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Departamento de F́ısica Teórica y del Cosmos, Universidad de Granada
18071 Granada, Spain

Giulia Pancheri
INFN Frascati National Laboratories
Via Enrico Fermi, 40
I-00044 Frascati, ITALY

1 Introduction

We discuss a mechanism to explain the increase in total hadronic cross-sections with
energy and examine the dynamics beneath the Froissart bound for the asymptotic
behavior of total cross-sections. We present the ansätz that in QCD mini-jet driven
models for the total cross-section, soft gluon emission resummed down to the in-
frared region leads to the Froissart bound. We also show predictions for the survival
probability of Large Rapidity Gaps in hadronic collisions.

Recently, we have shown predictions for the total pp, pp cross-sections [1] from a
model [2] which has the following ingredients:

1. A hard component of scattering responsible for the rise of the total cross-section,

2. Eikonal transformation which includes multiple scattering and requires impact
parameter (b-)distributions inside scattering particles, along with the basic scat-
tering cross-sections,

3. Soft gluon emission from scattering particles giving rise to an s-dependent im-
pact parameter distribution and softening the rate of rise of cross-sections with
energy.
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2 QCD in minimum bias processes: Minijets and

Soft Gluon emission

According to perturbative QCD, processes occurring in hadronic collisions, involv-
ing parton-parton scattering down to pt ≈ 1 ÷ 2 GeV can be described in the
p(erturbative)QCD improved parton model by:

σAB
jet (s, ptmin) =

∫ √s/2

ptmin

dpt

∫ 1

4p2
t /s

dx1

∫ 1

4p2
t /(x1s)

dx2 ×
∑

i,j,k,l

fi|A(x1, p
2
t )fj|B(x2, p

2
t )

dσ̂kl
ij (ŝ)

dpt

.

(1)
Here the scale dependent parton densities in the hadrons A,B = p, p (GRV, MRST,
CTEQ [3]) are obtained by analysing the Deep Inelastic Scattering (DIS) data as well
as the large pt processes at the colliders in the framework of pQCD; the subprocess

cross-sections
dσ̂kl

ij (ŝ)

dpt
are also given by pQCD. In mini-jet models, this hard com-

ponent of scattering is considered responsible for the rise of the total cross-section.
This mini-jet cross-section is strongly dependent upon ptmin, the minimum transverse
momentum allowed to the scattered partons in the final state and has a power law
growth with energy, sε. In particular :

σGRV
jet ≈ s0.4 σMRST

jet ≈ s0.3 σCTEQ
jet ≈ s0.3

Such behaviour follows from the low-x behaviour of the gluon densities in QCD, which
is an infinite range theory. By contrast we notice that such is not the behaviour of
the hadronic total cross-section, which for proton-proton scattering say, must obey
the Froissart bound, namely σtot ≤ log2(s).

According to our model, soft gluon emission down to zero momentum modes is
responsible for the initial decrease in the pp cross-section with energy, as well as for
transforming the subsequent sharp rise, due to gluon-gluon interactions, into a more
smooth behaviour. This observation is based upon the realization that initial state
emission of zero mass quanta such as photons in charged QED processes or gluons
in QCD, decreases the observed cross-section. This is due to the fact that initially
collinear particles, upon emission of radiation, acquire a non-zero relative transverse
momentum, thereby reducing the scattering cross-section.

The probability of observing a total transverse momentum Kt due to soft gluon
emission from initially collinear quarks is a well known function, given by

d2P (K⊥) = d2K⊥
1

(2π)2

∫
d2b eiK⊥·b−h(b,qmax) (2)

with
h(b, qmax) =

∫ qmax

0
d3n(k)[1− e−ikt·b] (3)
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In QED d3n(k) ∝ α log( 2qmax

melectron
) and resummation in transverse momentum variable

is well approximated by first order expansion in α. In QCD, the situation is completely
different because αs is (i) not a constant and (ii) can become very large as the gluon
transverse momentum goes to zero. In phenomenological applications, resummation
is typically exploited by splitting the integral so that

h(b, qmax) = c0b
2 +

∫ qmax

µ
d3n(k)[1− e−ikt·b] ≈ c0b

2 + c1

∫ qmax

µ

dk2
t

k2
t

αs(k
2
t ) log(

2qmax

kt

)

(4)
with c1 = 8/(3π), i.e. separating the infrared region from the one where one can
apply the asymptotic freedom expression for the strong coupling constant. In this
energy range, kt is small but non-zero and the exponential term eikt·b is neglected. In
the above d3n is evaluated in LO, but the resulting Sudakov form factor [4] is often
implemented beyond LO.

Our approach is different and focuses on the infrared (IR) part of the above
integral, where resummation plays a more fundamental role. Two major observations
apply in this region : (i) in the IR region one cannot count the number of gluons
and so soft gluons have to be resummed; (ii) resummation results in exponentiation
(summing of all the very soft k-distributions) and an integration over the low gluon
momentum. The exponentiated integral must include the zero momentum values
and requires the spectrum to be integrable. The asymptotic freedom expression for
αs(k

2
t ) ∝ 1

log(k2
t /Λ2)

does not satisfy the second condition. Phenomenological choices

for αs in the infrared region include freezing it at or around 1 GeV [5]. We make an
altogether different ansätz, namely that in the infrared region the dynamics of zero
momentum gluon coupling to a quark source is described by a singular, but integrable,
power law behaviour, namely

αs(k
2
t ) ≈ (

Λ2

k2
t

)p kt → 0 with p < 1 (5)

We then introduce a phenomenological expression to interpolate between the infrared
and the asymptotic freedom regime as in [2].

Everything is now in place for using soft gluon resummation to describe the im-
pact parameter distribution of partons in hadron-hadron scattering. We propose the
following expression

ABN(b, s) = N
∫

d2K⊥ e−iK⊥·bd2P (K⊥)

d2K⊥
=

e−h(b,qmax)

∫
d2b e−h(b,qmax)

(6)

with

h(b, qmax) =
16

3

∫ qmax

0

αs(k
2
t )

π

dkt

kt

log
2qmax

kt

[1− J0(ktb)] (7)
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where N is a normalization constant such that
∫

A(b)d2b = 1 and αs = 12π
33−2Nf

p

ln[1+p(
kt
Λ

)2p]
.

This distribution is our input to the eikonal representation of the total cross-section,
which, upon neglecting the real part of the eikonal function, reads

σtot = 2
∫

d2b[1− e−n(b,s)/2] (8)

with n(b, s) = nsoft(b, s) + nPDF
hard (b, s) = nsoft(b, s) + ABN(b, s)σPDF

jet (s, ptmin). The
division between soft and hard corresponds to including in the average number of
hard collisions all those processes for which ppartons

t > ptmin.

3 Restoration of Froissart bound through soft gluon

emission

The soft-gluon (positive definite) spectral function h(b, s) goes to zero as b2 for small
b and for large b it goes as a power law b2p. For algebraic simplicity, we shall illustrate
below the case for p = 1. Thus, we let

h(b, qmax) ∼ b2c(s) as
√

s increases.

Hence, A(b, s) ' e−b2c(s). The number of collisions n(b, s) for b → 0 and large s gets
huge due to the steep rise of the jet cross-section.(See for instance, the sum rule [6]).
For large b on the other hand, we have a Gaussian cutoff in n. Thus, the function
(1 − e−n/2) is practically unity for small b and is zero for large b, so that we may
assume 1− e−n(b,s)/2 ∼ θ(b2

o − b2), i.e., an ideal Fermi function. It then follows

σtot = 2
∫

d2b θ(b0 − b) = 2πb2
0

where b0 is that value of b for which [1− e−n(b0,s)/2] = 1/2, or, equivalently

e−n(b0,s)/2 = 1/2 or n(b0, s) = 2 ln 2

We estimate b0 by including only the jet part for n

n(b, s) ' nPDF
hard (b, s) ≈ Ahard(b, s)σ

PDF
jet (s, ptmin) as

√
s rises

so that

nPDF
hard (b, s) ≈ c(s)

π
e−b2c(s)σPDF

jet (s, ptmin)

and at very large s

σtotal ≈ 2πb2
0 =

2π

c(s)
ln

c(s)σPDF
jet (s, ptmin)

2π ln 2
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σPDF
jet (s, ptmin) ∼ sε as expected from an infinite range theory such as QCD, but if

c(s) ∼ constant or rises with
√

s, we finally obtain

σtotal ≈ log s

with increasing
√

s. We note that for the allowed values of p between 1/2 and 1, the
total cross-section remains bounded between [log(s)]2 and [log(s)] always obeying the
Froissart bound.

This is confirmed also from a phenomenological point of view [1], when we apply
the model described in [2] to predict the total cross-section and survival probabilities
at LHC as shown in Figure 1.
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Figure 1: Total cross-section models [7] compared with data [8] (left) and survival
probability for Large Rapidity Gaps [9] (right) for different input parton densities
and different models from [1].

4 Conclusions

We have discussed the restoration of the Froissart bound on total cross-section models
with rise driven by QCD mini-jets. We have shown that soft gluon emission down
to zero momentum modes can be responsible for transforming the sudden fast rise
due to low-x gluon gluon collisions into the gentler observed logarithmic rise. No
violation of the Froissart bound implies that indeed the finite range of the interaction
is restored through soft gluon emission.
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