(n, d, §) decreases asincreases.
Now we observe that fon > 9, (2n — 1)! > (27)*". From this it is easy to see that if for
a givend, ¢ € [0.04,9], andn > 8, f3(n,d,s) > 1, thenfz(n + 1,d,5) < f3(n,d, o), and
if f3(n,d,s) < 1, thenfs(n+ 1,d,6) < 1. In particular, if for givend, ands € [0.04, 9],
f3(8,d,6) < ¢, withc > 1, thenfz(n,d’, ) < cfor alln > 8 andd’ > d.

We obtain by a direct computation the following upper boumdthe value offz(n, 2, 3)
for6 < n<14.

n: 14 13 12 11 10 9 8 7 6
f3(n,2,3)< 1 11 12 13 14 16 18 21 24
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From the bounds provided by this table and the propertiefg wfentioned in the preceding
paragraph we conclude théy(n, d,3) < 2.1 for alln > 7, andd > 2. AsD;/® < fy(n,d, 3),
Proposition 2 implies that unlegs= Q (i.e.,d = 1),n < 6.

We assert now that < 13. To prove this, we can assume, in view of the result estadxi
in the preceding paragraph, thkat Q. By a direct computation we see thiaf14,1,1) < 1.
Hence,f1(n,1,1) < 1 for alln > 14. AsDq = 1, from bound (15) we conclude that< 13.

We will now assume thatl > 2 and consider each of the possible cases & < 6
separately.

en=06: Ford > 2, Dﬁ/d < f3(6,d,1) < f3(6,2, 1) < 2.4. Therefore, by Proposition 8,= 2
andDy < 6, which implies thak = Q(V/5) is the only possibility.

en =5 Ford > 2, D® < f3(5,d,1) < f3(5,2,1) < 29. Therefore, we infer from
Proposition 2 thatl = 2 andDy < 9. So there are two possible real quadratic fidddheir

discriminants are 5 and 8oth the fields have class number 1, and we use the bound (15)
to obtainD;/? < f1(5,2,1) < 2.8. So onlyDy = 5 can occur.

en =4 Ford > 3 D% < f3(4,d,1) < f3(4,3,1) < 3.62, and from Proposition 2
we conclude that ih = 4, thend < 3. Let us assume that = 2. Then sinceD,/” <
f3(4,2,1.1) < 3.76, Dk < 15 and so the possible values Df are 58,12 or 13 The
guadratic fields with thesBy have class number 1. Now from bound (15) we ob[aiﬁ2 <
f1(4,2,1) < 3.4. Hence, Dk < 12, and onlyDy = 5, 8 can occur.

en=3: Ford > 4, asD}/® < f3(3,d,1) < f3(3,4,1) < 5.1, from Proposition 2 we infer
thatif n = 3, thend < 4. If d = 3 = n, Dk < 133 from which we find thaD, = 49 or
81 Now we consider the case whede= 2 (andn = 3). SinceD,/* < f3(3,2,1) < 5.6,
Dk < 32, and in this case the possible value®gfare 58,12 13, 17,21, 24,28 or 29 The
quadratic fields with these discriminants have class nurbiband we use bound (15) to
obtainD,/? < f1(3,2,1) < 452 Hence Dy < 21 and onlyD = 5,8,12,13, 17 can occur.

on=2: AsD}! < 13(2,7,1) < 9, Proposition 2 implies thal < 6.

+n=2andd = 6: AsD}/® < f3(2,6,1) < 9, Dx < 531441 One can check from the
table in [1] thathy = 1 for all the five number fields satisfying this bound. We nowe us
bound (15) to obtaiD,/® < f1(2,6,1) < 7.2. But according to Proposition 2 there is no
totally real number fieldk for which this bound holds.

+n=2andd = 5: AsD./® < f3(2,5,1) < 9.3, Dk < 69569 Again, one can check from
the table in [1] that there are five such humber fields and thesahumber of each of them
is 1. Now we use bound (15) to obtal}’® < f,(2,5,1) < 7.1. Hence,Dx < 18043 From
[1] we find thatDy = 14641 is the only possibility.

en=2andd = 4 AsD.* < f3(2,4,0.9) < 9.74, Dy < 900Q According to [1], there
are 45 totally real quartic number fields with discriminan®00Q all of them have class
number 1We use bound (15) to obtad,’* < f1(2,4,1) < 7.04. Hence,Dy < 2457 We

find from [1] that there are eight totally real quartic numbeldsk with Dy < 2457. Their
discriminants are

7251125160Q 1957,200Q 2048 2225 2304
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+n=2andd = 3: AsD,/® < 3(2,3,0.8) < 105, Dy < 1158 From table B.4 of [C] we
find that there are altogether 31 totally real cubics satigfyhis discriminant bound. Each
of these fields have class numbene use bound (15) to obtaid,® < f1(2,3,1) < 7,
which implies thaDy < 343 There are eight real cubic number fields satisfying this boun
The values oDy are
49 81, 148 169 229 257,316 321

+n=2andd = 2: AsD,/? < 3(2,2,0.5) < 12, D < 144 From table B.2 of totally
real quadratic number fields given in [C], we check that tlessihumber of all these fields
are bounded from above by Blence,D,/* < 1(2,2,2) < 7.3. SoDx < 53 Among the
real quadratic fields witlby < 53, there is only one field whose class number is 2, it is the
field with Dy = 40. All the rest have class number 1, and from bound (15) welade that
D% < f1(2,2,1) < 6.8, i.e.,Dx < 47. Therefore, the following is the list of the possible
values ofDy:

5,8,12 13 17,21, 24,28, 29, 33 37,40,41, 44.

To summarize, fo6 of type By, or C,,, the possibla, d andDy are given in the following
table.

=}
UTUWHP

58

4981

58,1213 17

14641

7251125160Q 1957,200Q 2048 2225 2304
49 81,148 169 229 257,316,321

58,1213 17,21, 24,28,29,33,37,40,41, 44.

NNNNWWNOOO -
NWRUONWNNNR O

4.3. We will show that none of the possibilities listed in the abdable actually give rise
to an arithmetic fake compact hermitian symmetric space/pé B, or C,,. For this we
recall first of all thatG, and so als@, is anisotropic ovek (1.5). Now we observe that if
G is a group of typeB,, (n > 2), then it isk-isotropic if and only if it is isotropic at all the
real places ok (this follows from the classical Hasse principle for quaidréorms which
says that a quadratic form ovéris isotropic if and only if it is isotropic at every place
of k, and the well-known fact that a quadratic form of dimensio# is isotropic at every
nonarchimedean place). Alsokagroup of typeC, (n > 2) is k-isotropic if it is isotropic
at all the real places & (this is known, and follows, for example, from Propositiod 8f
[PR]). These results imply thatd = 1, i.e., ifk = Q, thenG is isotropic, and sa = 1 is
not possible.

Now let us take up the case whate- 2, i.e.,kis a real quadratic field, ami= 2, 5 or 6.
Then for any real placeof k whereG is isotropic, the complex dimension of the symmetric
space of5(k,) is odd (recall from 1.4 that the complex dimension of the s\gtric space of
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G(ky) is 2n—1if Gis of typeB,, and itisn(n+ 1)/2 if G is of typeC,,). But as the complex
dimension of the hermitian symmetric spa¥ds even (since the orbifold Euler-Poincaré
characteristic of” is positive, see 1.3), we conclude ti@atmust be isotropic at both the
real places ok (note thatG is anisotropic at a placeof k if and only if G(k,) is compact).
From this observation we conclude tl@ais k-isotropic also in casd = 2, andn = 2, 5 or

6. Therefore these cases do not occur.

4.4, To rule out the remaining cases listed in the table in 4.2, emapute the value of?

in each case® as in (5)). The following table provides the minimal monidymmmial
definingk and the values afx needed for the computation @. It turns out that in none of
the remaining cases the numeratorfis a power of 2 and Proposition 1 then eliminates
these cases.

nd kD &-1) &-=3) &(-5) &(=7)

4 2 x¥-5 5 1/30 1/60 67/630 361120

4 2 x2-2 8 112 11120 361252 24611240

n d k D (-1) &(=3) &k(=5)

3 3 3-x2—-2x+1 49 -1/21 79210 -739363

3 3 x-3x-1 81 -1/9 19990 -5035327

3 2 X2 — 17 17 Y3 4130 579163

3 2 X2 - 13 13 16 2960 334631638

3 2 X2 -3 12 Y6 2360 1681126

32 X2 -2 8 112 11120 361252

3 2 X2 -5 5 130 1/60 67/630.
n d k Dx &(-1) &(=3)
2 5 X®-xX*-43+3x¥%+3x—1 14641 -20/33 1695622165
2 4 X* -4+ 1 2304 1 2201110
2 4 X —x3-5x2 +2x+4 2225 45 92025
2 4 X -4+ 2 2048 56 8743960
2 4 x*—5x2 +5 2000 23 37933
2 4 X* =42 - x+1 1957 23 35413
2 4 X —6x2 + 4 1600 715 1734730
2 4 X -3 -4 +4x+1 1125 415 252215
2 4 -3 -3 +x+1 725 215 541/15
2 3 - x2—4x+1 321 -1 5552
2 3 XB—x2—4x+2 316 -4/3 8743
2 3 X2 —x2—4x+3 257 -2/3 189115
2 3 B —4x-1 229 -2/3 133315
2 3 XC—x2—4x-1 169 -1/3 11227390
2 3 B -x2—3x+1 148 -1/3 577/30
2 3 xX-3x-1 81 -1/9 19990
2 3 X —x2—2x+1 49 121 79210
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5. G of type Dy,

We will consider hermitian symmetric spaces associatedd@toups of typeD,,, with
n > 4. The noncompact irreducible hermitian symmetric spacdsasd types are S@n)/U(n)
and SO(22n-2)/S(0(2)x O(2n-2)). In the terminology oflie Cartan, these are hermitian
symmetric spaces of types DIIl and BDI respectively.

We note that any absolutely simple algebraic gr@upverQ of type 1D, or 2D, with
n > 4, or a triality form of typeD4, whoseR-rank is at least 2, i§-isotropic (note that
if G is a triality form, then as at the unique real placeQothe relative rank oz is 2, we
see that in the Tits index d& over k, the central vertex is distinguished for every place
v of Q, and then it follows from Proposition 7.1 of [PR] th@tis isotropic overQ), and
hence, by Godement compactness criterion, its arithmekigreups are non-cocompact in
G(R). Since we are only interested in compact hermitian locsylsnmetric spaces (and
SO(22n - 2) is of R-rank 2, and fon > 4, R-rank of SO(2n) is at least 2)n this section
the number field k will be a nontrivial extension@f

5.1. The exponents of the Weyl group Gfof typeD, are 13,5, ...,2n-5,2n- 3, together
with n — 1 which has multiplicity two ifn is even and multiplicity 1 ifhis odd. The center
of Gis of order 4 and din® = n(2n - 1). Let .7 be as in 2.10.

The following bounds forl[ : A] can be obtained from Propositions 0.12, 2.9, 5.1 and
the considerations in 5.5 of [BP].

Case (a): nis even, ands is of typelD,, i.e., itis of inner type. Then
(19) [[: A] < hg 220 =14#7),

Case (b): nis even ands is of type?D,. Then( is a totally real quadratic extension lof
(see 1.5), and

(20) [C: A] < hy222@+#7)-1p /D2,

Case (c): nis odd. TherG is of type?D,, ¢ is a totally complex quadratic extension lof
(see 1.5), and

(21) [T : A] < hy422@+#7)

Case (d): n = 4, G is a triality form of typeDg, ¢ is a totally real cubic extension &fsuch
that over the normal closure éfk, G is an inner form of a split group.

(22) [T : A] < hy 2220 +#7)D, /D3,
Case (a)
5.2. In this casen (> 4) is evenG is of inner type, and (5) provides the following value of
Z.
n-1

B =21 - | |4 -2)
j=1
Letting

_ @ T @)Y
AN = o D 2= 1)
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and using the bounds (13) and (19) we obtain the following:

h? 2
(23) Dy/? < a(n.d, h2) = [{4A(M))¢ - %]W“-“.

Using the Brauer-Siegel bound (16) and lower bound for tlyeiledor for totally real
field k of degreed recalled in 4.1 we obtain the following bound.
[T((1 +6)/2)¢(1 + 8)]?
(n)1+0092

The argument for the proof of the following Lemma, which vioi# used in later sections
as well, is the same as in the first paragraph of 4.2.

(24)  DYY <ay(n.d.s) = AN)} - {256(1 + 5)}5]m.

Lemma l. Lets € [0.04, 9]. For fixed values of n andl ax(n, d, §) decreases as d increases.
Furthermore, for fixed values of d aidif n > 8, then a(n + 1, d, §) < max(, ax(n, d, 6)).

We obtain by a direct computation the following upper bouanidthie value ofy(n, 2, 4)
for smalln.

n: 4 6 8
a(n,2,4)< 107 333 213

From Proposition 2 we now infer thiat= Q for all evenn > 8. But ask # Q, n = 4 or 6.

Consider first the case= 6. Ford > 2, Dﬁ/d < a(6,2,1) < 3.2. Now using Proposition
2 we conclude thatl = 2 andDyg < 11, hence,Dx = 5 or 8 Since the class number of

the corresponding fields is D/? < a(6,2,1) < 2.82 As 282 < 8, we conclude that
Dy = 5. Thenk = Q(V/5) and for this field(-1) = 1/30, Zk(-3) = 1/60, £k(-5) = 67/630,
k(=7) = 361/120 and/k(-9) = 41275%1650. Using these values, we compgeand find

that its numerator is not a power of 2, now Proposition 1 rolgsthe case = 6.

Consider nown = 4. Ford > 4, Di/d < a(4,4,1) < 5.7. Therefore,d < 4, and for
d = 4, Dk < 1056 From the list of number fields in [1] we find that the only po$sib
value isDyx = 725 and the class number of the corresponding number field hefice
D./* < a1(4,4,1) < 4.9. According to Proposition 2 no such number field exists.

Ford = 3, D;/® < a,(4,3,1) < 6. From the table of totally real cubics in [1] we find that
the class number of each of the four number fields satisihegabove bound is 1. Hence,
D.® < a1(4,3,1) < 5. SoDy can only take one of the following two values,

49, 81

Ford = 2, D/? < a(4,2,1) < 6.7; hence,Dx < 45. From the list of real quadratics
in [C] we find for real quadrati with Dy < 45, he < 2. But thenD/* < a1(4,2,2) < 5.

We conclude thaDy < 25 and therhy = 1. It follows thatD,/* < a;(4,2,1) < 4.73 We
conclude thaDy can only take one of the following values,

58,1213 17,21
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Following is thus the list of possible totally real numbeidek.

n d Dx
4 3 4981
4 2 58,121317,21L

In the following table, for each of these fields, we give théuga of /x required for the
computation ofZ forn = 4

Dk &(-1)  &(-3) &k(=5)
49 -1/21 79210 —-739363
81 -1/9 19990 -5035327
5 1/30 1/60 67/630

8 112 11/120 361252
12 1/6 23/60 1681126
13 16 29/60 334631638
17 13 41/30 579163
21 13 77/30 1797163

ArDRADMMDMDMDMDMSMSDS
NNNNMNNNDWWwa

Now computingZ we find that its numerator is not a power of 2 and hence acogtdin
Proposition 1 none of thk as above can give rise to an arithmetic fake compact hemmitia
space of typd, with G of inner type.

Case (b)
5.3. In this casen (> 4) is an even intege6 is of typean, s=2n-1,s=4,and{is a
totally real quadratic extension &f The following value ofZ is provided by (7):
n-1

A =2 -n) | | a2 -2i)

j=1
Letting

_ @) T @Y
AN = oo g 2i- 1)

and using the bounds (13) and (20), we obtain the followingnos:

(25) D/ < by(n.d. hez) = [{4AM)}¢ - h%z]aa—;z%_l ,
(26) Di/d < bz(n, d, 5) = [{[ (( "('ﬂ))l{rd)eg(gz"‘ )] A(n)} . {255(1 + 5)}%](2n -n-2-20)
(27) D:’-/Zd < 1::I-(n’ d’ Dk’ hf,Z) = [22d_1A(n)dh[’2D:(57$s]d(%*3),

(28) DY* < ty(n,d, D, Re/We, )

0(1+0) e [T((1+6)/2)(1+0)]? 4o
[2R 7w D © 1AM ]
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1/2d . n(5-2)-6 [T((1 +6)/2)¢(L + 0))? qyamies
(29) D, < t3(n,d, Dy, 8) := [256(1 + 6)D, 2 (A(M) e 1] .
To obtain the above bounds we have uBged> DE, the Brauer-Siegel bound (16) for totally

real fields, and the bound for the regulator due to Zimmesmgin 4.1.

5.4. We obtain by a direct computation the following upper boumtlfie value ob,(n, 2, 4)
for smalin.

n: 4 6 8
bo(n,2,4)< 76 3 21
From Proposition 2, and Lemma 1, where in the latter the fanetk(n, d, §) is replaced
by by(n, d, 6), we conclude thak = Q for all evenn > 8. Butk # Q, and hence < 6.

Consider nown = 6. Ford > 3, D;/® < by(6, 2, 2) < 3. Therefored = 2 andD = 5,8 are
the only possibilities. Let us take up first the case whaye= 8. As D}/* < 13(6,2,8,2) <

3.2, Proposition 2 rules out this case. Consider now the caseafily = 5, i.e.,k = Q(V5).
The following argument involving Hilbert class fields wilehused repeatedly. AB;/"' <
13(6, 2,5, 1) < 7.3. The Hilbert class field of is a totally real number field (sin@as totally
real) of degredy, over¢ (hence of degreen overQ), and its root discriminant equaly’*
which is< 7.3. On the other hand, according to PropositioMZ6) > 8.18 So we conclude
that 4, < 6 and,h, < |5/4] = 1. Where here, and in the sequel, we Ugéto denote the
integral part ofx. It follows that D} < t1(6,2,5,1) < 5.5. From [1] we see that there is
only one number field containingk = Q(+/5) with this root discriminant bound. For this
t, D¢ = 725, andyk(—5) = 2164. Now using this value d@f(—5) and the values aj (for

k = Q(V5)) given in 5.2 we compute the value &f and find that its numerator is not a
power of 2. So Proposition 1 rules aut 6 with Dy = 5.

Consider nown = 4. As D/ < by(4,4, 2) < 5.17, Proposition 2 implies tha < 3.

Ford = 3, we know from Proposition 2 thady > 49. HenceD;® < t3(4,3,49,1) < 17.
From Table IV of [Mart], M;(14) > 17. So by considering the Hilbert class field ffwe
obtainh, < [13/6] = 2. It follows that D}/® < t1(4,3,49,2) < 8.6. But according to
Proposition 2,M(7) > 1105. Hence,h; < |8/6] = 1. This in turn implies thaD}/® <
t1(4, 3,49 1) < 8.2, and thereforeD, < 304007. It is seen from table t66.001 in [1] that
there is only one totally real number fielaf degree 6 for which this bound holds. For this
¢, D, = 300125 Hence the only possibility fad = 3 is (Dk, D¢) = (49, 300125)

Let us assume now thdt= 2. For a real quadratic fiekl eitherDy = 50r 8 orDy > 12.
Consider first the quadratic fieldswith Dy > 8. SinceD}* < t3(4,2,8,0.5) < 39.2.
From Table IV of [Mart] we find thatM,(80) > 39.4. Hence, by considering the Hilbert
class field oft, we infer thath, < [79/4] = 19. Henceh,, < 16. It follows that D}/* <
t1(4,2,8,16) < 16.79. As M(14) > 17, by considering the Hilbert class field &f we
conclude thaty < |13/4] = 3. Soh;> < 2. But thenD,;’* < 11(4,2,8,2) < 13637 and
henceD, < 34584

Let us now consider real quadratic fieldwith Dy > 12. The discussion in the preceding
paragraph implies thdt;» < 2. As D;/* < t1(4,2,12,2) < 9.47. Proposition 2 gives that
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M;(8) > 1138 Hence, by considering the Hilbert class fieldfofwe conclude thah, <
L7/4] = 1. But then aD}’* < t1(4, 2,12, 1) < 8.834, soD, < 6090

From t44.001 again, we check that there are only 24 suchytatd! quartics, withD,
given below:

7251125160Q 1957,200Q 2048 2225 2304 2525 2624 2777,360Q

3981 420542254352 440Q 45254752 4913 5125 522557255744

Furthermore, with our assumption th@k > 12, we know thath, = 1, and asDi/2 <
b1(4,2,1) < 4.84, Dy can only be one of 123 17,21. SinceD, is an integral multi-
ple of Dﬁ, we check easily that foDy > 12 the only possible values foD§, D;) are
(17,4913) (13,4225) (12,2304) (12 3600) and (124752)

Consider now the casBx = 5, i.e.,k = Q(V5), and{ is a totally real number field of
degree 4 containin@(v5). We will show thatDi/ 4 < B5. Assume to the contrary that

D;/* > 55. We will first prove thatR, > 1.64. For this we shall use some results of [§3,
In the following paragraph all unexplained notation arefrg-], §3, in whichk has been
replaced by.

Recall that the image of the group of unitsfainder the logarithmic embeddidg {0} —
R* forms a latticeA, of rank 3 Let 0 < my(s1) < my(e2) < my(e3) be the successive minima
of the Euclidean abasolute value ap Consider first the case whe@ge;) = ¢. In this case,
using Remak’s estimate as stated in (3.15) of [F], we sedthikdbllowing lower bound for
the regulator of holds:

logD, — 4log 4.3
Re> (=)

Let us assume now th@l(e;) is a proper subfield of. ThenQ(e1) is a real quadratic field.

Among such fieldsQ( V5) has the smallest regulator (see the corolla§@of [Z]). Hence,

the smallest fundamental urit can be taken to béJ%E’. Thenmy(ey) = 2 Iog(“—z‘/g). So,
my(ez2) > 2 Iog(“—z‘/‘F’). From a result of Remak and Friedman, cf. (3.2) of [F], we knbat t

> 4.5,

me(e3) > 2(%1r log|Dy| — % log 5- log 2) > 2(log(55)— log(2V5)).

(Note thatA(¢/K) = (4(8 — 2))Y2 = 2 in the notation of [F], page 611.) Hence from the
bound (3.12) of [F] we obtain the following:

n m(ei) > V2 Iog(1+ \/— ) Me(e3)
1+ V5,2
2

> 2\/§(Iog(

)) (109(55) - log(2V5)) > 1.64.

This proves our assertion abd@t Now sincew, = 2, we conclude that
D;/* < t2(4,2,5,1.64/2,0.5) < 55,

contradicting the assumption tha’* > 55. Thus we have proved that’* < 55.
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We find, using Table IV of [Mart], thaiv,(800) > 55. As Di/“ < 55, by considering
Hilbert class field of¢, we conclude thak, < [799/4] = 199 Hence,h;»> < 128. Then
D;/* < t1(4,2,5,128) < 316. From Table IV of [Mart] we see thatl;(41) > 317. Hence,
again by considering the Hilbert class field ©fve conclude thabh, < [40/4] = 10, so
he2 < 8. But thenD;/* < t1(4,2,5,8) < 24. Again, from Table IV of [Mart] we see that
M;(24) > 24. By considering the Hilbert class field 6f we infer thath, < [23/4] = 5.
Hence,h;, < 4. But thenD;* < t,(4,2,5,4) < 2232, and sdD, < 248186 From the
tables t44001-t44003 of [1] we find that fBy, < 248186 h, < 3, and sd» < 2. It then
follows thatD, < [t1(4, 2,5,2)*| < 187789

Here is the list of all the possibilities:

d Dx Dy
3 49 300125

2 17 4913

2 13 4225

2 12 230436004752
2 8 <34584

2 5 <187789

ArBADMADMMDMDS

5.5. Malle has provided us the list of pairs {) satisfying the above constraints. The values
of ¢k andy required to computeZ for each of the possible pairk, ¢), with Dy > 12, have
been tabulated below.

n d Dk D¢ &(-1)  &(-3) &k(-5) Lak(=3)
4 3 49 300125 -1/21 79210 -739363 8202104
4 2 17 4913 13 41/30 579163 36628017
4 2 13 4225 16 29/60 334631638 35936
4 2 12 2304 16 23/60 1681126 5742

4 2 12 3600 16 23/60 1681126 25776
4 2 12 4752 16 23/60 1681126 68944

Using the values ofi and{k given above, we can computé. We see that its numerator
is not a power of 2 for any of the abovie ), and Proposition 1 rules out all these pairs.

Fork = Q(V2), for whichDy = 8, there are 32 number fieldscontainingk and with
D, < 34584. Fok = Q(V5), for which Dy = 5, there are 363 number fieldscontainingk
and withD, < 187789. In each of these 32363 cases, we have computéti(interested
readers my write to either of the authors to obtain the valuHse numerator ofZ in none
of the cases is a power of 2. Proposition 1 thus eliminateg (t3s

Case (c)

5.6. In Case (c)nis odd andG is of type?Dy, s = 2n— 1, s = 4, £ is a totally complex
guadratic extension of totally rekl(k # Q). Equation (7) provides the following value of
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n-1

# =21 -m) | ] 4@ - 2i).
j=1
Letting

A(n) =

(n-1)! 2j-1)V

from bounds (13) and (21), using the following bound prodithy the Brauer-Siegel Theo-
rem for a totally complex number fieltlof degree 8,

(30) heRe < W(1 + 6)0(L +6)4((20) 21D ) M24,(1 + ),

wheres > 0, hy is the class number arig, is the regulator of, andw, is the order of
the finite group of roots of unity contained i and the boundR, > 0.02w, €*1¢ due to
R. Zimmert [Z], we obtain the following bounds:

@) 17 (2n)?
L7

(31) DY < ci(n, d,heq) = [{4A(n)}dhg,4]a“22“_-“,
(32)  DYY <co(n.d.s) = [{4A(N) r(l(;r‘;)l{ gioi&)z} {508(1+ 6))1 | #nia,
(33) D;/D2 < t(n,d, Dy, hy 4) := (4‘*A(n)dhg,4)ﬁ D",
(34) DY < uy(n,d, Dy, hy.a) := [(4dA(n)dhg,4)%'l Dﬁ—”]%',
(35) DY* < up(n,d, Dy, Re/we, 6)
[ 5 g T L oz,
(36) DY < uz(n, d, Dy, 6) := [505(1 + 5D, £ (4A(M) F(l(;g)ﬁ 2;5)2}‘1]"@?12-‘”.

5.7. We obtain by a direct computation the following upper boumdch(n, 2, 3) for small
n.

n: 5 7 9
c(n,2,26)< 42 25 178
It is obvious that the conclusion of Lemma 1 holds with thection ax(n, d, §) replaced
by c2(n, d, 6). Also, for fixedd ands, ca((n, d, §) clearly decreases asncreases. Ak # Q,
using Proposition 2 we conclude thak 7.
Consider nown = 7. Ford > 2, sinceD&/OI < (7, 2,2) < 2.5, Proposition 1 implies that

d = 2 andDy = 5 is the only possibilty. But iDx = 5, D}* < u3(7,2,5,1.5) < 3.2, which
according to Proposition 2 is not possible.
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5.8. Consider now the case= 5. As ¢(5,3,1) < 4, Proposition 2 implies that < 3. If
d = 2, thenDy < 42 = 16, and henceDy = 5, 8,12 or 13 On the other hand, il = 3, then
Dk < 4° = 64, andDy = 49 is the only possibility. But theD;’® < u3(5,3,49,1) < 4.4.
According to Proposition 2 there does not exist a totally ptax¢ of degree 6 satisfying
this bound forD,. We conclude therefore thdt= 2.

Let nowd = 2. If Dy > 8, asD}* < u3(5,2,8,2) < 5.52, and according to Proposition
2, M¢(8) > 5.78, we conclude using the Hilbert class field’dhath, < |7/4] = 1.

Let us consider the cadsy = 13. Ast(5,2,13,1) < 1.1, D, = 169 However, there is no
totally complex quartic field with discriminant 16BlenceDy cannot be 13

Let us now assume th&d, = 12. Ast(5,2,12 1) < 1.7, the only possibility for¢ is
D, = 144.

SupposeDy = 8. Thenk = Q(V?2). Ast(5,2,8,1) < 1236,D, < 12- 8 < 768 From
the list of totally complex quartics in table t40.001 of [1gwee that those which contain
Q( \/E), and have discriminant in the above range, have discaimiim{256 320 512 576}.
(Note that there are two totally complex quartics with disénant 576, but only one of
them contain€( v2). Only the one containin@( V2) is of interest to us.)

Now let us assume thd@y = 5. Thenk = Q(V5). AsD}* < 115(5,2,5,0.7) < 124,
Mc(36) > 125 (Table IV of [Mart]), by considering the Hilbert class fiedl¢, we infer that
he < |35/4] = 8. But then asD;’* < 1(5,2,5,8) < 8.5, andM(16) > 8.7 (Table IV of
[Mart]), by again considering the Hilbert class fieldéfve conclude that, < [15/4] = 3.

It follows thath.4 < 2 and henceP}* < 13(5,2,5,2) < 7.85. ThereforeD, < 3797.
Moreover,D, is a multiple ofD2 = 25, soD, < 3775. According to the table in [1], The
discriminant of the totally complex quartic fieldswith D, < 3775, and which contain
Q(V5), is one of the following:

125225400 102512251525 160Q 2725 3025 3625 3725

The class number afwith D, = 3725 is 1 according to [Mart]. Bu(5,2,5,1) < 130 and
henceD, < 52 - 129 < 3225 Hence? with D, = 3725 can be excluded.

5.9. Among the pairs ofD, D,) obtained above, only some of them can be discriminants of
number fieldk and¢ such that is a totally complex quadratic extensionkofWe eliminate

the rest. In conclusion, here are all the possibilities ise€Cg):n = 5,d = 2, £ is a totally
complex quadratic extension of a real quadratic number kiedehd

Dk D¢

12 144

8 256576

5 125225400 102512251525 160Q 2725 3025 3625

o1 01015
NNNQ

Using the values afx andZyk given in the following table for the pair&(¢) listed above,
we computedZ. Its numerator for none of the pairk, ¢) turned out to be a power of 2.
So by Proposition 1, Case (c) does not give rise to any ariilorfake compact hermitian
symmetric spaces.
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Dk Dr  &(-1)  &(-3) &k(-5) &(=7) Lok(=4)
12 144 16 23/60 1681126 257543120 53

8 256 112 11/120 361252 24611240 2852
8 576 112 11/120 3671252 24611240 159403.

Fork = Q(V5), &(-1) = 1/30, &(-3) = 1/60, ¢&(-5) = 67/630Q ¢(~7) = 361/120,
and

D, : 125 225 400 1025 1225
Lok(=4) @ 117225 19843 8805 608320 1355904

D, : 1525 1600 2725 3025 3625
Lox(—4) © 3628740 4505394 49421124 872059200 178910784

Case (d)

5.10. We shall finally consider triality forms of typP4. So assume now th& is a triality
form over a totally real number fiekl# Q. For such &, s = 7, s = 4, dimG = 28, and(
is a totally real cubic extension &fsuch that over the normal closure &k, G is an inner
form of a split group.

The exponents of the Weyl group Gfare 1, 3, 3, and 5 (3 has multiplicity 2). The value
of Z in this case, provided by equation (8), is
Z# = 2= 1)ak(~3)k(-5)!

Letting A = (27)%6/4320 and using bounds (13), (16) and (22), and Zimmert’s flowe
bound for the regulator, we conclude that

1/14d
(37) Dy < du(d. hy) = [(4A) 2| "
@ +orE&)Pa
1/d . 2
(38) D/ < da(d, 6) = [(505(1 + 6))(A PRETRETID )7,
_13
(39) D3 < 31(d, Dk, he2) = (4A)?D;, ? h2) ™,

1/ad _ 5, (L(L+ ()
(40) D*! < 32(d, Dy, 8) = [506(1 + 5)D, % (A 75,369

Note that for a fixed value af > 0.02, all the expressions on the right hand side of the
above bounds are decreasinglirBy a direct computation we find that/? < dx(4, 1.6) <
5.03. Using Proposition 2 we conclude from this tlibk 4.

Consider nowmd = 3. As the smallest discriminant of a totally real cubic is, 4&d
D;® < 32(3,49,1) < 10. ButM(9) > 118 (see Table IV in [Mart]). Hencd cannot be 3.

Consider nowd = 2. As the smallest discriminant of a totally real quadraticdfie 5
andD,’® < 35(2,5,0.7) < 22.2. But M;(21) > 22.3 (Table IV in [Mart]). So by considering

d 2
) ] 3d(4-0)
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the Hilbert class field of, we conclude that, < |20/6] = 3, and hence;» < 2. But then
D}/® < 31(2,5,2) < 10.4. According to Proposition 2V (8) > 1138, so considering again
the Hilbert class field of, we infer thath, < [7/6] = 1. Now sinceD;’® < 31(2,5,1) <
9.896, it follows thatD, < [9.896°| = 939200

Supposey > 8, then D%/G < 31(2,8,1) < 8.1, which is smaller than the lower bound for
M;(6) given by Proposition 2. Hend®y can only be 5.

For Dy = 5, i.e., k = Q(V5), we find from table t66.001 of [1] that there are 11 totally
real sextics with discriminant bounded as above.forbe an extension of degree three of
k, it is necessary thdd,/ DE is an integer. Going through the list of the 11 sextics, we are
left with four possibilities forD,, these are 30012885125722000 and 820125Among
these four sextics, only the one willy = 300125 contain®(V5) as a subfield. Thi§is
given byx8 — x> — 7x* + 2x3 + 7x% — 2x — 1. The values ofy(-1), £gk(-3), Z(-5) andZ
are given below.

&(-1)  &(-5) Lak(=3) K
1/30 67/630 129593243 542671705883075

As the numerator ofZ is not a power of 2, from Proposition 1 we conclude that aréhim
fake compact hermitian symmetric spaces of tifaecannot arise from triality forms.

5.11. In conclusion, there does not exist an arithmetic fake camnparmitian symmetric
space of typd,, n > 4.

6. G of type?Eg

6.1. In this sectionG is of type?Eg. Its dimension is 78 and the complex dimension of the
symmetric space o¥ = ngl G(ky,) is 16r. The exponents of the Weyl group Gf are
1,4,5 7,8and 115 = 26, ands = 3. Let.7 be as in 2.10. The bound (13) in the present
case is

4151718111!

T )'3"7 <[r: Al/3.

(41) (OkD)™¥(
6.2. The centeC of G is k-isomorphic to the kernel of the norm méal : Ry k(uz) — us.

As this map is onto, the Galois cohomology grodp(k, C) is isomorphic to the kernel
of the homomorphismf></€X3 — k*/k<% induced by the norm map. We shall denote this
kernel by ¢%/0<%),.

By Dirichlet’s unit theoremUy = {+1} x Z%1, andU, = u(¢) x Z91, whereu(¢) is
the finite cyclic group of roots of unity id. Hence,U,/U = (2/32)%, andU /U3 =
u(€)s x (Z/3z2)%1, wherep(¢)s is the group of cube-roots of unity ii Now we observe
thatNgx(Ue) > Nes(Ui) = UZ, which implies that the homomorphisty /U3 — Uy /U3,
induced by the norm map, is onto. Therefore, the order of #rad @Jg/Ug’). of this
homomorphism equalg#¢)s.
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The short exact sequence (4) in the proof of Proposition 6f J2P] gives us the follow-
ing exact sequence:

1— (U/UD). = (L3/6%). » (2 0 73 7%,

where ¢3/0<3), = (£3/°3) n (€¢/0<%)., 2 is the group of all fractional principal ideals
of ¢, and.# the group of all fractional ideals (we use multiplicativetatgn for the group
operation in both# and £?). Since the order of the last group of the above exact seguenc
is h 3, see (5) in the proof of Proposition 0.12 of [BP], we concltiokst

#(la/0%)e < Hu(0)3 - 3.

Now we note that the order of the first term of the short exagtieece of Proposition
2.9 of [BP], forG’ = G andS = V., is 3 /#u({)3.

Using the above observations, together with Propositira@d Lemma 5.4 of [BP], and
a close look at the arguments in 5.3 and 5.5 of [BP]So£ V., andG as above, we can
derive the following upper bound:

(42) [ : A] < hg 337,
This, together with (41) leads to the following bound:
13 (2n)*  \d
43) O < (zm gD ™
6.3. Let
~ (271.)42
41517181111

From bound (42), using (30), we obtain
S(1+ (L +6)*DM27, (1 + 6)

DD,)! < h,Ad < A
(OkD)™ < e (Re/wo) @) 3E)

Hence,

13-4 a0(L+O)I(L+ 6)92¢(1 + 5)
¢ (Re/we)(2r)d(3+9)

As DZ < Dy, and{;(1 + 6) < £(1 + 6)*, we conclude that

sss g0+ +06)d(1L+6)d
P AT R W e

13
(44) DD

Therefore,

r(1+6)(1+ 6)2} {5(1 +90) }1/d]1/(3&5)
(2r)1+o Re/we '

Using the lower boundR, > 0.02w, %19 due to R.Zimmert [Z], we obtain from this the

following:

(45) Dy < [(A

[(1+6)¢(1+ 6)2

1/(38-6)
(27)ToehT :

(46) DY < f(d.s) = [(A }- {506(1 + 6)}/9
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From bound (43) we also obtain,

B 1/13
(47) D¢/Df < [A‘D |

Furthermore, using (44) and Zimmert's bouRgd> 0.02w,e*19, we get the following:

[(1+6){(1+6)*  505(1+9) }1/d]2d/(25_5)

(48) D[/DE < p(d, Dy, 6) = [{A (27.[)1+6e0.l Di’s_‘s

6.4. For a fixeds > 0.02, f(d,s) clearly decreases abincreases. Fod > 2, Di/d <
f(d,2) < f(2,2) < 2.3. We conclude now from Proposition 2 thait< 2, and ford = 2,
Dk < 5. ThenDy = 5. It follows from bound (48) thaD,/D2 < »(2,5,2) < 2. Hence,
D,/D?2 = 1 andD, = 25, which contradicts the bound given by Proposition 2. We oaufel
thatd =1, i.e.,k=Q.

It is known, and follows, for example, from Proposition 7fPR], that aQ-groupG of
type 2Eg, which at the unique real place @fis the outer form of rank 2 (this is the form

2EZS which gives rise to a hermitian symmetric space), is isatroperQ. This contradicts

the fact thaiG is anisotropic ovef) (1.5), and hence we conclude that groups of t5fgg
do not give rise to arithmetic fake compact hermitian syniimspaces.

7. G of type Er

7.1. In this sectiorG is assumed to be of tyde;. The dimension o6 is 133, the exponents
of its Weyl group are 1, 5, 7, 9, 11, 13 and 17; and 2. The dimension of the symmetric
spaceX of 4 = Hﬁzl G(ky,) is 27r. Let 7 be as in 2.10. The bound (13) in this case gives
us the following:

[F:A].( (27)70 )d

1332
(49) D < 2r+#7  \51719111113!117!

The centerC of G is k-isomorphic tou,. The Galois cohomology groud(k, C) is
isomorphic tok*/k*?. The order of the first term of the short exact sequence ofd3itipn
2.9 of [BP], forG’ = G andS = V., is 271. From the proof of Proposition 0.12 of
[BP], we easily conclude thatkg/k<? < he229. We can adapt the argument used to prove
Proposition 5.1 in [BP], and the argument in 5.5, of [BP], $o& V., andG’ = G, to derive
the following bound:

(50) [ A] < hy o201
Combining (49) and (50) we obtain the following bound:
1332 _ od-1 (2n)"° d
(1) D" <2 (5!7!9!11!13!17!) iz
7.2. Let
(271.)70

~ BI719111113117!
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From (51) we obtain the following:

2/133
D/ < [2B(h2/2)4| "

Using the Brauer-Siegel bound (16) for totally real numbeld8, and the obvious bound
&1+ 6) < (1 + 6)Y, we obtain
I'((1+0)/2)¢(1+0), 6(1+6), 1/q72/(132-0)

7(1+6)/2 g Ry ) ] :

(52) D/ <[B

Now using the lower boungy > 0.04€°4% due to R. Zimmert [Z] again, we get

T((1+6)/2)C(L + 6) 1q2/(132-0)
7(1+0)/2g0.46 ] :

(53) Dy < ¢(d.6) :=[(B b {256(1 + 6)}

7.3. For a fixeds > 0.04, ¢(d, 6) clearly decreases alincreases. By a direct computation
we see thap(2,4) < 2, and hence for all totally real number fidabf degreed > 2,

D/ < ¢(d, 4) < ¢(2,4) < 2.

From this bound and Proposition 2 we conclude thaan only be 1, i.ek = Q. But then

r = 1 and the complex dimension of the associated symmetriespms27. Then the Euler-
Poincaré characteristic of any quotientby a cocompact torsion-free discrete subgroup
of ¢ is negative (1.3), and hence it cannot be a fake compact tiemsymmetric space.
Another way to eliminate this case is to observe that an ateglsimpleQ-group of type

E; isisotropic if it is isotropic oveR (this result follows, for example, from Proposition 7.1
of [PR]).

8. G of type 2A, with n odd

8.1. We shall assume from now on tHatis an absolutely simple simply connectedroup
of type 2A, with n > 1 odd. We retain the notation introduced$ifil, 2. In particular{ is
the totally complex quadratic extension lobver whichG is an inner formd = [k : Q],
s=n+1;T, A, forv € Vs, the parahoric subgroug®, of G(k,) are as in 2.1, and’ is
as in 2.10. We recall that for every nonarchimedean .7, Zg, is trivial. For allv € .7,
#Ze,/(n+1) ande(Py) > €(Py) > n+1. We also recall from 2.1 tha(¥//T') is a submultiple
of 1/(n+ 1), hence,f + 1) u(¥4/T) < 1.

The centelC of G is the kernel of the norm mald,k : Ryk(un+1) — uns1. Therefore,
we get the following exact sequence:

(+) 1 — g1 (K)/Nep(uns1(6) = HY(k, C) — (/™). — 1,

where ¢%/£<"1), is the kernel of the homomorphis#i/ <™ — k*/k<™! induced by the
norm mapN. : € — k*. By Dirichlet’s unit theorem{Jy = {+1} x Z%1andU, = u(f) x
2971, and hencel /U = (+1}x(Z/(n+1)Z) L andU, /U = un, 1 (O (Z/(n+1)Z)%2
SinceNgk(Ue) > Nei(Uy) = Ulf, the image of the homomorphistmg/U;‘Jf1 — Uk/UE+1
induced by the norm mal§, containsU2/UM*! (= (2Z/(n+1)z)%1), and hence the kernel
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(U,/UM1), of this homomorphism is of order at mosti#1(¢) - 29-%. The short exact
sequence (4) in the proof of Proposition 0.12 of [BP] givethasfollowing exact sequence:

1 (Ug/UMY, = (na/C™ e = (2 0 ™ 2™,

wherefy, 1 is the subgroup of* consisting of allx such that for every normalized nonar-
chimedean valuationof £, v(X) € (N+ 1)Z, (tns1/C™ e = (losr /™ 0 (05 /0<™Y),, 2

is the group of all fractional principal ideals 6f and.# the group of all fractional ideals
(we use multiplicative notation for the group operation @ihb.7 and 7). Since the order
of the last group of the above exact sequende js1, see (5) in the proof of Proposition
0.12 of [BP], we conclude that &{.1 /™), < #une1(€) - 29 hypas.

Let c be the order of the kernel of the norm mipy : un+1(€) = pns1(K) = {x1}. Then
the order of the first term o] is 2c/#un,1(¢), whereas the order of the first term of the
short exact sequence of Proposition 2.9 of [BP],@6= G andS = V., is (n+1)" /c. Now
from Lemma 5.4 of [BP] and the arguments given in 5.3 and 5tbaifpaper we obtain the
following upper bound (note that we need to replackiti 5.3 and 5.5 of [BP] with h+ 1”
since the grous in this and the next section is of typé):

(54) I[: A] < hgpe129(n+ 1) %7

For the groupG under consideration here, dign= n? + 2n, the exponentn; = j and
s = (n-1)(n+ 2)/2, so the volume formula (3) gives us the following:

(55) u(@/A) = DI (D, /DRy H ) [P,

veVi

Forve 7, ase(P,) > (n+ 1), and moreover for all € V¢, &P,) > 1, using (54) and (55)
we find that

1
Zd hf, n+1 ’

r 3(n?+2n) 2y 1 (n-1)(n 2) d
(56) 1> (n+1)u(@/T)> D} (D;/D2)a(-Di+ ]_[ (zﬂ)1+1)
As D§|Dg, from (56) we obtain the following bound fd@y:

2 i+ 2
(57) DY < fi(n,d, hynia) = ]‘[( )
j=1

Sinces (1 + 6) < £(1 + 6)%, for 6 > 0, we obtain the following bound from (57) and (30)

(58) DJ/? < fan,d,Re/w, 8)

1+ 6)(1+6)% - 1—[ (27r)1+1 5(1 +0) 1/d]m
(2)t+o j! (Rf/Wt’) '

Using the lower boundR, > 0.02w, eo~1d due to Zimmert, we obtain the following from
(30)

e

1 1 0.02 ,(2n)t*0eP1d 1
> >

59 T 7 Z .
9) Aem - e~ 8@+ 0)\ T(1+0) ) DE2(1+4)
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SinceD, > DZ, and (1 + ) < {(1 + 6)*, we get the following for alls in the interval
[0.02 6.5].

 [(oF A+ 0)¢(1+0)* 7 (27r)1+1
(60) D" < fa(n,d.s) :=[(2 e n (505(1 + 8)} 1/d]( .

Now the following three bounds for the relative dlscrlmméh;/Dﬁ are obtained from
(56), (59) and (30).

J 4
(61)  D¢/DE < pa(n.d. Dic. hrnea) = [P - 2]_[ (2”) JID, (" 2/2|TDED
(62)  D¢/Di < pa(n,d, Dy, Re/We, )
- S(1+9) 20(1+6)¢(L +6)? 1—[ (27r_)i+1}d]m_
(RZ/WK)D(kn2+2n_26_2)/2 (27.[)1+6 i1 j!

(63) D¢/DZ < p3(n,d,Dy,0)

[ 505(1+6)  20(L+6){(L+0)° " (Zn)i”}d]m

D(kn2+2n—26—2)/2 (2r)1+o g1 ] j!
We also get the following bound f@, from (56).
h 21 I din- 2}{n+ )
(64) D%/Zd < ql(n’ d, Dk’ hé’,n+1) (f]_:_];)];z n ( ) d] : ? )

which in turn provides the following bound using (30) and)(59
(65 D;* < ua(n.d, Dy Re/W.0)
. S(1+96) A(L+6)L+6)2 v (2n)i*t
= [(R[/W[)D(kn+2)/2 ' (2r)1+0 ) L T

2
}d] d(n2+n—25—4)

We now state the following simple lemma.

Lemma 2. Let§ € [0.026.5]. For fixed values of n and, f3(n,d,5) decreases as d
increases. Furthermore, for fixed values of d andf n > 7, then &(n + 1,d,6) <
max(1 f3(n,d, ?)).

8.2. Let us begin determination of the totally real number fleldet f3(n, d, 6) be as in (60).
By a direct computation we obtain the following upper bouadthe value offs(n, 2, 3) for
smallin.

n: 13 11
f3(n,2,3)< 21 24
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Hence fom > 13 andd > 2, f3(n,d, 3) < f3(13,2, 3) < 2.1, which in view of Proposition 2
implies thatk = Q.

8.3. Now we will determine the degreesof possiblek for n < 11 using (60) We get the
following table by evaluatingf3(n, d, §), with n given in the first columnd given in the
second column, anélgiven in the third column

n d 6§ f3nd0d)<
11 3 2 24

9 3 19 29

7 3 16 363

5 4 13 512

3 7 1 10

Taking into account the upper bound in the last column of th@va table, Proposition 2
implies the following bound fod for each odd integem between 3 and 11

11

n: 9 7 5
dg 2 2 2 3

3
6

8.4. We will now narrow down the possibilities fat further. We begin with larger values
of n.

Forn =119 and 7, we know thad < 2.

Forn=11andd = 2, D,/* < f3(11 2, 2) < 2.5, soDk = 5. ThenD,/D < |p3(11,2,5,2)]
= 1. HenceD, = 25, but there is no such This implies that ifn = 11, thenk = Q.

Forn = 9 andd = 2, D}/* < f3(9,2,2)) < 3. Hence,Dy = 5 or 8 As [p3(9,2,5,2)] = 3
and|p3(9,2,8,1.6)] = 1. SoD, < 75, but there is n of degree 4 for which this bound
holds, and we conclude thatrf= 9, then agairk = Q.

8.5. We shall now consider the case= 7 andd = 2. AsD.? < f3(7,2,1) < 338,

Dk = 5,8,12 or 13. Computations give thabs(7,2,5,1.3)] = 11 [p3(7,2,8,1.3)] =

3, 1p3(7,2,121.3)] = 1 and|p3(7,2,13 1)] = 1 HenceD, is bounded from above by
max(% - 11,82 - 3,122, 13%). From the list of number fields given in [1], we conclude that
the class number of all these totally complex quaftis 1. Hence the pairk(¢) belong to
the list of [PY1], 8.2 (see also [PY1], 7.10). Also, the boudndthe relative discriminant
D;/DE can be improved top1(7,2,5,1)] = 8, and|p1(7,2,8,1)] = 2 in the first two cases.
Now checking against the list of [PY1], 8.2, we conclude tthe following are the only
possible pairsk £).

C1, C11.

We eliminate these pairs by computigg and then using Proposition 1. The valuegof
and{g required for the computation of are given below.

k0 &(-1) &k(=2) &(=3) Lk(-4) &(=5)  Lak(-6) &(=7)
C1 1/30 4/5 1/60 117225 67/630 846765 361/120
C11 1/6 1/9 23/60 5/3 1681126 4273 257543120
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8.6. Consider nown = 5. We know thaid < 3. Assume, if possible, that = 3. AsD;> <
f3(5,3,1) < 5.3, we see from the table of totally real cubics given in [C}tDais either 49

or 81. On the other han@,/D2 < |p3(5,3,49,1)| = 16 andD,/D2 < |p3(5,3,8L 1)| = 4

for the two cases respectively. o < max(4¥ - 16,812 - 4) = 4% - 16. The class number
of all totally complex sextic fieldg with D, < 49 - 16 is 1. Now the bound for the relative
discriminanth/Dﬁ can be improved top;(5,3,49,1)] = 6, and|p1(5,3,81,1)] = 1in the
two cases. Among the pairk, ¢) listed in [PY1], 8.2, none satisfy these conditions. Hence
d<3.

Assume nowd = 2. As Di/z < f3(5,2,1) < 5.54, Dy < 30. From Friedman [F] we
know thatR,/w, > 1/8 except wherD, = 117,125 and 144. Therefore, apart from the
three exceptional cases, we conclude ﬁDa}tDﬁ < |p2(5,2,5,1/8,1)] = 82 Since the
discriminant in each of the three exceptional cases is smiélan 82 52 we conclude that
the boundDg/Dﬁ < 82 always holds. S®, < 307 - 82 = 73800 From the list in [1] of
totally complex quarticg with D, < 7380Q we see thah, < 15 and hencé,g < 12
ThenD,/? < f1(5,2,12) < 5.1, and soDx < 24. We know that eitheDy = 5 or Dy > 8.

In the latter case, a91(5,2,8,12)] = 17. ThusD,; < max(5 - 82 24% - 17) = 9792 By
checking the list of totally complex quartic number fields[1h again, we conclude that
he < 5 and hencéize < 4. ThenD,'? < f1(5,2,4) < 4.87, soDi < 21 We now compute
Lp1(5, 2, Dk, 4)] for 5 < Dg < 21 to get the following bound faD,:

Dy : 5 8 12 13 17 21
[p1(5,2,Dy,4)]: 48 15 5 4 2 1
D, < 1200 960 720 676 578 441

The list of number fields satisfying the above constraint p&wvided by Malle using the
tables in [1]. It turns out that all the number fields invohaa@ listed in the tables in [PY1],
8.2. Moreover, all have class numbeitifollows that D, is bounded bypi(5, 2, Dy, 1)].

Dy : 5 8 12 13 17 21
[p1(52,Dy,1)]: 40 12 4 3 1 1
D, < 1000 768 576 507 289 441

From the table in [PY1], 8.2, we conclude that the followimg the ony possibilities for the
pair (K, £).
C1, C2, C3, Cs, Cog, C11, C17.

We eliminate each of the above pairs by computifigusing the following values afx and
Lk, and then use Proposition 1.

kO &(-1) Lk(=2) &(=3) do(-4)  &(-5)
C1 1/30 4/5 1/60 117225 67/630
C> 1/30 32/9 1/60 19843 67/630
C3 1/30 15 160 8805 67630
Cs 1/12 3/2 11/120 2852 361/252
Co 1/12 929 11/120 159403 361/252
C11 1/6 1/9 23/60 5/3 1681126
C17 1/3 32/63 77/30 64/3 1797163
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8.7. The casan = 3 requires more detailed considerations.

e Again we are considering totally re&lwith d > 1 in this section. We know from
8.3 thatd < 6. Consider firsd = 6. Then Dy > 300125 (se€§3). Hence,Dy/** <
02(3,6,3001251/8,1) < 12 According to Table IV of [Mart],M¢(32) > 12, so consid-
ering the Hilbert class field of which is an extension of degrde of ¢, we infer that
he < [31/12] = 2. Hencehy .1 < 2. Now applying bound (64) we obtaid,/® < D}/** <
q1(3,6,3001252) < 7, which contradicts Proposition 2.

o Consider nowd = 5. In this caseéDy > 14641 Hence D}/ '% < 12(3,5,146411/8,1) < 14,
According to Table IV of [Mart],M¢(52) > 14.1. Using agaln the Hilbert class field éfve
conclude thah, < |51/10] = 5, and hencéy 4 < 4. ThenD}/'® < 1(3,5,146414) < 7.74
SoD, < 7.7419 < 7.72x 10°. On the other hand, Schehrazad Selmane [Sel] has shown that
the totally complex number field of degree 10, containingtallp real quintic field, with
smallest absolute discriminant is the cyclotomic fig@11) generated by a primitive 11-th
root £11 of unity. This field has absolute discriminant®11Since 12 > 7.72 x 1%, we
conclude thad # 5.

o Consider novd = 4. In this caseDy > 725 HenceD;'® < (3,4, 725 1/8,0.86) < 17.43
According to Table IV of [Mart],Mc(140) > 17.49, so considering the Hilbert class field
of ¢ we find thath, < |139/8] = 17. Soh;4 < 16 and therD*® < q1(3,4,72516) < 9.7.
According to Table IV of [Mart],M(20) > 9.8 which by considering the Hilbert class field
of ¢ implies thath, < [19/8] = 2 andh.4 < 2. It follows thatD}’® < q1(3,4, 725 2) < 8.7.
According to Table IV of [Mart],Mc(16) > 8.7. Hence, again by considering the Hilbert
class field oft implies thath, < |15/8] = 1. But thenDl/8 < q1(3,4,7251) < 8386 So

< 18.386°) < 2.45x 10'. Also, D/* < f1(3,4,1) < 7.146 Hence,Dy < 2607 We
also know thaD,/D2 < | p1(3, 4,725 1)J = 46. Any such pair K, ¢) lies in the list of pairs
tabulated in [PY1], 8.2. We find that the possible pairs@ie— C37 in the notation used in
[PY1], 8.2. Again, we eliminate each of the pairs by compyiti# using the following zeta
values and applying Proposition 1.

k. €) &(-1) Z(=2)  (=3)
Cas 4/15 12845 2527215
Css 2/3 12 37933
Csg 5/6 411 8743960
Cs7 1 46/3  2201Y10.

e Consider nowd = 3. The three smallest absolute discrimants of totally realcctiblds
are 4981 and 148Let us consider first the totally real cubic fieldsvith Dy > 148 Note
that D}/® < 42(3,3,148 1/8,0.7) < 181, sinceR/w; > 1/8 except for the six sextics
whose discriminants are listed in [PY1], 7.3. The root dimanant of these six sextics
clearly satisfy the above bound. We see from Table IV in [Vidrat M(180) > 18.1.
Hence, considering the Hilbert class field&fwe conclude thah, < [179/6] = 29 and
soh.4 < 16. ThenD}’® < qu1(3, 3,148 16) < 10. Again from Table IV of [Mart] we find
that Mc(22) > 10.25, and as before considering the Hilbert class field,offe conclude
thath, < |21/6] = 3. Sohy4 < 2. ThenD}'® < 41(3, 3,148 2) < 8.7. FurthermoreP,> <
f1(3,3,2) < 7.37. HenceD, < |8.7%] = 433626 and 14& Dy < | 7.37%] = 400. There are
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only three pair of number field&,(¢) satisfying the above bounds ahd= 1 for each of the
¢ occurring in these three pairs from which we conclude Brat < q1(3, 3,148 1) < 8.31
Hence D, < 329311 But there are no pairk(¢) of totally real cubidk, and totally complex
guadratic extensiofiof k with 148 < Dy < 400 andD, < 329311.

We will consider now the unique totally real cubic fietg with Dy, = 81 Note that
ki = Q[X]/(x3 — 3x - 1), the regulatoRy, > 0.849 according to [C]. Now by listingh such
that the valuep(m) of the Euler functionp is a divisor of 6, we see that unleéss Q({1g),
wy = 2, 4 or 6 (note thaQ(¢14) does not contaiky). As ¢ is a CM field which is a quadratic
extension ok, R, = 22Rkl/Q, whereQ = 1 or 2 (cf. [W]), hence unlessis Q({1g), Re/wWy >
2% 0.849/6 = 0.283. So either = Q({15) or D;° < 42(3,3,81,0.283 0.66) < 19.4. From
Table IV of [Mart] we find thatM¢(340) > 19.4. Hence, by considering the Hilbert class
field of ¢, we successively get the following improved boundshgy: h, < [339/6] = 56,
soh;4 < 32 Therefore D}/® < 41(3,3,81,32) < 116. Again in Table IV of [Mart] we see
that Mc(30) > 116. Soh, < |29/6] = 4, andD,® < q1(3,3,81 4) < 10.1. But according
to Table IV of [Mart], Mc(22) > 10.2. Hence h, < [21/6] = 3, andh, 4 < 2. It follows that
Dg/Dﬁ1 < 1p1(3,3,81 2)] = 120 from which we conclude thad, < 120- 81% = 787320
Malle provided us a complete list of totally complex quatratensiong of the abovek;
with D, < 787320. This list consists of three fields whose absoluteridignant, defining
monic polynomial and the value gfy, (—2) are given below.

D, 4 évflkl(_z)
19683 xf-x3+1 -104/27
419904 X8 +6x* +9x% + 1 -7826

465831 X0 —3x° +9x* — 133 + 15x2 - 9x + 3  -10944

The first of these fields i9(£1g). We shall denote the three paikg,(¢) with ¢ from this list,
andk; = Q[X]/(x® - 3x— 1), &, & and& respectively.

Let us now consider the unique totally real cubic fikjdvith Dy, = 49. Note thak, =
Q[X]/(x@ — x2 — 2x + 1), and from [C] we find that its regulator is larger thaBZ5 Hence,
as forky, we see that except for the cyclotomic fiéld/,4) which has class number 1 and
discriminant ? = 16807,w; = 2, 4 or 6, and for the noncyclotomicR,/w, < 2x0.525/6 =
0.175 ThereforeD,/ DEZ < [p2(3,3,49,0.175 0.64)] = 62697 and hencd®, < 62697.4%.
Malle provided the authors a list of totally complex quaitraixtensions of k, for which
this bound holds. For everyin this list, h, < 30, and hencey 4 < 16. Therefore,D;° <
01(3,3,49,16) < 1202 From Table IV in [Mart] we see thd¥(34) > 12.4. We conclude,
as before, by considering the Hilbert class field ,ahath, < [33/6] = 5, soh;4 < 4. Then
D}/® < a1(3,3,49,4) < 10.96. HenceD, < 1.74x 10P. From the list provided by Malle,
we see that there are eleven candidates faach with class numbdy, < 2. Therefore,
D, < [11(3, 3,49 2)| x 49 = 1306144 For all totally complex quadratic extensidrof k,
satisfying this boundh, = 1 and hence we conclude th@ < [p1(3,3,49,1)] x 4% =
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991613 From the list provided by Malle, we see that the possitdee:

D, ¢ Lok (—2)
16807 X - x®+x*—x®+x2—x+1 -64/7
64827 X8 —x®+3x* +5x%2 - 2x+1 —-2408/9
153664 X8 +5x* +6x2 + 1 —-2306
400967 X8 —2x° +5x* — 7x3 + 10x° — 8x + 8 -25536
573839 x6 —x® +4x* - 3x3 +8x2 —4x + 8 -62208

602651 X8 — 3x° + 10x* — 15%3 + 21x? — 14x+ 7 —70392
909979 X8 — 2 + 7x* — 123 + 21x%2 — 15x + 13 —196216

We shall denote the seven paits, ) with ko = Q[X]/(x® — X2 — 2x + 1), and¢ one of
the fields from the above list, b§j, 4 < j < 10. Note that three pairs belonging to the
above two lists coincide with pairs of number fields in [PY§8; &2 = C31, 65 = C32 and

61 = Css.

Using the value of,k(-2) given in the last column of the above two tables and theegalu
of Zk(-1) andzi(—3) given below fok = k; andkp, we computeZ = 292, (~ 1)) rk(=2)2k(=3)
for each of the ten pairsj, j < 10. We find that the numerator of none of them is a power
of 2. Proposition 1 then implies thdtcannot be 3 either.

Z;kl(_l) = _1/9a Z;kl(_?’) = 199/901 gkz(_l) = _1/211 Z;kz(_?’) = 79/210-
The following is a summary of what we have proved above.

Proposition 3. (i) If n > 5,thend=1, i.e., k= Q.
(i) If n = 3, thend< 2

9. G of type2A,withn> 1odd and k = Q

9.1. We shall assume in the sequel that Q which according to Proposition 3 is the case
if n > 5. Thenr = 1 and¢ = Q(+-a) for some square-free positive integerBy setting
d = 1 andDy = 1 in bounds (61) and (62) we obtain

D[ < Kl(na h[,l’]+1) = Lpl(n5 la 15 hf,n+l)J-
Dr < k2(n,Re/We,0) := [p2(n, 1,1, Re/We, 6) .

9.2. We easily see that for fixedl(> 0.02) andn, «,» decreases dg,/w, increases, and for
fixeds > (0.02) andR,/w, k» decreases asincreases provided > 7. Since the regulator
of a complex quadratic field is, andw, = 2 for any complex quadratic fielé different
from Q(V-3) andQ(V-1), R,/w, = 1/2 for all complex quadrati¢ with D, > 4. Now for
n> 17, as«y(n, 1/8,1.8) < «»(17,1/8,1.8) = 2, and there is no complex quadratic number
field with discriminant< 2, we conclude that & 15. Forn = 15, unlesst = Q( \/—_3), we
know thatD; < x»(15,1/4,1.6) = 3. Hence, ifn = 15, ¢ = Q(V-3). For odd integers
between 3 and 13inlesst = Q( V-3) or Q( V—-1), with D, = 3 and 4 respectively, we can
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use the boun®, < k2(n, 1/2,6), with ¢ as indicated below, to obtain:

n: 13 11 9 7 5 3
0 13 1 09 07 05 026
D, < 4 6 10 21 68 2874

9.3. We will now improve the bound for the discriminabt in casen = 3. From the Table
t20.001-t20.002 of [1] we see that the class number of evengptex quadratic number
field ¢ with D, < 2874 is< 76, and henceli,4 < 64. So we obtain the bound, <
k1(3,64) = 1926 We can improve this bound further as follows. From TableG0.we
see that, < 52 and hencén, 4 < 32, for all complex quadrati€ with D, < 1926. Now we
observe that, fon = 3 andk = Q, combining equations (3), (4), and using the bounds (54),
n+D'u@/T) < 1,€¢Py) = 1forallve Vs, ande(Py) > n+ 1forallve 7 (2.10), we
get the following upper bound fdp,:

@y 1 :
(66) De < [ 21_[ i mensena|
@ 1 i
(67) < lhea- {21‘[ 0 gQ(2)1/24Q(4)] | =1%a(he.a)

where we have used the fact trg@t(z)l/ZgaQ(s) > 1 (see Lemma 1 in [PY2]). Hence we
conclude thaD, <'x1(32) < 1363

9.4. We can improve the bounds f@, for 15 > n > 5 as follows. From the table of
complex quadratics in [C], we know thht < 5 for D, < 68. Hencehg 1 <5forn> 5.
We now compute the values gf(n, j)for5<n<15and I< j <

Kl(n’ l) Kl(n’ 2) Kl(n’ 3) Kl(n’ 4) Kl(n’ 5)

n=>5 a7 52 55 57 59
n=7 18 19 20 20 20
n=9 10 10 10 10 10
n=11 6 6 6 6 6
n=13 4 4 4 4 4

Comparing the above table with the table of complex quadiratmber fields (cf. [C]) in
terms of discriminants and class number, we obtain thevfatig possibilities forD, anda

(recall thatt = Q(V-a)):

n D, a

15 3 3

13 34 31

11 34 31

9 34,78 3172

7 3,4,7,81115 31,7,2,11,15

5 34,7,81115192023 31,7,2,11 15 195,23
24,31, 35,39,40,43 631, 35,39 10,43

47,51,52,55,56 47,51,13 55,14
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In the above we have used the fact thatfer Q(+v/-a) , wherea is a square-free positive
integer,D, = aif a= 3 (mod 4), andD, = 4a otherwise.

9.5. To prove Theorem 2 (stated in the Introduction) we comp#dten each of the cases
occurring in the second table of 9.4 using the following eslof := {g and{yq.

j: -1 -3 -5 -7 -9 -11 -13 -15
Z(j): -1/12 /120 -1/252 1/240 -1/132 69132760 -1/12 3617816Q
Listed below are the values @i, for (k, £) = (Q, Q(V-3)),

Co0(=2) Lao(-4) no(-6) Lno(-8) {no(-10) lno(-12)  {no(-14)
-2/9 2/3 -14/3 161827 -3694/3 1112023 138429229,

and the values afy =5 required to computez for 5 < n < 13,a # 3, are given below:

a {no(-2) Zgo(-4) lao(=6)  Lgo(-8)  {ao(-10)  Zho(-12)

1 -1/2 5/2 -61/2 -13852 -505212 27027632
7 -16/7 32 -1168 5651847
2 -3 57 -2763 250737

11 ) 255011 -21726
15 -16 992 -165616

a: 19 5 23 6 31 35 39
{o(-2): =22 -30 -48 -46 -96 -108 -176
lno(—4) : 2690 3522 6816 7970 25920 42372 73120
a: 10 43 47 51 13 55 14
Lio(-2) 0 -158 -166 -288 -268 -302 400 -396
Lno(—4) 1 79042 106082 169920 229700 257314 341984 362340
Explicit computation of%Z in each of the above cases shows that for every odd integer

n > 7, the numerator ofZ has a prime divisor which does not divide+ 1. In view of
Propositions 1 and 3, this proves Theorem 2rfor 7.

Forn =7, 5, we list below the value of? for thosea in the second table in 9.4 for which
the prime divisors of the numerator & divide n + 1.

n a (-2 foo(-4) lno(-6) #

7 3 -=2/9 2/3 -14/3  1/16124313600= 1/(2'%-3°. 5?)
5 3 -2/9 2/3 1/78382080= 1/(21°.37.5.7)
5 1 -1/2 5/2 1/9289728= 1/(214-3%.7)

5 7 -16/7 32 1/158760= 1/(2%-3*-5-79)

5 31 -96 25920 314

We need to consider only tleeappearing in the above table.

9.6. In our treatment of groups of tyge\,, with n odd, we have not so far made use of the
assumption thaf is cocompact, or, equivalentl is anisotropic ovek, see 1.5. We will
now use the fact thab is anisotropic ovek = Q to excluden = 7, 5. This will complete
our proof of Theorem 2.
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From the well-known description of absolutely simple sisnpbnnectedQ-groups of
type 2A, we know that there is a division algebra with center? and of degree»r =
V[Z : €], bl(n + 1), 2 given with an involutiono of the second kind, and a nondegen-
erate hermitian fornh on 2(™1/® defined in terms of the involutiorr, so thatG is the
special unitary group SUyj of h.

If 2 = ¢, thenhis an hermitian form of™?! such that the quadratic formon the
2(n + 1)-dimensionalQ-vector spac&/ = ™! defined by

qiv) = h(v,v) for vey,

is isotropic oveiR (sinceG is isotropic ovemR, i.e.,G(R) is noncompact). Then as> 3, q
is isotropic overQ by Meyer’s theorem and hence G is isotropic o@eBut this is not the
case. Therefore? # ¢, i.e., % is a noncommutative division algebra of degbee 1.

Using the structure of the Brauer group of a global field, weetbat there exists at least
one primep which splits overf such thatQp, ®g Z = (Qp ®q ¢) ® Z is isomorphic to
Mm(Dp) X Mm(Dp), where D, is a noncommutative central division algebra o@gy of
degreed, > 1, DY is its opposite, andh = (n + 1)/d,. The involutiono interchanges the
two factors ofMm(Dp) x Mm(Dp), and henceG(Qp) = SLm(Dp).

In the rest of this section is either 7 or 5a and.% are as in the last table of 9.5. The
nonarchimedean place @f corresponding to a primp will be denoted byp. Now let p
be a prime which splits ii = Q(+v/-a) and D, is a noncommutative division algebra with
centerQp. Then (see the computation in 2.3(ii) of [PYZ)P)) is an integral multiple of
f2(p) == (p— 1)(p® - 1)(p° - )(p’ - 1) if n = 7, and it is an integral multiple of either
fs(p) := (P~ 1)(p* - 1)(p° - 1) orgs(p) := (P~ 1)(p* - 1)(p* - 1)(p° - 1) if n = 5.

Now let .7 be as in 2.10. Recall that for every pringe€ (Pg) is an integer, and for
ge 7,€(Pg) > n+ 1. Also recall thap(¥/I') is a submultiple of 1(n + 1), and

R 1€ (Pq) %€ (Pp) [1gzp € (Po)
[T:A] [T: A]
As every prime divisor ofI[ : A] dividesn+ 1, we conclude that every prime divisor of the

numerator of%Z€ (Pp) dividesn + 1. Also since [ : A] < 2hyni1(n + 1)#7 (cf. (54)), we
see that

(68) u@r) =

(69) #€®) @i <
2hypa(n+ 12 - HY S vty

and hence,

(70) #€ (Pp) < 2hgpea(n + 1).

Now we note that the class number of the complex quadratid fiet Q(+/-a), for a =
3, 1, 7is 1, and fora = 31 the class number is 3. The first two primi@es, p»} which split
in Q(v=a) are{7, 13}, {5, 13}, {2, 11} and{2, 5} fora = 3, 1, 7 and 31 respectively. Le®
be as in the last column of the last table of 9.5. By direct catajions we see thatif = 7
anda = 3, 7€ (Pp) > #Z1;(7) > 16, and ifn = 5 anda = 31, bothZ f5(2) andZgs(2) are
larger than 36. On the other handniE 5 anda = 3, 1 or 7, bothZ fs(p2) andZgs(p.) are
larger than 12, and at least one prime divisor of the numerdté? f5(p;) and Zgs(p1) is
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different from 2 and 3. We conclude from these observationsntbahnot be 5 or 7. Thus
we have proved Theorem 2.

Corrections in [PY2]: (i) In line 11 on page 381 and in the last two lines on @&§6,
“x(I)" and “y(A)"should be replaced with|¢(I')|” and “|y(A)|” respectively. (ii) In the
statement of Theorem 2 on page 40g(X,)/n” should be replaced withy(X,)”.

We note that a revised version of [PY1] which incorporategemions and additions
given in the “Addendum” has recently been posted on the arXiv
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