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We examine the stability of hadron resonance gas models by extending them to take care of
undiscovered resonances through the Hagedorn formula. We find that the influence of unknown
resonances on thermodynamics is large but bounded. Hadron resonance gases may be internally
consistent up to a temperature higher than the cross over temperature in QCD; but by examining
quark number susceptibilities we find that their region of applicability seems to end substantially
below the QCD cross over. We model the decays of resonances and investigate the ratios of particle
yields in heavy-ion collisions. We find that observables such as hydrodynamics and hadron yield
ratios change little upon extending the model. As a result, heavy-ion collisions at RHIC and LHC
are insensitive to a possible exponential rise in the hadronic density of states, thus increasing the
stability of the predictions of hadron resonance gas models in this context.

PACS numbers:

Hadron resonance gas models (HRGM) in their modern form were first explored in [1–4], where the emphasis was
on exploring the phase diagram. Then, following the CERN SPS experiments with heavy-ions, it was found that
integrated particle yields could be explained in HRGMs [5–7]. Typically, one defines the thermodynamics of HRGMs
through the summed free energy—

log Z(V, T, µ) =

∫

dm [ρM (m) log Zb(m, V, T, µ) + ρB(m) log Zf (m, V, T, µ)] , (1)

where the gas is contained in a volume V , has temperature T and chemical potential µ, Zb is the partition function
for an ideal gas of bosons with mass m, Zf of an ideal gas of fermions, ρM (m) is the spectral density of mesons, and
ρB(m) of baryons. From this one computes the energy density, E, by taking a derivative with respect to 1/T , and the
pressure, P , by taking a derivative with respect to V . One can also find the conformal symmetry breaking measure
(E − 3P )/T 4, the entropy density, S/T 3 = (E + P )/T 4, the speed of sound, c2

s = dP/dE, and the specific heat, cV .
Hadron properties enter these models through ρB,M and the treatment of the decay width and size of the hadron.

We follow [7] in neglecting an excluded volume effect for hadrons, i.e., we treat the hadrons as effectively point-like.
In constructing the thermodynamics, the decay width is usually neglected; we accept this assumption through the
part of this work which deals with the equation of state, but, as usual, include decays when we explore other aspects
of HRGMs. One aspect common to models of the type explored in [5–7] is to take the observed spectrum of hadrons
up to some cutoff Λ, i.e., write

ρM,B(m) =

mi≤Λ
∑

i

giδ(m − mi), (2)

where mi are the masses of the known hadrons and gi the degeneracy factor (2Ji +1)(2Ii +1) where Ji is the spin and
Ii the isospin, and the sum is over meson or baryon states, as appropriate. We call such models HRG1. We include
in the sum above all the states which are reasonably well established, and labeled as better than 1 star in the particle
data book.

Clearly the predictions of thermodynamic quantities in HRG1 depend on the mass cutoff Λ. This is shown in Figure
1. Even at temperatures as low as 150 MeV, there is a 5% increase in the energy density when Λ is increased from
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FIG. 1: Thermodynamic quantities in the hadron resonance gas variant which we call HRG1. As the mass cutoff, Λ on the
states included in the model is changed the predictions change monotonically. These are results at zero chemical potential.

1600 MeV to 1800 MeV, and a further 2% increase when it is increased to 2000 MeV. Changes at temperatures of
170 MeV or so are significantly larger. Predictions of quantities such as the speed of sound, c2

s, and the specific heat,
cV , are significantly less stable. Recent quark model [8] and lattice computations [9] lead us to believe that there is
a much higher density of hadronic states in the mass range 2–3 GeV than below 2 GeV. If so, it is not clear by how
much the predictions will change as Λ is increased to 3 GeV or beyond.

In order to explore the stability of predictions from HRGMs, we develop a variant of these models in which we
take the observed spectrum of states up to a certain cutoff Λ, as before, and above this we put in an exponentially
rising cumulative density of hadron states in [10, 11]. It is well known that such a density of states overcomes the
exponential suppression of higher mass resonances in eq. (1). As a result, there is a limiting temperature in these
models, which was, long ago, taken as evidence of a QCD phase transition [12]. So, the extended model, HRG2, has

ρh(m) =

mi≤Λ
∑

i

giδ(m − mi) +
ah

TH
em/TH Θ(m − Λ), (3)

where the model parameters TH and ah are fitted to data on the cumulative distribution of different sets of hadrons,
h. Similar models have been used to study observables as diverse as dilepton production [13] to chemical equilibration
[14]. A comparison of the equation of state with different density of states for the Hagedorn spectrum is presented
later.

We perform fits separately to non-strange mesons, strange mesons, non-strange baryons and strange baryons. All
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FIG. 2: Fit of the parameters of the Hagedorn spectrum to states from the particle data book for masses up to 2000 MeV. The
band is wide enough to include all but the two extreme points in the cumulative distribution for each of four classes of hadrons.

Class (h) amin
h amax

h

Mesons (non strange) 0.81 1.64

Mesons (strange) 0.64 0.94

Baryons (non strange) 0.73 1.47

Baryons (strange) 0.50 1.10

TABLE I: The extreme values of ah such that for TH = 340 MeV the cumulative density of hadron states up to 2000 MeV lies
within the bands except for the two extreme points on each side.

states in the particle data book with rating higher than 1 star and mass up to 2000 MeV are used in these fits. The
quantity TH is obtained by a global fit to all four types of hadrons, whereas we fit upper and lower values for ah for
each class of hadrons. We have allowed the band of ah/TH to be wide enough that all but two of the extreme high
and low points are within the band. The goodness of such fits can be gauged from Figure 2. The fitted parameter
sets to be used in eq. (3) are given in Table I. Note that the best fit value of TH is significantly higher than Tc, the
cross over temperature of QCD [15]. This is not unexpected, since there is good evidence that TH and Tc are not
equal, at least at finite Nc [20]. As a result, the model in eq. (3) is internally consistent well beyond Tc.

Using this extended model, we get the predictions of thermodynamic quantities shown in Figure 3. Note that for
each value of Λ there is an upper and lower limit to the prediction for any thermodynamic quantity, one from the
maximum and the other from the minimum of the ah. As one changes Λ, the band for higher Λ lies entirely within that
for lower Λ. This pleasant property implies a stability of the predictions of the HRG2 model for bulk thermodynamic
quantities. Even for c2

s and cV , predictions of HRG2 are stable in this sense up to a temperature of 160 MeV. The
allowed band at 150 MeV is about 2–7% for Λ = 2000 MeV.

A different density of states for the Hagedorn model has also been used in the literature [21, 22]. The density of
states in the HRG2 with this change would be

ρh(m) =

mi≤Λ
∑

i

giδ(m − mi) +
ch

(m2 + m2
0)

5/4
em/TH Θ(m − Λ). (4)

Typically this model is used with m0 = 500 MeV. We have used this canonical value as well m0 = 250 MeV and 1000
MeV. Note that in the limit as m=0 → ∞, this model reduces to the one in eq. (3). The best fit value of TH changes
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FIG. 3: Thermodynamic quantities in the hadron resonance gas variant which we call HRG2. At each value of the parameter
Λ, there are upper and lower limits on every thermodynamic quantity. The predictions of HRG2 are stable, since the allowed
band shrinks as Λ increases, and the band for higher Λ is entirely contained inside that for a lower Λ. If QCD has a cross over
at finite temperature, and the same equation of state is valid on both sides, then c2

s falls monotonically across this point, and
the softest point is not at Tc.
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FIG. 4: Comparing predictions of thermodynamics using HRG2 with the parametrisation of eq. (3) (full line) and eq. (4)
(dashed line). The uncertainty bands of all quantities overlap over the range of temperatures of interest.
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significantly as we vary m0, being 210 MeV for the central value of m0, and sliding up to 250 MeV as m0 changes
to 1000 MeV. The quality of fit improves marginally as m0 increases, being best for the density of states in eq. (3).
The uncertainty in the value of the derived hadronic quantity, TH , is closely related to the fact that a string model
of hadrons is not a unique and self-consistent theory. As a result, the pre-exponential factor can be tweaked at will,
resulting in large possible changes to the string tension, or, equivalently, to TH .

Using m0 = 500 MeV and TH = 210 MeV, we take as the allowed band of ch a definition analogous to that used in
Table I. This gives us the uncertainties in the corresponding predictions of thermodynamic quantities. As one could
guess, the pleasantly stable results for thermodynamics shown in Figure 3 are model artifacts. In Figure 4 we show
that the uncertainty bands in the two models defined by eqs. (3, 4) exclude each other in the vicinity of T = 170 MeV.
In view of these uncertainties, we do not consider the more detailed models which have been used [22]. In future,
when observations of the hadron spectrum are extended to significantly larger masses, a more detailed consideration
of string models may become a fruitful topic of research.

Lattice computations of the equation of state give E/T 4 = 1.4 ± 0.2 at a temperature of 140 MeV [15]. At such
low temperatures the known hadron spectrum dominates the results (see Figure 4). The mismatch between lattice
and hadron gas models is due to the fact that current day lattice thermodynamics computations are performed on
lattices which are too coarse at such low temperatures. The best lattices have cutoff of around 1100 MeV when
doing thermodynamics at T = 140 MeV. Since the cutoff is comparable to the low-lying baryon masses, the hadron
resonance spectrum is strongly disturbed and the low-temperature results are not yet physical[37]. Since the lattice
spacing varies inversely with the temperature, lattice results at higher temperatures are expected to be reasonable.
The efficacy of the lattice closer to Tc is borne out by the fact that renormalization group invariant estimates of Tc

are possible with the cutoffs in use today [17]. Interestingly, present day lattice computations at a temperature of
210 MeV give E/T 4 = 12.4 ± 0.3 [15], which is also below the prediction of HRG2. However, as shown in Figure 4,
at this temperature the problem very likely lies with the hadron gas models. We demonstrate this next.

A phase transition involves a singularity in the free energy. As a result one usually does not have the same elementary
excitations in terms of which the thermodynamics is constructed on both sides of a phase transition. However, there
is no singularity of the free energy at a cross over. As a result, there is no theoretical bar to a model which is valid
on both sides of the cross over. One way to investigate the applicability of such models on both sides of Tc is to
look at quantum number susceptibilities (QNS). Introduce chemical potentials for the three quantities conserved in
strong interactions, namely the baryon number, the third component of the isospin (I3) and the strangeness. Then
the baryon number susceptibility is defined to be

χB(T ) =
∂2P (T, µB, µI3 , µS)

∂µ2
B

∣

∣

∣

∣

µB=µI3
=µS=0

. (5)

This defines the susceptibility at zero chemical potential, since there is lattice data on this quantity, although, of
course, it may also be taken at finite chemical potential. Following [18] the non-linear susceptibilities (NLS) are
defined as

χ
(n)
B (T ) =

∂nP (T, µB, µI3 , µS)

∂µn
B

∣

∣

∣

∣

µB=µI3
=µS=0

. (6)

The QNS is just the NLS for n = 2. In exact analogy one can also define strangeness susceptibilities and so-called
off-diagonal susceptibilities where some of the derivatives are with respect to one chemical potential and others with
respect to another [19]. The QNS predicted by HRG1 and HRG2 are shown in Figure 5. The enhanced density of
baryon states in HRG2 leads to a substantial increase in χB(T ). As expected, current lattice data [24, 25] does not
match these curves.

The reason is very accurately probed by the quantity

CBS = −3
χBS(T )

χS(T )
, (7)

where χBS(T ) is one of the off-diagonal QNS [26, 27]. The normalization is such that CBS = 1 in an ideal gas of
quarks. The HRG1 and HRG2 predictions of CBS are shown in Figure 6. Since the lowest mass baryons are non-
strange, CBS must start at zero. It is seen to climb monotonically with temperature. CBS can exceed unity if the
contribution of the singly and doubly strange baryons to χB exceeds half the contribution of strange mesons to χS .
Since the strange meson spectrum starts at a much lower mass than the strange baryon sector, this cannot happen
at low temperature. However, as seen in Figure 2, the observed density of strange baryons grows much more rapidly
with temperature than that of strange mesons. As a result, at sufficiently high temperature CBS exceeds unity. In
HRG2 CBS remains above unity until TH . Hence there is no continuity between this model and the physics of the
high temperature phase of QCD.
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FIG. 5: The baryon number susceptibility computed in hadron resonance gases. The first panel gives the results in HRG1 and
the second in HRG2. The colour coding is the same as in previous figures. Note the importance of including the Hagedorn
spectrum of baryons.
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FIG. 6: CBS in the hadron resonance gas models HRG1 (left) and HRG2 (right). One expects CBS to be a monotonic function
of temperature in a resonance gas model.

The ratios of successive NLS in the HRG2 is shown in Figure 7. These ratios are not very sensitive to the change
from HRG1 to HRG2. Note that they are extremely constant as a function of temperature. In contrast, lattice
computations show much structure in the vicinity of Tc as a consequence of the nearness of the QCD critical point
[24]. The hadron resonance gas, being a mixture of ideal gases, sees no critical point, but only the Hagedorn limiting
temperature. As a result, it misses all this structure.

We have shown here that there are major points of mismatch between lattice computations of QNS and the resonance
gas models for T > Tc. Since there is no phase transition in QCD at µB = 0 but only a crossover, the failure of a
model soon above Tc also implies its failure a little before Tc. This means that the resonance gas models are restricted
in their range of applicability to well below Tc. In this real QCD seems to be very different from either pure gauge
theory or large-Nc QCD, where the resonance gas model could remain perfectly accurate right up to the first order
phase transition in these models. We turn next to the question of whether heavy-ion observables can give information
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FIG. 7: The non-linear baryon number susceptibilities computed in hadron resonance gas model HRG2. We have plotted the
ratios χ(n+2)T 2/χ(n) for n = 2, 4, 6 and 8. The colour coding is the same as in previous figures. The results are very stable
against the mass cutoff.
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s. Also shown (in green) is the flow for constant
c2
s = 1/5. There is very little difference between these flows.

on the Hagedorn spectrum of resonances.
One of the uses to which equations of state can be put is hydrodynamics. We perform the following simple

computation with the HRG2 equation of state— use it to evolve a longitudinally expanding fireball which has cooled
to a point where its energy density, E, is 1 GeV/fm3. For longitudinal flow, the quantity E/E0 is a function only of
the ratio τ/τ0 where τ is the proper time, and τ0 the initial time, when E(τ0) = E0. We integrated the longitudinal
flow equation with upper and lower band of c2

s for Λ = 1600 MeV, 1800 MeV and 2000 MeV. We found that the effect
of these changes is minimal, as we show in Figure 8. For comparison we also show the flow obtained with constant
c2
s = 1/5. This is almost indistinguishable from the other flows. Similarly, the result of a computation with the

density of states in eq. (4) is indistinguishable from these. So, hydrodynamics is almost blind to the level of detail in
the equation of state that we have studied.

The main phenomenological application of hadron gas models, however, is in the analysis of particle yields in
heavy-ion collisions. Most of the particle species observed in the detector are those which are stable under strong
interactions, because the others decay long before reaching the detectors. The computation of the yield of particles
in a hadron gas model is matched to data to extract the reaction volume and freezeout temperature and chemical
potentials [5–7].

In HRG1 one creates a table of decays from the particle data book. Each hadron Hi has decay modes labeled by
α. The reaction

Hi →
∑

j

nα
ijHj (8)

proceeds with a branching fraction Bα
i , where nα

ij is the number of hadrons Hj produced in this reaction. For later
convenience we add the trivial rule that stable particles decay to themselves with branching ratio unity. The expected
number of Hj produced per decay of Hi are

Nji =
∑

α

Bα
i nα

ij . (9)

For a stable particle Hi, we have Nii = 1 and Nji = 0 for all other j. In general, some of the decay products, Hj ,
may be unstable under strong interactions; in that case one has to follow the decay chain until only stable particles
remain. The expected number of Hj resulting from Hi after all this, Nji, is easily found by sufficient number of
matrix multiplications—

Nji =
∑

k1,k2,···,km

Njk1
Nk1,k2

· · ·Nkm,i, i.e. N = Nm. (10)

The minimum power m to which the matrix N has to be raised is equal to the maximum number of steps in any decay
chain. From the formula above it is clear that the rows of the matrix N which correspond to unstable hadrons are
zero. This means that N = NN , and hence if m is chosen to be larger than actually required, the cost is in CPU time
and not in correctness. Proofs of all these assertions can be written down most simply by noting the structure of the
matrix N , but insight is also gained by examining a one-to-one correspondence between this problem and problems
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FIG. 9: The K/π ratio obtained in our models using as input the energy dependence of the freezeout values of T and µ obtained
in [34] by fitting to the data exhibited. The first figure is for decay model 1 and the second for decay model 2. Only the results
for Λ = 2000 MeV are shown for clarity.

on directed graphs [28]. Finally, the expected yield of a stable particle, Hj , resulting from a fireball which freezes out
at temperature T and chemical potentials µ is

Nj(V, T, µ) =

mi<Λ
∑

i

NjiN
th
i (V, T, µ), (11)

where N th
i is the number of Hi in thermal equilibrium. From this, it is clear that for hadron yield computations, it

not necessary to keep track of the detailed decays of every Hi. It is sufficient to keep Nij , i.e., the expected number
of hadrons Hj , stable under strong interactions, resulting from the decay of of each Hi. In any case, the data may be
read off the particle data book.

In HRG2 the yield computation is not so straightforward, since one has to start with a model Nji for all Hi. In this
first study we restrict ourselves to models where Hj = π, K or a generic baryon (i.e., we lump the ground-state octet
and decuplet baryons into one). As a result, we cannot answer detailed questions about the yield, but only questions
of total particle multiplicity and K/π or meson/baryon ratios. In general, we expect Nji (for fixed Hj) to depend on
the mass of Hi, so, a generic model for decays is

Nji = aj
0 + aj

1mi + aj
2m

2
i + · · · . (12)

While Nji may well depend on other quantum number of Hi, we are neither able to confirm or rule this out. Therefore,
we decided to work with the simple model above in this paper. The decays of the heaviest hadrons are not yet studied
well enough to provide further constraints. Further, incomplete data may contain unknown biases. Hence we neglected
the heaviest hadrons and constrained the model with data for hadrons with masses up to 2000 MeV.

Due to the high threshold for the production of a baryon-antibaryon pair, the decays of such particles do not involve
such a pair in the final state. Such pairs are rare also in the known decays of hadrons with mass greater than 2000
MeV, being seen mainly in the final state of strange mesons. The branching ratios to such pairs are still mostly ill-
measured. As a result, we are unable to make any testable model about the expected occurrence of baryon-antibaryon
pairs in decays of the Hagedorn spectrum of resonances. We therefore take the simplest possible model:

NBi = Bi, (13)

that the number of baryons in the final state of the decay of any particle is equal to the baryon number of the
resonance, Bi. When better data on resonances between 2000 and 3000 GeV becomes available, the model can be
refined by adding higher terms from eq. (12).

The production of KK pairs is also strongly suppressed in the decays of hadrons; this is a statement of the OZI
rule. Cases which contradict this rule are known, but our attempts to make statistical models of such decays falls on
the rock of insufficient data. Thus, we are forced to the rule that

NKi = Si, (14)

the number of kaons produced in the decay of Hi is equal to its strangeness, Si. We also examined a variant of this
rule, which is that the strangeness in the baryon sector percolates down to strange baryons, and does not go into
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production of kaons. This corresponds to the variant model NKi = Si(1− δBi,1). We refer to this as the decay model
2, to distinguish it from the model in eq. (14), which we call decay model 1.

Finally, we consider the expected number of pions produced in the decays of resonance. We fit the linear model

Nπi = b + aMi, (15)

where Mi is that part of the mass of Hi which is available for decay to pions. For unflavoured mesons, the available
mass is the mass of the particle, for strange mesons, the available mass is the difference between the mass of a kaon
and the mass of Hi, and for a baryon it is the difference between the mass of Hi and a typical baryon mass, which
we take to be 1000 MeV. This simple model is fitted to four sets of data— separately for strange and non-strange
mesons and baryons. In all these cases we found b consistent with zero and a ≃ 1.5 GeV−1, and consistent with each
other. Adding in a term quadratic in masses to the model does not improve the fit significantly, so we keep to the
linear model above. It may be useful to note the following implication: out of every GeV of rest mass of the higher
resonances, about 500 MeV is available as the kinetic energy of each pion.

This completes the specification of a simple model for the Nji in HRG2. Many more refinements and elaborations
of the model are possible, however, this model is sufficient for the computations that we exhibit next. We extend the
yield formula of eq. (11) to

Nj(V, T, µ) =
∑

i

NjiN
th
i (V, T, µ), (16)

where we use the empirically determined Nij for mi < Λ and the model for mi > λ. There are a very small number of
baryons whose masses are sufficiently well-known to be included in HRG1, but whose decays are not very well known.
For these we used the decay models.

The K±/π± ratios have been determined at AGS [29], SPS [30] and RHIC [31] energies. In order to compare with
this data we need to take into account the fact that the initial state has no strangeness. Due to strangeness conservation
in strong interactions this condition of zero overall strangeness has to be enforced as a canonical constraint, i.e., the
K/π ratios have to be determined in the canonical ensemble [32, 33]. We implement this in our computations of
hadron yields.

Our results for the K/π ratio as a function of the beam energy
√

S are shown in Figure 9. In this computation we
have used the freezeout parameters deduced in [34]. As expected, the ratios of yields are a little higher in decay model
1. Note also that there is a little difference between the predictions of HRG1 and HRG2. For the same freezeout
conditions, HRG2 gives a slightly smaller value of the yield ratio. In principle, the freezeout conditions that one
deduces from data could be dependent on specifics of the hadron gas model one uses. Our results indicate that this
dependence is at best mild. To check this we have implemented the freezeout criterion of [35]. Using this we find that
the freezeout parameters change only marginally from HRG1 to HRG2, consistent both with the conclusions of [36]
and the results in Figure 9. In future we plan a more detailed study of hadron yields, and the effects of the Hagedorn
spectrum on the chemical composition at freezeout in baryon rich matter.

We conclude with a summary of our investigation into hadron resonance gas models of the kind which have been
used to explain hadron yields in heavy-ion collisions. The thermodynamics of such resonance gases (HRG1) is strongly
dependent on the cutoff in the spectrum at temperatures of over 100 MeV. In this paper we have investigated an
extension of the hadron resonance gas models in which as yet unobserved resonances are included using the Hagedorn
model of the hadron spectrum (HRG2) with two different densities of state (eqs. 3 and 4). We found that the Hagedorn
temperature, TH , is strongly dependent on details of the model for the hadron spectrum. This implies that the present
knowledge of the spectrum of QCD is as yet unable to constrain string models of hadrons.

Each of the HRG2 models stabilizes the uncertainty in thermodynamics below Tc due to the cutoff in HRG1.
However, the predictions of the two variants of the model are different. While the model is defined up to TH , we
found that HRG2 gives unrealistic results for thermodynamics, especially for CBS , from Tc to TH . Since there is
no phase transition in QCD, a failure of a model near and above Tc also implies a failure near and below Tc. This
leads us to believe that the accuracy of resonance gas models cannot be pushed much closer to Tc than the freezeout
temperature. Of course, this leaves open the interesting possibility that resonance gas models describe the physics of
transport that leads to freezeout, for example, the thickness of the freezeout layer.

We also investigated observable quantities in heavy-ion collisions, such as hadron yields. In order to do that, we
had to develop a novel model for the decay of Hagedorn resonances. We found that the significant uncertainties that
we saw in thermodynamics lead to rather small changes in observables such as the K/π yield ratio. This has positive
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implications on efforts to explain hadron yields from heavy-ion observation.
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