
ar
X

iv
:1

11
2.

54
28

v1
  [

he
p-

la
t]

  2
2 

D
ec

 2
01

1
BI-TP 2011/42, TIFR/TH/11-47

A faster method of computation of lattice quark number susceptibilities
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We compute the quark number susceptibilities in two flavor QCD for staggered fermions by adding
the chemical potential as a Lagrange multiplier for the point-split number density term. Since lesser
number of quark propagators are required at any order, this method leads to faster computations.
We propose a subtraction procedure to remove the inherent undesired lattice terms and check that
it works well by comparing our results with the existing ones where the elimination of these terms is
analytically guaranteed. We also show that the ratios of susceptibilities are robust, opening a door
for better estimates of location of the QCD critical point through the computation of the tenth and
twelfth order baryon number susceptibilities without significant additional computational overload.
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I. INTRODUCTION

Quantum Chromo Dynamics (QCD), the theory of strong interactions, may have a critical point in the temperature
(T)-baryon number density (or the baryonic chemical potential µB) depending on the number of light flavors it has.
The search for this critical point is one of the major experimental goals of many heavy ion collider experiments world
wide. In particular, the STAR experiment at the Brookhaven National Laboratory has begun an extensive Beam
Energy Scan(BES) program [1]. It aims to scan the QCD phase diagram for baryon chemical potential between 20 to
around 400 MeV, looking for the signatures of the presence of the critical point. FAIR at GSI, Darmstadt, Germany
and NICA at Dubna, Russia are proposed to be operational in future with a key objective as the search for and
the study of, a QCD critical point. It, therefore, appears natural to have a first principles theoretical exploration of
the QCD critical point, with a possible prediction for its location which could serve as a useful reference for these
large scale experiments. The physics near the critical point is essentially non-perturbative. Lattice gauge theory is
the most successful non-perturbative tool which can be used for such an exercise. Fluctuations of conserved charges
like the baryon number or strangeness are sensitive indicators of the existence of singularities in the phase diagram
like the critical point [2, 3]. It is expected that the baryon number susceptibility would diverge at the critical point.
On a finite lattice, however, this quantity will show a peak at the critical point which would get sharper as the
lattice volume is increased. The direct computation of the susceptibility at finite baryon density is difficult due to
the infamous “fermion sign problem”. One of the techniques to circumvent the sign problem at finite density is to
compute the baryon number susceptibility as a Taylor series expansion in chemical potential near zero [4–6]. The
radius of convergence of the series should yield an estimate of the location of the critical point [7]. For the precise
estimation of the radius of convergence, one needs to compute ratios of as many higher orders of baryon number
susceptibilities as possible. Current state of the art is the eighth order susceptibility on the lattice [8]. Higher order
terms are important in determining the critical point, and extending to higher orders in Taylor series is therefore
desirable although the explosion in the CPU time required is severely constraining.
There are two major issues that have to be addressed for the efficient computations of higher order quark number

susceptibilities(QNS). Firstly, using the standard method of introducing chemical potential on the lattice [9–12], the
computation of QNS beyond eighth order with reasonably good precision becomes rather expensive. At each order,
the fermion matrix inversions account for the maximum time involved in computing the QNS. As shown in [7], twenty
inversions are necessary for computing the eighth order susceptibility; it would increase to about forty for the tenth
order. For computing higher orders of QNS on the lattice, the number of matrix inversions would thus increase
drastically thereby increasing the computation time. Secondly the current estimates of the susceptibilities beyond
fourth order on the lattice tend to become statistically demanding as they are rather noisy. This is due to the fact
that there are delicate cancellations in the expressions of QNS between different terms. Moreover, the number of
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such terms itself increases progressively with the order of the susceptibility. Each term has to be computed with
appropriate precision in order to ensure the cancellation of is free of computational artifacts. It would be desirable to
reduce the number of such cancellations.
In this paper we attempt to address both these issues. We use a staggered fermion matrix in which the chemical

potential, µ, enters as a Lagrange multiplier, multiplying the point-split conserved number density term. It alleviates
the problems mentioned above, as shown in [13]. For computing the eighth order QNS, only eight fermion matrix
inversions would be needed [13] as compared to the twenty required in the conventional method [9]. In the early years
of lattice computations this method of introducing µ linearly was discarded because the second order QNS computed
using this term leads to a 1/a2 lattice term that diverges in the limit of vanishing lattice spacing, a. Modifications
of the lattice action [9–12] eliminated this term exactly for the free theory. In addition, they also ensured the correct
Fermi surface on the lattice. These modifications lead to the difficulties in computing the higher order QNS though. It
therefore appears a worthy attempt to focus back on the linear in µ action and devise ways to obtain physical answers.
A method of successful elimination of the divergence maybe relevant in another context as well. The recently proposed
overlap operator at finite density [14] with exact chiral symmetry on the lattice has such a linear dependence in µ.
Indeed, the suggestions of [9–12] of divergence removal do not seem to work in that case.
Our paper is organized as follows. In Section II we briefly review the basic formulae of the various susceptibilities

and show the differences in the two methods. In Section III we suggest a procedure to remove the lattice artifacts
in the QNS computed with the linear term in µ. Free fermion results are shown to yield the correct continuum limit
with it. We then compare our results for full QCD with those in the standard exponential method [9]. We show
that our results are consistent with the existing results for different orders of QNS and the ratios of baryon number
susceptibilities for a wide range of temperatures. A summary of our results along with possible sources of errors and
their refinement is given in the last section.

II. FORMALISM

The quark number susceptibilities(QNS) for two flavor QCD are defined as,

χij(µu, µd) =
T

V

∂i+j lnZ(T, µu, µd, ,mu,md)

∂µiµj
(1)

where Z is the QCD partition function,

Z(T, µu, µd) =

∫

DUe−SGDetD
1

4

uDetD
1

4

d . (2)

SG is the action for the gluon fields. We use the standard plaquette action for SG. Di, for each i = u, d, is the
staggered fermion matrix in presence of finite quark chemical potentials. Several choices of the Dirac matrix are
possible on the lattice at finite density. As in the continuum, the chemical potential can be introduced as a Lagrange
multiplier corresponding to the conserved number density on the lattice in the point split form. This term is added
to the standard staggered fermion matrix to yield the D(µ) which we use in this work:

D(µ)xy = D(0)xy + µa
[

η4U
†
4 (y)δx,y+4̂ + η4U4(x)δx,y−4̂

]

=

3
∑

i=1

[

ηiUi(x)δx,y−î − ηiU
†
i (y)δx,y+î

]

− (1− µa)η4U
†
4 (y)δx,y+4̂ + (1 + µa)η4U4(x)δx,y−4̂ +ma δx,y. (3)

ηi are the phase factors remnants of the gamma matrices as usual. Replacing (1± µa) by exp(±µa), one obtains the
popular method [9] of introducing µ. We shall compare our results with those obtained by employing the latter.
In general, the chemical potentials µi and µj , for quark flavors i and j respectively need not be the same. But

since isospin is a good symmetry for QCD, we set the chemical potentials for up and down quarks to be the same,
µu = µd = µ. Hence the baryon chemical potential is just µB = 3µ. The baryon number susceptibilities can then be
expressed in terms of the quark number susceptibilities(QNS) χij . For two flavor QCD, the expressions for baryon
number susceptibility of n-th order, χn

B, are

χ
(4)
B =

1

2
[χ40 + 2χ31 + χ22] ,

χ
(6)
B =

1

4!
[χ60 + 4χ51 + 7χ42 + 4χ33] ,

χ
(8)
B =

1

6!
[χ80 + 6χ71 + 16χ62 + 26χ53 + 15χ44] . (4)
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In this work we would be interested in computing the baryon number susceptibilities at µB = 0 since these quantities
appear in the Taylor series expansion of the second order baryon number susceptibility expressed in powers of µB,

χ20(µB)

T 2
=

χ20(0)

T 2
+ χ

(4)
B

(µB

3T

)2

+ χ
(6)
B

(µB

3T

)4

+ χ
(8)
B

(µB

3T

)6

+ .. (5)

If a critical point exist then the baryon number susceptibility should diverge at that point in the continuum limit.
The radius of convergence of this series, should therefore determine the location of the critical point in the T -µB plane
of the QCD phase diagram. It can be defined as

rn = lim
n→∞

√

√

√

√

χ
(n+1)
B

χ
(n+3)
B

, or rn = lim
n→∞

[

χ
(2)
B

χ
(n+2)
B

]1/n

. (6)

At the critical point, all the χ
(n)
B are positive definite and the successive estimates of the radius of convergence agree

with each other [7]. It is clear from the above definitions of the radius of convergence that one needs to estimate more
and more higher orders of the baryon number susceptibilities in order to locate it with precision and reliability.
The QNS in Eq. (1) can be written in terms of the trace of the derivatives of the Dirac matrix in Eq. (3) and

its inverse at µ = 0. All the expressions for the QNS upto eighth order are given in the Appendix of Ref.[7] as
expectation values of Oijkl... These in turn are written in terms of the derivatives and inverse of D. We note that as
a consequence of changing to our lattice Dirac operator linear in chemical potential, only the expressions for Oijkl..

change, and indeed simplify a lot. This is because the second and higher order derivatives with respect to the chemical
potential of the D in Eq. (3) vanish. For example, the expression of χ40 in our case in the notation of Ref. [7] is still,

χ40 =
T

V

[

〈O1111 + 6O112 + 4O13 + 3O22 +O4〉 − 3〈O11 +O2〉2
]

, (7)

with each such On simply given by

On = (−1)n−1(n− 1)! Tr(D−1D′)n . (8)

In order to appreciate the difference, let us point out as an example O2 and O4 in our case are:

O2 = − Tr(D−1D′)2 and O4 = − 6Tr(D−1D′)4 , (9)

while in Ref. [7] they are

O2 = − Tr(D−1D′)2 +Tr(D−1D′′) and

O4 = −6Tr(D−1D′)4 + 12Tr[(D−1D′)2D−1D′′]− 3Tr(D−1D′′)2 − 4Tr(D−1D′D−1D′′′) + Tr(D−1D′′′′) . (10)

From a comparison of the Eq. (9) and Eq. (10), one sees the absence of the second derivative term in the former.
In fact, it arises due to those modifications which eliminate the free theory divergence. But then due to the same
reasons Eq. (10) has four additional terms of alternating sign as compared to Eq. (9). This is generic. As the order
n increases, the number of such terms in the expression of the On increases. It should be noted that each trace in
the expressions of QNS contains product of the inverse of the Dirac operator with the derivatives of Dirac operator
with respect to µ. The matrix inversion is the most expensive computation on the lattice. If successive derivatives
of Dirac operator are all finite, one has to compute more number of matrix inversions. Using the operator defined in
Eq. (3) only the first derivative of the Dirac operator is finite. Thus the price of additional terms with sign changes
increases at the higher orders. Computationally, this implies more inverses of the matrix D and more precision with
each term has to be computed in order to get On with comparable accuracy for all n. It therefore seems a worthy
effort to devise a scheme to remove the free theory divergence in another way, as we attempt in this work. In one
can successfully remove the lattice artifacts that appear in the expressions of the lower order susceptibilities, then it
can potentially open the door to compute the eighth and the higher derivatives with considerably less computational
effort, enabling a better check on the radius of convergence estimate, as argued in [13].

III. RESULTS

In this section we first begin by computing the susceptibilities of free fermions using the staggered operator in
Eq. (3) in order to separate the artifacts in the second and fourth order QNS. In [13] we proposed to remove the
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FIG. 1: The contour diagram for calculating the number density for free fermions at zero temperature on the lattice. P denotes

the pole at i sinh−1
√

f

(1−µ2a2)1/4
.

undesired artifacts by estimating the zero temperature contribution on a symmetric lattice for each value of the gauge
coupling, as is done for the pressure or energy density computation. This was motivated by the idea of keeping the
cut-off effects to be the same as temporal lattice size increases. On the other hand, if one notes that the all the
analytic methods of removal of the µ2-divergent terms were proven to be so only for the free theory, and that no
new divergences appeared in the simulations of the interacting theory, one is lead to believe that a numerical method
devised also for the free theory may work as well. Furthermore, since no new renormalizations are necessary at finite
T and µB in perturbation theory, we expect the free theory artifacts to be the dominant ones. In this work we show
that this method of subtraction gives results for all QNS which are in good agreement with the existing results for
T > Tc. For T < Tc, this subtraction method appears to lead to some differences but these are small enough to be
tolerated as differences in the finite parts of two schemes of removal of infinity. On finer lattices these will shrink,
if this is indeed so. Moreover, even for T < Tc, we find that the crucial ratios of susceptibilities and therefore, the
radius of convergence estimates are not sensitive to it.

A. Free theory

The number density and the quark number susceptibilities(QNS) can be calculated analytically for the free fermions.
We sketch how it is done, and discuss the results for number density for free fermions, obtained with the fermion
matrix in Eq. (3), and the popular exponential form. We consider a lattice with N sites along each spatial direction
and NT sites along the temporal direction. The lattice spacing is taken to be a and therefore the volume is N3a3 and
the temperature of the system is T = 1/(NTa). From Eq. (1), the expression for the number density on the lattice is

na3 =
i

N3NT

∑

~p,n

(sinωn + iµa cosωn) cosωn

f + (sinωn + iµa cosωn)2
≡ i

N3NT

∑

~p,ωn

F (ωn, µa, ~p) . (11)

where f = (ma)2 + sin2(ap1) + sin2(ap2) + sin2(ap3). For the other form, µ appears only as (ωn − iµa) in place of
ωn above. The expression can be evaluated by the usual trick of converting the sum over energy states to a contour
integral. The zero temperature limit for a fixed lattice spacing corresponds to , NT → ∞. The energy eigenvalues
then become continuous and lie in the range [−π

a , π
a ]. The expression for the number density in this limit is,

na3 =
i

N3

∑

~p

[

−iF (~p, µa)Θ

(

θ − sinh−1

√
f

(1− µ2a2)1/4

)

+

∫ π

−π

dω

2π

sinω(cosω + iµa sinω)

f + (1− µ2a2) sin2 ω

]

, (12)

where F (~p, µa) is the residue of the function F (ω − iθ) in the positive half plane and tan θ = aµ. In terms of the
contour diagram in the complex ω plane in Fig. (1), the original term is the line integral 3. Completion of the contour
leads to the residue and since the contributions of the line integrals 2 and 4 cancel with each other, one is left with
the contribution of the line integral 1. It gives rise to additional lattice artifacts in the expressions of number density.
It vanishes for the exponential form due to ω → −ω symmetry. Note, however, that the residue is present in both
cases, and leads to terms higher order in a in each of them. More specifically, in the continuum limit of a → 0, the
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number density in the two cases are respectively

n ≈ 2
(

1−
√
2
)

µ

3π2a2
+

µ3

3π2

[

1− 3
(

8− 5
√
2
)

4

]

+
µ5a2

6π2



1−
6
(

100− 125√
2

)

120



+ ..

= −0.276µ

π2a2
+

0.303µ3

3π2
+

0.42µ5a2

6π2
+ .. (13)

and

n =
µ3

3π2
+

µ5a2

6π2
+ .. (14)

Comparing the expressions in Eqs. (13) and (14), one notices that the free theory divergence which, as mentioned
earlier, exists for the Dirac matrix in Eq. (3). It is eliminated, on the contrary, analytically in the latter case. There
is an additional difference which matters in any physical comparison. The second term of Eq. (12) contributes to the
µ3 term in Eq. (13) as well, and reduces its value. On the other hand, such a Fermi surface violation is also cured in
the usual method giving the correct coefficient for the µ3. The expressions are similar in form for higher order terms
which affect the values of the sixth and higher order susceptibilities on a finite lattice. Indeed, the coefficient of the
µ5 term is even larger in in Eq. (14), a trend which persists for even higher terms as well. Thus their approach in the
continuum limit will be correspondingly slower.
Since the QNS χn0(µ = 0) of interest to us here are computed from the number density in Eq. (13), they too have

these lattice artifacts in the form O(an−4). As we saw above, for n ≥ 6 they exist for both forms of the Dirac matrix,
and are a bit less of a nuisance for the linear form than the exponential one. But, the χ20 has an O(1/a2) term which
diverges in the continuum limit. It has to be subtracted before the continuum limit is taken. There is an additional
O(a0) term in the expression for the fourth order susceptibility which gives an incorrect result. Clearly, removal of
these artifacts is necessary. Since we can trace them to the second term in Eq. (12), we propose to compute them
directly numerically from it, and subtract. Thus taking one more derivative with respect to µa, setting aµ = 0 in the
resultant expression, the subtraction term of χ20 can be computed on a lattice of volume N3 and infinite temporal
extent by first analytically integrating over the energy eigenvalues along the temporal direction. Thus we numerically
evaluate

χ20(0) = − 1

4 N3

∑

~p

(

1−
√

f

1 + f

)

, (15)

and

χ40(0) = − 3

4 N3

∑

~p

(

2− 3 + 2f

1 + f

√

f

1 + f

)

. (16)

as the vacuum subtractions at zero temperature. Eliminating these artifacts, the second and the fourth order suscep-
tibilities are shown as a function of 1/N2

T in Fig. (2) and compared with the corresponding results obtained using the
exponential form. In these plots the aspect ratio N/NT is fixed to be four as it yields already the thermodynamic
limit. As NT becomes larger, corresponding to the continuum limit, it is evident from the plots that our proposal for
the artifact subtraction does ensure that these quantities indeed do have the correct continuum limit. The difference
between the results for lattice sizes NT ≤ 10 are due to finite cut-off effects which are comparatively larger for the H-K
method. This difference becomes more for the higher order QNS as shown in the plot of the sixth order susceptibility
in Fig. (3).

B. Interacting theory

In this section we compute the nth order baryon number susceptibilities at vanishing µB for two flavor QCD using
staggered fermions using the operator given in Eq. (3) and the subtraction scheme explained above for the free
theory. Note that we follow all the existing computations in this respect: the analytic cancellation of the divergence
was shown only for the free theory and the same form used for the interacting theory. We used the same configurations
used previously for estimating all susceptibilities up to the eighth order on a NT = 6 lattice [8]. For details of the
configurations and the scale setting, we refer the reader to the Ref. [8]. The lattice size used was 243× 6 and the pion
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FIG. 2: The second (left panel) and the fourth order (right panel) susceptibilities for free fermions as a function 1/N2
T for

different methods of introducing µ.
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FIG. 3: The sixth order susceptibility for free fermions as a function 1/N2
T for different methods.

mass was fixed at Mπ = 230MeV, as there. The critical coupling was defined from the peak of the unrenormalized
Polyakov loop susceptibility. As discussed in the Section II, the expressions of susceptibilities contain trace of fermion
operator insertions. For computing each trace, 500 random vectors were used. This was also the optimum number
of random vectors used in the earlier work [7] for computation of the sixth and eighth order susceptibilities. Thus,
essentially all the computational details were maintained to be the same as in [8]. Our expressions for the various
On are different and we use the subtraction scheme for χ20 and χ40. Our results for QNS are compared with the
corresponding results of [8], i.e., the exponential form and with analytic cancellation of the divergence for the free
theory. Further, we also compute the ratios of our susceptibilities ans compare with the known results.

C. Second order

We compute the zero temperature value of χ20 for free fermions using Eq. (15), by numerically summing over the
momentum modes on a 243 lattice since the spatial volume for our interacting case is 243. We then subtract this
quantity from the χ20 values in the interacting theory computed using the O2 for our case. The left panel of Fig.
(4) compares our results with those of [8], labeled as ‘GG’. At 0.92Tc, the value of our baryon number susceptibility
matches with the existing GG results within errors. This suggests that including our subtracted value the of 〈O2〉
is effectively the same. Since the difference in the two cases comes only from the Tr

(

M−1M ′′) for [8] and the

subtraction term of Eq. (15) on a 243 lattice for our case, we can infer that their values are equal within the numerical
precisions. Since one is evaluated in the interacting theory while the other in the free theory, this equality justifies
our ansatz that interactions do not lead to further divergent terms, as expected also in perturbation theory. Once the
divergent term is subtracted the difference between the results in the two methods are due to different cut-off effects.
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FIG. 4: The second order flavor diagonal(left panel)χ20/T
2 and the corresponding one normalized by the Stefan-Boltzmann

value on a NT = 6 lattice (right panel) as a function of T/Tc.

The disagreement at the highest temperatures is consistent with the fact that there are different cut-off effects in the
free theory limit i.e at asymptotically high temperatures. They would vanish only in the continuum limit or very
large lattices. Again this can be easily verified by numerical computations in the free case.
We therefore check the variation of the ratio χ20/χ20,SB computed as a function of temperature where the Stefan-

Boltzmann(SB) value is computed on a NT = 6 lattice for both the cases. We expect that if the cut-off effects in the
interacting theory are not very different from the free theory for temperatures much larger than Tc, this ratio should
be independent of the subtraction procedure used. From the right panel of Fig. (4) it is evident that the GG results
of [8] are consistent with ours for T > Tc. At 1.92 Tc, the deviation from the Stefan-Boltzmann value is about the
same(∼ 20%) for both the methods.

D. Fourth order

We follow the same subtraction procedure again for the fourth order susceptibility and compute the subtraction
constant using the expression in Eq. (16) on a 243 lattice. Comparing the χ4B in the two cases in the left panel of
Fig. (5), a good agreement is evident with the existing GG results. One does see, however, differences arising perhaps
due to the finite size of cut-off a = 1/6T . In the right panel of Fig. (5), the ratio of χ4B and the corresponding Stefan
Boltzmann value on a NT = 6 lattice is shown as a function of T/Tc. The deviations from the continuum Stefan
Boltzmann value are consistent with the free theory results for T > 1.5 Tc indicating that the ideal gas cut-off effects
are likely to be more dominant than the interaction effects. At 1.92 Tc, the ratio is away from unity by ∼ 5% in our
computation whereas the deviation is about ∼ 15% for the GG results. At T = 1.21 Tc, the deviations are larger
than that for free massless fermions indicating larger effects due to interactions in the medium. Of course, continuum
extrapolation are needed to make prediction on the nature of the QCD medium at T ∼ 2Tc, especially in view of the
small differences observed.

E. Sixth and higher order

For sixth order and above, we follow the lesson learnt from the free theory and do not adapt any subtraction. The
sixth and the eighth order baryon number susceptibilities are displayed in Fig. (6). We find again a good agreement
with the GG results. At temperatures below Tc the larger error bars in the GG results compared to our results
arise due to the presence of terms with varying sign in the former. One has larger number of matrix inversions for
computing such terms and one employs noisy estimators to determine them. From the plots it is also evident that the
values of the higher order susceptibilities fall to zero rapidly for T > 1.5 Tc. The regime between 1.2− 1.4 Tc may be
still be sensitive to the critical fluctuations as seen from the large deviations of the sixth and eighth order fluctuations
from the Stefan-Boltzmann values. In the continuum, the values of sixth and the higher order susceptibilities are zero
for free fermions and are finite in QCD only due to the interactions. To understand how dominant are the interaction
effects it is important to reduce lattice artifacts and perform a continuum extrapolation of such quantities. Using the
Dirac operator in Eq. (3) these artifact effects are reduced as compared to the standard operator and also performing
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FIG. 5: The fourth order baryon number susceptibility(left panel) and the same quantity normalized by the Stefan-Boltzmann
value on NT = 6 lattice (right panel) as a function of T/Tc.
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continuum extrapolation will be easier.

IV. RATIOS OF SUSCEPTIBILITIES AND RADIUS OF CONVERGENCE

The ratios of different QNS are sensitive indicators of the location of the critical point and the extent of the critical
region. For massless QCD, the sixth and higher order susceptibilities should peak at Tc with O(4) critical exponents,
implying indirectly the existence of the critical point. Since our input quark mass is quite large we should expect a
crossover at Tc. As mentioned in Section II, the ratios of susceptibilities are used to define the radius of convergence
and hence are important for determining the location of the critical point.
Since the ratios are independent of the volume of the system, it was suggested to use them in comparisons with

data a heavy ion collision experiment where it is difficult to estimate the volume of the fireball formed. Also such
observables can be used for comparing lattice results at finite volume with the experiments [15]. The ratio of the
fourth to the second order baryon number susceptibility is related to the product of kurtosis(κ) and square of the
variance(σ2) of the baryon number. In the heavy ion collision experiments, the κσ2 of the net-proton number is
measured as a function of the center of mass energy of the colliding heavy ion beams. A non-monotonic behavior of
κσ2 as a function of beam energy is a possible signature of the existence of the critical point [6] and is currently being
probed at the RHIC [1].
We compute the quantity K = κσ2 and compare with the value of the same computed from the susceptibility

values in the Ref. [8]. Note that these are still at zero chemical potential, and are meant more for comparison of the
two methods. The results are displayed in the left panel of Fig. (7). A very good agreement is observed between
the results in these two different methods. This implies that the ratios of susceptibilities are not very sensitive to
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FIG. 7: The kurtosis(left panel) and different radii of convergence(right panel) as a function of T/Tc.

the subtraction scheme used. We expect that the radius of convergence estimates too would not be very sensitive
to the different subtraction schemes used. In order to verify this, different radii of convergence defined in Eq. (6)
were computed at 0.92Tc using our results and compared with the corresponding GG estimates. The result of the
comparison is shown in the right panel of Fig. (7). As expected the radii of convergence computed using two different
subtraction schemes are roughly in agreement with each other. This is promising as we can hope to now extend our
analysis in the critical region with susceptibilities at tenth order and beyond this way. We hope to be able to check
whether the current results on the location of the critical point are changed in a a significant way with such estimates
stemming from QNS beyond the eighth order.

V. CONCLUSIONS

Ever since it was recognized that the lattice free theory leads to a−2 divergences in the continuum limit, mostly the
exponential form for the chemical potential term was used, as it eliminates the divergence for the free theory. Such
an exponential form, however, seems not possible for the overlap quarks which have the same chiral properties as the
continuum. Demanding chiral invariance for them even at finite density, one obtains an overlap operator of the form
linear in µ. Moreover, the linear form for any fermions, overlap or staggered, leads to simpler non-linear susceptibility
expressions. Absence of canceling terms, and requirement of fewer Dirac matrix inversions make the linear form more
suited for extension to higher order non-linear susceptibilities needed to estimate the radius of convergence, or the
location of the QCD critical point.
In this work we proposed a numerical scheme to remove the free theory artifacts inherent in the linear form. In

particular, subtractions were introduced for the second and fourth order susceptibility which we suggest should be
evaluated for the free theory at zero temperature but the same spatial volume. As one sees from our Figs. (4,5), it
works well. Indeed, the main difference from the popular exponential form stem from the corresponding free theory
due to the coarse finite spacing used at temperatures T > 1.5Tc. For the practically more relevant ratios, such as those
in the left panel of Fig. (7) used as signature for critical point or in the right panel of Fig. (7), used for estimating
the radius of convergence, our method works as well as the exponential form within errors. It would be interesting to
extend this work to higher orders at the critical point, estimates of which are currently obtained with susceptibilities
up to the eighth order.
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