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1 Introduction

A good knowledge of total crosss-sections of high energy photon-proton and photon-
photon interactions, in an energy domain where no data are available, is important
from the point of view of understanding high energy cosmic ray data and planning of
the TeV energy e+e− colliders respectively. This requires developing a model which
can explain the current energy dependence of these cross-sections observed in the
laboratory experiments and then using it to predict the cross-sections in the required
higher energy regime. Apart from this very prosaic reason for studying the subject,
high energy behaviour of total hadronic cross-sections is an issue of great theoretical
importance. Very general arguments based on unitarity, analyticity and factorisation
in fact imply a bound on the high energy behaviour of total hadronic cross-sections [1].
This bound predicts, independent of the details of the strong interaction dynamics,
that asymptotically σtot ≤ C(log s)2. All the experimentally measured hadronic cross-
sections seem to rise with energy [2], although it is not clear whether the rate is the
same for all the hadronic processes; nor is it clear whether the asymptotic behaviour
is already reached at the current energies. In view of the important clues to the strong
interaction dynamics that this energy dependence holds and the equally strong need of
its precise knowledge in the high energy regime for the planning of future experiments,
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or the understanding of the high energy cosmic ray data, it is not surprising that this
has been a subject of intense theoretical investigations [3, 4].

Since QCD has now been established as the theory of strong interactions, it is of
course of import to seek an understanding of this interesting bound in a QCD based
picture and try to see clearly as to which piece of the QCD dynamics is it most closely
related to. A description of one effort [5] in this direction, viz. a QCD based model to
describe the energy dependence of the total hadronic cross-section and its extension [6]
to the case of the high energy behaviour of the photon induced processes is the subject
of this note. We will first summarise very briefly the current experimental situation
on the observed energy dependence for all the hadronic cross-sections including the
photon induced ones. Then we will describe the original minijet model [7] which
tries to calculate this dependence in a QCD based picture. After pointing out the
problem of ’too fast’ an energy rise predicted in these models, we will then show how
the resummation of soft gluons can tame the rise [8] and how it is possible to obtain
a satisfactory description of the current data with stable predictions at the LHC [9]
within the framework. Then we turn to how the model can be extended to describe
photon-induced processes in terms of the measured photon structure function and
present our predictions for the high energy photon-proton cross-sections obtained in
this model [6].

2 The data for pp to γγ

With the pp/pp , γp and γγ cross-sections in the milibarn, microbarn and nanobarn
range[10], it is possible to accommodate them all in the same figure by multiplying
the γp and γγ cross-sections by 330 and (330)2 respectively. This is an ad hoc factor,
approximately given by Vector Meson Dominance (VMD) and the quark parton model
[6]. Such compilation of all the proton and photon data for the hadronic cross-sections
is shown in Figure 1, from [6]. While γp and pp/pp data could be interpreted as
indicating the same rise, at least at presently reached accelerator energies, the figure
seems to indicate that the σγγ data from LEP rise somewhat faster than the others.
In the left panel of Fig. 1 the band corresponds to the predictions for the total pp/pp
cross-sections according to the Block-Nordsieck (BN) model which we shall describe
in the coming section. The same band is also shown in the right panel, together
with predictions of other models [11] for purely proton processes. The figure makes
clear that any model has to address three issues: 1) what makes the cross-sections
rise, 2) what makes them obey the Froissart bound and 3) whether they indicate any
breakdown of factorisation between the proton and photon processes.
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Figure 1: Proton and photon normalised cross-sections [6] with the band of predic-
tions for proton-proton from [9], also shown on the right, together with estimates
from various models.

3 Minijet models

Minijet models were one of the early QCD based models which made an effort to
understand the energy rise in terms of the rising gluon content of the hadrons at
small values of x and the basic QCD cross-section [12]. The cross-section for the jet
production in collisions of two hadrons A,B in the process:

A +B → X + jet (1)

is obtained by convoluting the parton-parton subprocess cross-section with the given
parton densities and integrating over all values of incoming parton momenta and
outgoing parton transverse momentum pt, according to the expression

σAB
jet (s, ptmin) =

∫ √
s/2

ptmin

dpt

∫ 1

4p2t /s
dx1

∫ 1

4p2t/(x1s)
dx2

×
∑
i,j,k,l

fi|A(x1, p
2
t )fj|B(x2, p

2
t )
dσ̂kl

ij (ŝ)

dpt
(2)

where A and B are the colliding hadrons or photons. By construction, this cross-
section depends on the particular parametrization of the parton densities evaluated
at scale p2t . This cross-section strongly depends on the lowest pt value on which one
integrates, viz. ptmin. The term mini-jet was introduced long ago [13] to indicate all
those low pt processes which are amenable to a perturbative QCD calculation but are
actually not observed as hard jets; pt indicating the scale at which αs is evaluated in
the mini-jet cross-section calculation. One can have ptmin ≈ 1÷ 2 GeV . This minijet
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cross-section rises very fast with
√
s, the rate of rise is controlled by the dependence

of the parton densities at low-x values and ptmin used. In the simplest version of the
model [7] σtot was assumed to be given by

σtot = σ0 + σjet(s, ptmin).

Eventhough these early calculations caught the essence of QCD dynamics that can
cause the rise of total and inelastic cross-section with energy, they predicted a rise with
energy which depended on a parameter ptmin arbitrarily varying with energy. This
was made necessary by the known low-x behaviour of the parton densities, which
predicted a very fast rise with energy, leading to unitarity violation. The unitarity
is achieved by embedding the minijet cross-section in an eikonal picture [14]. In fact
many features of not just the cross-section but also quantities such as multiplicity
distributions etc. can be successfully described in the eikonalised minijet picture [15].

In the eikonal formulation, σtot is obtained from an eikonal function χ(b, s) which
describes the impact parameter distribution during the collision, namely

σelastic =
∫

d2b|1− eiχ(b,s)|2 (3)

σtotal = 2
∫
d2b[1− e−Imχ(b,s)cosℜeχ(b, s)] (4)

σtotal inelastic ≡ σinel =
∫
d2b[1− e−2Imχ(b,s)] (5)

Neglecting the real part of the eikonal for the hadronic processes, one gets a very
simple expression for the total cross-section

σtotal = 2
∫
d2b[1− e−n(b,s)/2] (6)

with n(b, s) the average number of inelastic collisions.
Minijet models with the well motivated QCD input, embedded into the eikonal

representation, are able to describe the early rise correctly. However, without any
further energy dependent input they often fail to obtain the presently exhibited level-
ling off at high energy, a behaviour already consistent with the Froissart bound [16].
It is clear that one needs additional input: within QCD there is one important effect
which can modify the energy dependence, and this is soft gluon emission from the
scattering partons. We shall discuss this effect in the next section.

4 Block-Nordsiek Model

The BN model differs from and improves on the usual mini-jet models, including the
eikonalized ones, in three significant ways, namely 1) by implementing perturbative
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QCD input through currently used PDFs for the mini-jet cross-sections, 2) intro-
ducing soft gluon kt-resummation to control the rise as the basic mechanism which
describes the impact parameter distribution of the collision, with the upper scale in
soft gluon resummation linked by kinematics to the mini-jet cross-section and finally
3) pushing the soft gluon integral into the InfraRed (IR) region. We have discussed
the mini-jet calculation in the previous section. Here we shall illustrate the basic
features of resummation and our approach to it.

4.1 Resummation

We shall start by recalling some properties of soft photon resummation. In QED, the
general expression for soft photon resummation in the energy-momentum variable Kµ

can be obtained order by order in perturbation theory [17, 18, 19] as

d4P (K) = d4K
∫

d4x

(2π)4
eiK·x−h(x,E) (7)

where d4P (K) is the probability for an overall 4-momentum Kµ escaping detection,

h(x, E) =
∫
d3n(k)[1− e−ik·x] (8)

and

d3n(k) =
d3k

2k0
|jµ(k, {pi})|2 (9)

The electromagnetic current jµ depends on the momenta of the emitting matter fields
{pi} and to leading order in αQED is given by

jµ(k, {pi}) = − ie

(2π)3/2
∑
i

ǫi
piµ
pi · k

(10)

with the sum running on all the entering particles (ǫi = +1) and antiparticles(-1).
For outgoing fields, the signs are reversed.

The expression in Eq.( 7) can also be obtained employing the methods of statistical
mechanics [20]. One starts with a discrete variable representation

d4P (K) =
∑
nk

P ({nk})δ4(K −
∑
k

nkk)d
4K (11)

and sums on all the possible Poisson distributed soft photon configurations, i.e.

P ({nk}) = Πk
nnk

k

nk!
exp[−nk] (12)

where nk is the number of photons emitted with momentum k. From Eqs. (11,12)
one can determine the probability of observing a 4-momentum loss K accompanying
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a charged particle reaction by using the integral representation for the 4-dimensional
δ-function and exchanging the order between forming the product in P ({nk}) and the
summation over all the distributions. Then, going from the sum over discrete values
to an integral over soft photon momenta, one can obtain Eqs. (7, 8). The derivation
being semi-classical, it cannot give any information on d3n(k). For this, one needs
to use the perturbative expression for the electromagnetic current as in Eqs. (9,10).
Notice that in this derivation, it is energy momentum conservation which ensures the
cancellation of the infrared divergence between soft and real quanta emission. This
follows from the semi-classical approach, since in the infrared region the uncertainty
principle does not allow to distinguish between real and virtual quanta.

From Eq. (11), the integration over the 3-momentum variable gives

dP (ω) =
β

γβΓ(1 + β)

dω

ω
(
ω

E
)β (13)

with γ the Euler’s constant, β ≡ β({pi}, me) defined as the integration over the soft
photon angular distribution, i.e. β such that

∫
Ωk

d3n(k) = β
dk

k
(14)

and E is the maximum energy allowed to soft photon emission. With E being the
energy scale of the reaction, the integration of Eq.(13) up to the energy resolution
∆E, gives the well know behaviour (∆E/E)≃α logE/me proposed in the early days of
QED [21].

While it is easy to obtain a closed form for the energy distribution, a closed form
for the momentum distribution is not available. It is also not necessary, since the first
order expression in αQED is adequate. More interesting, for applications to strong
interactions, is the transverse momentum distribution, namely

d2P (K⊥) = d2K⊥
1

(2π)2

∫
d2b e−iK⊥·b−h(b,E) (15)

with
h(b, E) =

∫
d3n(k)[1− eik⊥·b] (16)

For large transverse momentum values, by neglecting the second term and using a
cut-off term as lower limit of integration, the above expression coincides with the
Sudakov form factor [22]. In QCD, Eq. (16) is used to discuss low-pt transverse
momentum distributions through the expression [23, 24]

h(b,M) =
4CF

π

∫ M

1/b
αs(k

2
t )
dkt
kt

log
2M

kt
(17)

where CF = 4/3.
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We use resummation to approach the very large impact parameter region, which
plays a role in such quantities as the total cross-section. For this, we need to explore
the IR region and use the full range of integration of Eq. (16). In the region kt < Λ
we propose to use an expression for the soft gluon spectrum which takes into account
the effect of a rising confining potential. The expression to use will then be singular
as kt → 0, but must be integrable. As discussed in many of our publications [5, 8],
we shall interpolate between the asymptotic freedom region (AF) and the IR through
the following expression for the strong coupling constant

αs(k
2
t ) =

12π

(33− 2Nf)

p

ln[1 + p(
k2t
Λ2 )p]

(18)

which coincides with the usual one-loop formula for values of kt >> Λ, while going
to a singular limit for small kt, and generalizes Richardson’s ansatz for the one gluon
exchange potential to values of p ≤ 1 [25]. However, notice that, in order to make
the integral finite, we need p < 1. Also analyticity requires p > 1/2 [8].

Having thus extended the region of interest in Eq. (17) to the large impact pa-
rameter values, we use the Fourier transform of Eq. (15) to describe the impact
parameter distribution, and input it into the average number of hadronic collisions,
n(b, s), generated by mini-jets, i.e. we write

nhard(b, s) = ABN (b, s)σjet (19)

with
ABN (b, s) ≡ ABN (b,M) = A0e

−h(b,M) (20)

with the normalization constant A0

A0 =
1

2π
∫
bdb e−h(b,M)

(21)

and with the integral in Eq. (17) extended down to kt = 0, to be used in Eq. (6).
The subscript BN indicates that this b-distribution is obtained from soft gluon kt-
resummation into the IR region.

Another important quantity in soft gluon resummation, is the upper limit of in-
tegration, the scale E in QED calculation, and which we have indicated with M in
the QCD integral. M is in general a function of the incoming and outgoing parton
momenta, and can be determined by the kinematics, as discussed in [6] and following
[26]. Upon integration over all the PDFs, it is seen to be of the order of ptmin and
slowly varying with the c.m. energy.

4.2 BN model for protons

In order to apply our QCD description, inclusive of mini-jets and soft kt-resummation,
to scattering processes, we split the average number of collision n(b, s) as

n(b, s) = nNP (b, s) + nhard(b, s) (22)
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and parametrize the first term, which is meant to include all those processes which
cannot be described through parton-parton scattering discussed in the previous sec-
tion. At low energies, i.e.

√
s approximately up to 20÷ 30 GeV , n(b, s) ≈ nNP (b, s),

whereas as the c.m. energy increases, the second term will asymptotically dominate.
To see how, in the BN model, soft gluon resummation helps to tame the rise of the
mini-jet cross-section and bring satisfaction of the Froissart bound, we shall thus look
at the expression for σtotal at extremely high energies, namely

σT (s) = 2
∫
d2b[1− e−nhard/2] (23)

In the previous edition of this Conference, we have presented a preliminary version
of the argument for satisfaction of the Froissart bound in our model [27]. A more
accurate argument has now been given in [8]. Basically, we find that extending the
integration in Eq. (17) into the IR region with our IR singular, but integrable, αs

introduces a cut-off in b-space, which behaves at least like an exponential (1 < 2p < 2).
Such cut-off allows to evaluate the integral of Eq. (23) at the value where the integrand
suddenly decreases. Inserting the asymptotic expression for σjet at high energies,
which grows like a power of s, and ABN (b, s) from Eq. (20), in such large-b, large-s
limit, we obtain

nhard = 2C(s)e−(bΛ)2p (24)

where 2C(s) = A0(s)σ1(s/s0)
ε. The resulting expression for σT

σT (s) ≈ 2π
∫ ∞

0
db2[1− e−C(s)e−(bΛ)2p

] (25)

leads to

Λ
2
σT (s) ≈ (

2π

p
)
∫ u0

0
duu

1−p

p = 2πu
1/p
0 (26)

with

u0 = ln[
C(s)

ln 2
] ≈ ε ln s (27)

To leading terms in ln s, we therefore derive the asymptotic energy dependence

σT → [ε ln(s)](1/p) (28)

Remembering that 1/2 < p < 1 [1], the above result shows that, with soft gluon
momenta integrated into the IR region, kt < Λ, and a singular but integrable coupling
to the quark current, our model leads to a behaviour consistent with the Froissart-
Martin bound [1].
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4.3 The BN model for photons

To apply the BN model to photon processes, we follow refs. [28, 29], and estimate the
total cross-section as

σγp
tot = 2Phad

∫
d2b[1− e−nγp(b,s)/2] , nγp(b, s) = nγp

NP + Aγp
BN (b, s)

σγp
jet

Phad
(29)

with Phad = 1/240 ≈ O(α) to represent the probability that a photon behaves like
a hadron and with photon PDF’s used to calculate the mini-jet cross-sections and
the scale energy parameter M . A full discussion of how to evaluate this parameter ,
called qmax when it is averaged over the densities, can be found in [6]. qmax depends on
the energy of the subprocesses and, being evaluated using the PDFs of the processes
under consideration, depends on the specific choice of the parametrisation used for
the parton densities in the photon and the proton. As qmax increases with energy, the
growth of the total cross-section due to mini jets is tempered by soft gluon emission.
The calculated values of qmax, for all the available parton densities reach some sort of
saturation at high energies, which in turn reflects in the total cross-sections reaching
a stable slope.

The application of our model to photon total cross-sections shows some interesting
features. While in the present accelerator energy range, γp data could be described
also through factorization models, at very high energies in the TeV range, predictions
differ. We show this in Fig. (2). The left panel plots the data up to the highest accel-
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Figure 2: γp total cross section from [6] in different energy ranges.

erator energies. Data in this region come from cosmic rays [30], from extrapolation of
virtual photon data taken with the BPC [31] and from H1 and Zeus experiments [32].
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In this energy range data can be accomodated by many models, including factoriza-
tion models, in which models for proton cross-sections are extended to photons, by
just multiplying the proton curve by a constant factor [33] or by extrapolating eikonal
models with scaling factors in the impact parameter description of photons [34] or by
assuming for photons the same rise with energy of proton cross-section [35]. However,
as one can see from the right panel, the situation changes as the c.m. energy of the γp
system reaches into the TeV range. Here the discrepancy with factorization models,
exemplified by the lower band, is clearly indicated both by the upper band obtained
through our BN model, as well as by the dashed curve within it. This curve was
independently obtained in [16] from a fit to accelerator data and confirms the validity
of our model into an energy range so far inaccessible through particle accelerators.

5 Conclusions

We have discussed the results from a mini-jet model which incorporates soft gluon
kt-resummation as a taming effect on the rapid rise with energy of low-x initiated
mini-jet cross-sections. This has been applied to both pp/pp and γp processes. We
find that soft kt-resummation, inclusive of IR gluons with kt < Λ, plays a crucial
role in trasforming the power like rise of the jet cross-sections into a more subdued
logarithmic behaviour. We accomplish this through the use of a phenomenological
ansatz for the coupling between soft gluons and the quark current which gives an
expression singular but integrable.
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