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Abstract

We study the discrete Gierer-Meinhardt model of reactiffugion on three different types of networks:
regular, random and scale-free. The model dynamics ledtetiotmation of stationary Turing patterns in
the steady state in certain parameter regions. Some gdpatates of the patterns are studied through
numerical simulation. The results for the random and sfralenetworks show a marked difference from
those in the case of the regular network. The difference meagsbribed to the small world character of the

first two types of networks.
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1 Introduction
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<t Reaction-diffusion (RD) processes provide the basis fttepa formation in several physical, chemical and
- biological systems [1-4]. One of the most prominent exampiEesuch processes is based on the Turing
¢ mechanism [4]. In a celebrated paper, Turing [5] showedadhditfusion-driven instability may occur when
c*\—‘s infinitesimal perturbations are applied to an initially hegeneous system of reacting and diffusing chemicals.
& The instability gives rise to spatially heterogeneousiatary patterns in the steady state. This is illustrated
—5 by considering a system of two chemicals : the activator &edrthibitor. The activator is autocatalytic, i.e.,
C it promotes its own production as well as that of the inhibitBhe inhibitor, as the name implies, inhibits
© the production of the activator. The diffusion coefficieffitioe inhibitor is moreover much larger than that
2 of the activator. Consider a homogeneous distribution efabtivator and the inhibitor in the RD system.
>§ Perturbation is applied to the system through small locadeases in the activator concentration. This gives
(T rise to further increases in the concentration of the aftivim the local regions due to autocatalysis. The
inhibitor concentration is also enhanced locally. The latior, with a higher diffusion coefficient, reaches
the surrounding regions first and prevents the activaton fspreading into these regions. A nonequilibrium
steady state is obtained if the decay of the activator andnthieitor is offset by a constant supply of the
chemicals. This state is characterised by a stationarsilwlisibn of islands of high activator concentration in
a sea of high inhibitor concentration. The islands con&itvhat is known as the Turing pattern.

The Gierer-Meinhardt (GM) model provides a mathematicakdption of the RD processes, leading to
Turing instability, through the partial differential editans
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where @’ and ‘A’ are the concentrations of the activator and the inhibifyy, D, are the respective diffusion
coefficientsu,, 1, the removal rates angd,, p, the cross-reaction coefficients. The RD processes dedcribe
by Eq.(1) are defined in the continuum. In this paper, we sthdyformation of Turing patterns in networks
with a discrete structure. Three types of network are camsitl: regular, random and scale-free. The RD
processes are described by a simple discretization of EqSlich discretization, necessary for obtaining
numerical solutions of partial differential equationsyyides a coupled map model for the networks. Section
2 contains a description of the coupled map model the dyraafiehich, in specific parameter regions, lead
to the formation of Turing patterns in the steady state ohttgvorks. Section 3 contains concluding remarks.

2 Turing patternsin RD networks

Consider a network dil nodes connected to each other via links. At each nddd.,........... N), the concen-
tration of the activator and the inhibitor are givendgqyandh;. Timet is discretized in steps of unity and the
evolution of the concentration variables is described leycbupled map equations

a1 1) = a(t) + D2 3 Ciast) = ault) + ) (0
ha(t + 1) = ho(t) + D Y Oy (£) — ha(t)) + pua?(t) — punh() (2)

The coupling matri>xC is symmetric with diagonal elements zero drig =1 if the nodes andj are connected
and is zero otherwise. The diffusive coupling in Eq.(2) thesform of a finite difference approximation. Under
the same approximation, Eq.(1) reduces to Eq.(2) Witk 1, (6z)? = 1, wheredt is the time increment and
dx the mesh size. In the case of networks, however, Eq.(2) detireecoupled map model.

Three different types of networks have been consideredulaggandom and scale-free, each with 2500
nodes. The regular network is a square lattice for which g@ggek of each node, given by the number of links
associated with the node, is exactly four. The degree digtans of the random and the scale-free networks
are Poissonian and power-law respectively [6,7]. The remdetwork is described by the Erdés-Rényi (ER)
model [8]. The network hald nodes and each pair of nodes is connected with probapjityso that the total
number of links in the network is = ppr N(N — 1)/2. The scale-free network is generated following the
prescription of Barabasi et al [9]. One starts with a smathbarm, of nodes. In every time step, a new node
with m < mg links is added (m=2 in the present simulation). The new nead®nnected to an existing node
with probability[T(%;) which depends on the degrkeof the nodd. The preferential attachment probability
is given by



TI(k) = Z("z%)l) 3)

After T time steps, the network hds mq nodes andnT + mq(mg — 1)/2 links assuming alin, initial
sites to be connected. The evolution rule leads to a sca¢erfetwork when the network size is significantly
large. The average number of links per node is fixed to be foboth the random and scale-free networks in
order that a meaningful comparison with the square latgselts can be made. Wil = u, andp, = uy,
the steady statéu;(t + 1) = a;(t), hi(t + 1) = h,(t)) is given by a homogeneous distribution of activator
and inhibitor concentration at all the nodes, Say, #;) = (1,1) for all i=1,......N. This homogeneous steady
state is taken to be the initial state of each network. Thadstestate is perturbed by small amoufis —
1+ da;,h; — 14 0h; ) at each node using a random number generator. The amourtafijaion is chosen
to be the same in the cases of the activator and the inhib&grja;, = dh;. Time evolution of the perturbed
system is determined with the help of Eq.(2). The homogesnstrady state is stable if the perturbed system
returns to it after some time steps. The full parameter spacesponding to Eq.(2) contains a region in which
the homogeneous steady state is stable. There is anotian neghe parameter space corresponding to which
the perturbed system exhibits Turing instability. The dyestate to which the instability leads is obtained;if
andh; change by less thard—* on five consecutive iterations of Eq.(2) for allThe state is characterised by
a stationary pattern of Turing peaks corresponding to gradiof activator concentration in local regions. The
height of a peak is defined as the magnitude of the concesriraéiriable at the highest point of the gradient.
Fig. 1 shows a distribution of Turing peaks in the steadyestéta regular network (square lattice with 2500
nodes) with parameter values given by = 0.00055, D;, = 0.01, p, = p, = 0.00055, p, = pup, = 0.0011.

We now describe the main results of our study on some gengpakcts of Turing patterns in the steady
states of the regular, random and scale-free networks.niti@ random number seed is taken to be the same
in each case so that the pattern of perturbations at the okstical. Our first observation relates to the fact
that the formation of Turing pattern is most favourable, ioecurs over a wider region in parameter space in
the case of the regular network. Figs. 2-6 are obtained byingthe diffusion coefficienD, of the activator
and keeping the diffusion coefficient, of the inhibitor fixed. The variable along tleaxis in each case is the
ratiod = D;,/D,. The values of., = p, andy;, = p;, are kept fixed at,, = 0.00055 andy, = 0.0011. Fig.

2 shows the average concentration of the activator vetdasthe regular, random and scale-free networks.
The average is found to be the highest in the case of the regetaork. Fig. 3 shows the number of nodes
N, at which the activator concentratiaf is greater than or equal to a threshold value, say 2, vetsiifie
number of such nodes appears to be the largest in the case wdghlar network over almost the full range
of d. For smaller values ad, the number of nodes witly > 2 in the case of the scale-free network is greater
than the corresponding number for the random network buafger values ofl, the numbers are more or less
equal. Fig. 4 shows the maximum peak height (equivalerttéyhighest value of the activator concentration
at a node) versusfor the three networks. The maximum height attained in thad state is more or less the
same in the cases of the random and scale-free networksvdlbesis greater than that in the case of a regular
network over the full range af. Each data point in Figs. 2-4 is an average over five reatizatof the steady
state. The different realizations are obtained by chantiagnitial seed of the random number generator. Fig.
5 shows the connectivity of the nodat which the activator concentration has the highest valilee steady
state, versusdl. The plot shows an interesting plateau structure. The aiiwity is found to shift to higher
values for larged. Fig. 6 shows the same plot for the scale-free network. Taggal structure is similar to



From the results obtained, the major conclusion one araves that for the general features of Turing
patterns described above, the regular network is markefigreht from the random and scale-free networks.
The latter two types of networks have more or less similaufes. The variation of pattern related quantities
as a function ofl is smoother in the case of the regular network whereas inatescof the other two types of
networks, the variation is much less smooth. We now look fissible explanations of the results obtained.
The important differences between the three networks tdibiaa the random and the scale-free network have
a small world (SW) character, i.e., any pair of randomly @morodes is connected by a path consisting of
a small number of links. This is not true in the case of a regoddwork like the square lattice. In the first
two cases, one can define an average path lelgthwhich is the average of the shortest paths connecting all
pairs of nodes in the network, the length of a path being gigethe number of links contained in the path.
In the case of the random network,, ~logN whereN is the number of nodes in the network. Scale-free
networks, with degree exponents in the range<X}are ultra -small, i.e.L,, ~loglogN [10]. In the case
of a regular network[,, scales with some power ®f, rather than loly. Effective communication between
the nodes is thus much greater in the cases of random andfsemleetworks. For RD processes, one can
define two length scales, namely the activator and the itdribiecay lengths, given by = /(D,/u.) and
I, = \/(Dn/un) respectively. The decay length provides an estimate of igtartce over which molecules
diffuse before disappearing due to decay. Turing instghigquires short range activation and long range
inhibition, i.e.,l, < [l;. In obtaining Fig. 2-6, the parametets,, ., 1, are kept constant anf,, is varied
over the range in which Turing instability occurs. Thus teealy lengtH,, of the inhibitor is constant with the
valuel;, = 3.01 and the decay length of the activator is decreased from tlne ¥a= 1.0 towards zero. Since
the number of nodes in the networks studied is 2500, the gegrath length_,, in the cases of random and
scale-free networks is of similar magnitudel/gsin obtaining the data points in Figs. 2-6, the same random
number seeds are chosen for each realization (each datagpaimaverage over five realizations), so that the
only variation comes from changing the diffusion coeffi¢ién of the activator.

Increase in activator concentration at a node is possibleeik is a net inflow of activator from the other
nodes. Since the largest magnitude of the decay lepgththe activator is 1.0 ( the first data point), increase
in activator concentration through diffusion is minimahctease in activator concentration at a node occurs
mainly through autocatalysis. For this, it is desirablé tha amount of activator diffusing away from the node
in question is small. Higher concentration of activator lisained if there is a net outflow of inhibitor from
the node. The steady state concentration of activator atla isoa balance between autocatalysis, inhibition
and decay. The average concentration of activator, overatmge ofd = D, /D, studied, is the highest in
the case of the regular network. In the cases of random anel-Bea networks, the SW feature leads to a
greater overall amount of inhibition so that the number afesat which the steady state concentration of
the activator is above a threshold value (2 in our case) asasdhe average concentration of the activator
are lower (Figs. 2 and 3). The maximum value of the activatrcentration in the steady state, when
concentrations at all the nodes are considered, is, howfewerd to be higher than that in the case of a regular
network (Fig. 4). The maximum value increases/asis lowered . In the case of the regular network, the
increase occurs over a small range of valued ahd then the maximum concentration value saturates. The
increase is steeper and over a much wider range in the casasdafm and scale-free networks. In general,
there are some nodes at which the activator concentratitreisteady state is significantly higher than the
maximum value of the concentration in the case of a regulawar&. However, a larger number of nodes
with activator concentration above a threshold value gnassto a higher average concentration in the case
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of these nodes, high activator concentration is obtaingtiensteady state due to autocatalysis being more
dominant over inhibition than in the case of a regular nekwd®ne example of this is illustrated in Figs.

5 and 6. The plots represent connectivity,..; of the node, at which the highest activator concentration
occurs, versug = D, /D, with D, kept constant. The connectivity of a node is the number dslito
which the node belongs.The plot exhibits an interestingepla structure. In this case, the data points are not
averaged over five realizations as averaging is expecteddtvay the plateau structure. The magnitude of
Phighest 1S found to increase on reducidg,, i.e., increasing = D,/ D, (D, constant). As the same pattern of
perturbations is applied for obtaining each data pointptilg difference in each case arises from the changed
magnitude ofD,. Initially, pp;gnes: 1S low, around 2. A small number of links implies greater &mn and
consequent enhancement of autocatalysis which is a Ideaiteie now discuss the origin of a plateau. As
D, is decreased, the amount of activator remaining at the nodearticipating in autocatalysis increases.
The amount of inhibitor reaching or leaving the node is th@easD, remains constant. As a result, the
highest activator concentration in the steady state ise®with lowered values d, (Fig. 4). The plateau
occurs as long as the node, at which the highest activatamecdration is obtained, remains unchanged. The
plateau ends when it becomes advantageous,fgr..: to be raised. Increased number of links may not be
detrimental as, because of a lowered valudxRf the net amount of activator diffusing away is still small
whereas an increased number of links allows a greater anobinttibitor to leave the node, leading to higher
activator concentration in the steady state. The plataagtste is seen for other sets of parameter values
also. Fig. 7 shows the distribution of activator conceitrain the steady states of the regular and scale-free
networks forD, = 0.000015 andD,;, = 0.01 . The bin size is taken to be 0.5. An average over ten reaizsiti
has been taken. The data for the random network are not gifatteclarity. The distribution in this case is
similar to that of the scale-free network.

3 Summary and Discussion

In this paper, we have studied the formation of Turing paten the cases of regular, random and scale-free
networks. The RD processes are described by a model whictingade discretized version of the GM model.
Formation of Turing patterns is most favourable in the cd$keregular network (square lattice). The size of
the network is kept the same in each case. The average ddgreéss is four in the cases of the random and
scale-free networks so that a meaningful comparison witlawsglattice results can be made. Some general
features of Turing patterns in the steady state have bedredtlike the average activator concentration versus
d = Dy /D,, the ratio of the diffusion coefficients of the inhibitor atie activator, the number of nodag at
which the activator concentratian is greater than or equal to a threshold value vedstise highest value of

a; versusd, and the distribution of activator concentration amonigstrietwork sites. In each case, the results
for the random and the scale-free networks are markedlgréifit from thoose of the regular network. The
differences can be explained in terms of the small world atter of the first two types of networks, These
networks also exhibit an interesting plateau structure ptoa of the connectivity of the nodeat which the
activator concentration has the highest value in the stetatg, versud. Fig. 7 provides clear evidence that
the distribution of the activator concentration amongstiibdes of the network is markedly different in the
cases of regular and random/scale-free networks. The-Bealeetwork, considered in this paper, is of the
Barabasi - type with the degree exponent- 3. For this high value ofy, the number of highly connected
nodes is very small which may be the reason why the scaleafrdeandom networks exhibit similar features.
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trends associated with the variation Bf,. The range ofD,, values for which Turing patterns form in the
steady state is not sufficiently long to study the variatiagthwespect toD,, keepingD, fixed. We have,
however, verified that the results reported in this paped trole for other values ab,, as well as for different
parameter sets.

RD processes are associated with many chemical and bialayistems [1-4]. In neurobiology, there is
considerable evidence that synaptic transmission mayetidexclusive mechanism for neurotransmission
in brain functions. There are suggestions [11] that nongstoaliffusion neurotransmission plays a funda-
mental role in certain sustained brain functions whichudel vigilance, hunger, mood, responses to certain
sensory stimuli as well as abnormal functions like moodmdien spinal shock, spasticity and drug addiction.
Liang [11] has proposed a RD neural network model to dematesthe advantages of nonsynaptic diffusion
from a computational viewpoint. The RD processes consitlare described by the GM model. The spatial
Laplacian operator is approximated by finite differencegsiin a neural network, the neurons are located
at discrete positions. The activator and the inhibitor & @M model are produced by the neurons of the
network. Due to Turing-type instabilities, the network Gampport multiple simultaneous spatiotemporal or-
ganization processes. In fact, the Turing islands of aitiv@ncentration gradients may correspond to distinct
areas of brain activity. Liang considered the RD processes square network but a real neural network is
more like a random graph with a SW character [6,7]. The ptetady clearly shows that the Turing patters on
random scale-free networks have characteristics didtiogt those in the case of a regular network. The ex-
istence of higher concentration gradients in the first twaesanay imply sharper signalling response whereas
lower numbers of Turing peaks possibly favour the emergeho®noverlapping, i.e., distinct functional ar-
eas. Biological networks like gene transcription regulaimd metabolic reaction networks have a scale-free
character [6,7,12]. These networks serve as scaffoldsaioows RD processes. There has been suggestions
that specific biological activities may be controlled by centration gradients of appropriate type arising out
of Turing-like instabilities [1]. In general, RD processeay give rise to other types of instabilities leading to
stationary, oscillatory and travelling wave patterns. ilt e of considerable interest to find specific examples
of patterns generated by RD processes in biological nesvotkdeeper question relates to the small world
character of such networks and its role in essential biokdgihenomena.
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valuesD, = 0.00055, D, = 0.01, p, = pq = 0.00055 andpy, = py, = 0.0011.

2 Average activator concentration versus= D, /D, in the steady state fab, = 0.01, p, = p, =
0.00055 andp, = u, = 0.0011. The data points, solid square, solid circle and solid triewegrrespond
to regular (square-lattice), random and scale-free nd&swaspectively.

3 Number of nodesV, at which the activator concentration is greater than equal threshold value,
versusd = D, /D, for D, = 0.01, p, = p, = 0.00055, andp, = p;, = 0.0011. The data points, solid
square, solid circle and solid triangle corresponds to leggisquare-lattice), random and scale-free
networks respectively.

4 Maximum activator concentration versdis= D,/ D, in the steady state fab, = 0.01, p, = p, =
0.00055 andpy, = u, = 0.0011. The data points, solid square, solid circle and solid ti@cgrresponds
to regular (square-lattice), random and scale-free nd&swaspectively.

5 Dhighest VEIrsusd = Dy, /D, in the steady state fab, = 0.01, p, = p, = 0.00055 andp;, = p;, =
0.0011 in the case of the random network.

6 Dhighest VEIrsusd = Dy, /D, in the steady state fab, = 0.01, p, = p, = 0.00055 andp;, = p;, =
0.0011 in the case of the scale-free network.

7 Distribution of activator concentration amongst the reksites in the steady states of the regular
(solid dots) and scale-free (open circles) networks.
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