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QCD Mini-jet contribution to the total cross section
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Abstract
We present the predictions of a model for proton-proton total cross-
section at LHC. It takes into account both hard partonic processes and
soft gluon emission effects to describe the proper high energy behavior
and to respect the Froissart bound.

1 Introduction

A reliable prediction of the total proton-proton cross section is fundamental to know which will
be the underlying activity at the LHC and for new discoveries in physics from the LHC data. In
this article, we shall describe a model [1] [2] for the hadronic total cross section based on QCD
minijet formalism. The model includes a resummation of soft gluon radiation which is necessary
to tame the fast high-energy rise typical of a purely perturbative minijet model. It is called the BN
model from the Bloch and Nordsiek discussion of the infrared catastrophe in QED. In the first
section, results are presented concerning the behavior of the QCD minijet cross section. It will
then be explained how this term is included into an eikonal formalism where infrared soft gluon
emission effects are added. The last section is devoted to the link between the total cross-section
asymptotic high energy behavior predicted by our model and the model parameters. This relation
also shows that our prediction is in agreement with the limit imposed by the Froissart bound.

2 Mini-jet cross section

Hard processes involving high-energy partonic collisions drive the rise of the total cross section
[3]. These jet-producing collisions are typical perturbative processes and we can describe them
through the usual QCD expression:

σAB
jet (s, ptmin) =

∫

√
s/2

ptmin

dpt

∫ 1

4p2
t /s

dx1

∫ 1

4p2
t /(x1s)

dx2 ×
∑

i,j,k,l

fi|A(x1, p
2
t )fj|B(x2, p

2
t )

dσ̂kl
ij (ŝ)

dpt
,

(1)
with A,B = p, p̄. This expression depends on the parameterptmin which represents the min-
imum transverse momentum of the scattered partons for which one allows a perturbative QCD
treatment. Its value is usually around≈ 1 − 2 GeV and it distinguishes hard processes (that
are processes for which a perturbative approach is used) from the soft ones that dominate at low
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energy, typically for
√

s ≤ 10 ÷ 20 GeV , i.e, well before the cross-section starts rising. The
Minijet expression also depends on the DGLAP evoluted Partonic Densities Functionsfi|A for
which there exist in the literature different LO parameterizations(GRV, MRST, CTEQ [4]). We
obtain an asymptotic growth ofσjet with energy as a power ofs. As shown in figure 1, the value
of the exponent depends on the PDF used and one has

σGRV
jet ≈ s0.4 σMRST

jet ≈ s0.3 σCTEQ
jet ≈ s0.3.

This result can be derived by considering the relevant contribution to the integral in (1) in the√
s >> ptmin limit. In this limit, the major contribution comes from the small fractions of

momentum carried by the colliding gluons withx1,2 << 1. In this limit we know that the relevant
PDF’s behave approximately like powers of the momentum fractionx−J with J ∼ 1.3 [5].

From the previous consideration and noting that
dσ̂kl

ij
(ŝ)

dpt
∝ 1

p3
t

we obtain from (1) the following

asymptotic high-energy expression forσjet:

σjet ∝
1

p2
t min

[

s

4p2
t min

]J−1

. (2)

The dominant term is just a power ofs and the estimate obtained for the exponentǫ = J−1 ∼ 0.3
is in agreement with our previous results. We now need to understand how to incorporate into
a model for the total cross section this very fast rise at very high energy, which is present in
the perturbative regime. Firstly it is important to note thatσjet is an inclusive cross section and
therefore contains in itself a multiplicity factor, linked to the average number< n > of partonic
collisions that take place during the hadronic scattering. We can approximate the energy driving
term at high energy [6]< n > as

< n >≈ σjet · A, (3)

whereA is a function representing the overlap between the two hadrons.

Now we can derive an expression for the total cross section as a function of< n >. Assum-
ing that the number of partonic collisions follows a Poisson distribution, since each interaction is
independent from the other, the probability of havingk partonic collisions is:

P (k,< n >) =
< n >k e−<n>

k!
. (4)

The average number of partonic collisions should depend on the energy and on the impact pa-
rameterb relative to the hadronic process< n >≡< n(b, s) >. From the previous expression it
is possible to obtain the inelastic hadronic cross section:

σinelastic =

∫

d2b
∑

k=1

P (k,< n(b, s) >) =

∫

d2b
[

1 − e−<n(b,s)>
]

, (5)

which is the usual eikonal expression if we consider the link between< n(b, s) > and the eikonal
χ(b, s):

< n(b, s) >= 2Imχ(b, s). (6)
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Fig. 1: minijet cross section for different input parton densities.

3 Eikonal model

The eikonal representation allows to implement multiple parton scattering and to restore a finite
size of the interaction. Neglecting the real part of the eikonal function, an acceptable approxima-
tion in the high energy limit, the expression for the total cross section is

σtot = 2

∫

d2b
[

1 − e−n(b,s)/2
]

. (7)

The average number of partonic collisions receives contributions both from hard and soft physics
processes and we write it in the form

n(b, s) = nsoft(b, s) + nhard(b, s), (8)

where the soft term parameterizes the contribution of all the processes for which the partons
scatter withpt < ptmin. It is the only relevant term at low-energy and it establishes the overall
normalization, while the hard term is responsible for the high-energy rise. From (3), we approx-
imate this term with

nhard(b, s) = A(b, s)σjet(s), (9)

where the minijet cross section drives the rise due to the increase of the number of partonic
collisions with the energy andA(b, s) is the overlap function which depends on the (energy



dependent) spatial distribution of partons inside the colliding hadrons. In some older models
[6] a simpler factorized expression forn(b, s) was used, with the overlap function depending
only onb. However, when up-to-date realistic parton densities are used, such impact parameter
distributions, inspired by constant hadronic form factors, led to an excessive rise ofσtot with the
energy. In our BN model we include ans-dependence in the overlap function that has to tame
the strong growth due to the fast asymptotic rise ofσjet [2].

We identify soft gluon emissions from the colliding partons as the physical effect respon-
sible for the attenuation of the rise of the total cross section. These emissions influence matter
distribution inside of the hadrons, hence changing the overlap function. They break collinearity
between the colliding partons, diminishing the efficiency of the scattering process. The number
of soft emissions increases with the energy and this makes their contribution important, also at
very high energy. The calculation of this effect uses a semiclassical approach based on a Block-
Nordsieck inspired formalism [7], the basic assumption of this technique is that all emissions
are independent from each other, so the number of gluons emitted follows a Poisson distribu-
tion. Thereof one obtains a distribution of the colliding partons as function of the transverse
momentum of the soft gluons emitted in the collision, i.e.

d2P (K⊥) = d2
K⊥

1

(2π)2

∫

d2
b eiK⊥·b−h(b) , (10)

the factor h(b) is given by

h(b) =

∫

d3ng(k)[1 − e−ik⊥·b] =

∫

d3k

2k0

∑

m,n=colors

|jµ,m(k)jµ,n(k)|[1 − e−ik⊥·b],

whered3ng(k) is the distribution for single gluon emission in a scattering process and it is linked
to the QCD currentjµ responsible for emission.

We have proposed to obtain the overlap function as the Fourier transform of the previous
expression of the soft gluon transverse momentum resummed distribution, namely to put

ABN (b, s) = N

∫

d2
K⊥ e−iK⊥·bd2P (K⊥)

d2K⊥
=

e−h(b,qmax)

∫

d2b e−h(b,qmax)
, (11)

with

h(b, qmax) =
16

3

∫ qmax

0

αs(k
2
t )

π

dkt

kt
log

2qmax

kt
[1 − J0(ktb)], (12)

this integral is performed up to a maximum value which is linked to the maximum transverse
momentum allowed by the kinematics for a single gluon emitted,qmax [8]. In principle, this
parameter and the overlap function should be calculated for each partonic sub-process, but in
the partial factorization of Eq.(9) we use an average value ofqmax obtained considering all the
sub-processes that can happen for a given energy of the main hadronic process [2]:

qmax(s) =

√

s

2

∑

i,j

∫ dx1
x1

∫ dx2
x2

∫ 1
zmin

dzfi(x1)fj(x2)
√

x1x2(1 − z)

∑

i,j

∫ dx1
x1

∫ dx2
x2

∫ 1
zmin

dzfi(x1)fj(x2)
, (13)



with zmin = 4p2
tmin/(sx1x2). Notice that consistency of the calculation requires that the PDF’s

used in Eq. (13) be the same as those used inσjet. In Fig.2 are presented our results forqmax as
function of

√
s usingptmin = 1.15 GeV.
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Fig. 2: Results forqmax using different input parton densities withptmin = 1.15 GeV.

The integral in (12) has another relevant feature, it extends down to zero momentum val-
ues, and to calculate it we have to take an expression ofαs different from the perturbative QCD
expression which is singular and not integrable in (12). We use a phenomenological expres-
sion [9], which coincides with the usual QCD limit for largekt, and is singular but integrable for
kt → 0:

αs(k
2
t ) =

12π

33 − 2Nf

p

ln[1 + p(kt

Λ )2p]
. (14)

This expression forαs is inspired by the Richardson expression for a linear confining potential
[10], and we find for the parameterp that

• p < 1 to have a convergent integral (unlike the case of the Richardson potential where
p = 1)

• p > 1/2 for the correct analyticity in the momentum transfer variable.

Fig.3 [1] shows our predictions, obtained for the total cross-section using a set of phenomeno-
logical values forptmin andp, and varying the parton densities. We also make a comparison with
data and other current models.
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other models [12].

4 Restoration of Froissart Bound

The Froissart Martin Bound [13] states thatσtot cannot rise faster than a function which is pro-
portional tolog2(s). In order to see that in our model this bound is respected, we approximate
our total cross section at very large energies as

σtot ≈ 2π

∫

db2
[

1 − e−nhard(b,s)/2
]

, (15)

with nhard(b, s) ≈ σjet(s)Ahard(b, s). We then take forσjet the asymptotic high energy expres-
sion:

σjet = σ1

(

s

GeV 2

)ε

,

with σ1 =constant andǫ ∼ 0.3 − 0.4. BeingAhard(b, s) ∝ e−h(b,s), we can consider in (12) the
infrared limitkt → 0 where the integral receives the dominant contribution. In this limit we have

αs(k
2
t ) ≈

(

Λ

kt

)2p

,

apart from logarithmic terms. Then, withh(b, s) ∝ (bΛ̄)2p [2] (again apart from logarithmic
terms), we have

Ahard(b) ∝ e−(bΛ̄)2p

,



and from this expression
nhard = 2C(s)e−(bΛ̄)2p

,

with C(s) = A0σ1
2

(

s
GeV 2

)ε
. The very high energy limit of Eq. (15) then gives

σtot ≈ 2π

∫ ∞

0
db2[1 − e−C(s)e−(bΛ̄)2p

] →
[

ε ln

(

s

GeV 2

)]1/p

. (16)

The asymptotic growth ofσtot in our model depends on the parameterǫ which fixes the asymp-
totic rise of the minijet cross section, and onp which modulates the infrared behavior ofαs.
Notice that1/2 < p < 1 and thus this approximated result links the restoration of the Froissart
bound in our model with the infrared behavior ofαs. We can now understand why a knowledge
of the confining phase of the strong interaction is necessary if we want to restore the finite size
of the hadronic interaction.
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