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Abstract 

The magnetic entropy change (S), a measure of  the magnetocaloric effect,  in  Tb5Si3, a 

compound exhibiting unusual positive magnetoresistance following a magnetic-field-induced 

transition below magnetic transition temperature  (~ 69 K), has been investigated.  We found that 

S is negative in the paramagnetic state. At the magnetic transition temperature, S shows sign 

reversal from negative (in the paramagnetic state) to positive value in the magnetically ordered 

state. The high-field state which is interestingly the high resistive state is found to be associated 

with higher entropy i.e. large positive S, behaving like a paramagnet.  On the basis of this 

observation, we conclude that the magnetic field induces magnetic fluctuations in the system 

resulting in positive magnetoresistance, thereby rendering support to the idea of „inverse 

metamagnetism‟ in this compound. In addition, we note that Arrott plots present an interesting 

scenario. 
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1. Introduction 

The rare earth based intemetallics and oxides have attracted an upsurge of research 

activities in the field of condensed matter physics owing to their multifunctional properties such 

as giant magnetocaloric effect, giant magnetoresistance, shape memory effect, magnetoelastic 

effect and multiferroic properties etc [1-6]. The key factor driving such multifunctinality is the 

coupling of magnetic subsystem with other degrees of freedom which often results from field-

induced metamagnetic transition, accompanying sharp changes in the physical properties such as 

magnetization, magnetoresistance (MR), heat capacity, lattice parameter etc. Therefore the 

metamagnetic systems have recently been exploited for applications in magnetic refrigerators 

[1], ultrafast magnetic switching [7], memory and spintronic devices [3, 8] etc and are 

considered as new technological materials with tremendous potential.  

We have recently reported the unusual behavior of a binary intemetallic, Tb5Si3, 

exhibiting magnetic field-induced transitions [9, 10]. The noteworthy behavior of this compound 

was the observation of a huge positive MR while increasing magnetic field beyond a critical 

field.   The low-field state of Tb5Si3 can be regained by a field-cycling. This is interesting as a 

field induced transition in an antiferromagnet generally transforms a high resistive state to a low 

resistive state resulting in giant negative MR in the vicinity of the metamagnetic transition [2-5]. 

The observation of huge positive MR in the present case prompted us to do further study on 

Tb5Si3 to understand the origin of such a behavior [10]. In an analogy to the magnetoresistance 

behavior of Y doped ErCo2 [11], we proposed that the application of magnetic field leads to 

spin-disorder (fluctuation) in the system, a phenomenon termed as “Inverse metamagnetism”. 

Here, we report here the isothermal magnetic entropy change (S = S(H) – S(0)) as a function of 

field and temperature, derived from magnetization  (M) data,  to obtain a support to this picture.  

2. Experimental Details 

The polycrystalline sample of Tb5Si3 was prepared by conventional arc melting as described in 

Ref. 9. The detailed characterization techniques are also given in the same report. Further 

magnetic measurements were performed, with the help of a commercial superconducting 

quantum interference device (SQUID) magnetometer (Quantum Design) and a commercial 

vibrating sample magnetometer (Oxford Instruments).  
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3. Results and Discussions 

 

The compound Tb5Si3 undergoes a disorder to order transition below ~ 69 K (TN), which 

has been established by the anomalies in magnetization, specific heat and electrical resistivity 

data [9, 10]. In the present investigation, we have measured the isothermal magnetization, M(H), 

in the temperature range 1.8 – 140 K for applied fields up to 70 kOe to evaluate isothermal S. 

The temperature interval for these measurements was chosen as 5 K for (1.8 - 50 K), 2K for (50 

– 70 K) and 10 K for (70 – 140 K). Selected magnetic isothermals of Tb5Si3 for the increasing 

field cycle are presented in Fig.1. As is evident from the figure, there is a clear distinction 

between magnetization behavior for the T ranges above and below TN. While M(H) is found to be 

essentially linear with H without noticeable hysteresis above TN, a magnetic transition at 1.8 K is 

apparent by the sharp change in M(H) in the vicinity of 60 kOe as already discussed in Ref. 9. 

However this transition is smoothened in the intermediate temperature range TN to 25 K. The 

critical field (Hcr) that induces the transition decreases with increasing temperature. Hcr, 

estimated from the maximum in the dM/dT vs. H plot, is shown in the inset of Fig.1. This trend 

observed for Hcr is in contrast to the behavior generally seen in RCo2 compounds in which the 

critical field increases with increasing temperature [6]. On the other hand, a similar behavior of 

Hcr has been reported for the compounds such as Nd7Rh3 [2], Nd6Co1.67Si3 [12], CeFe2 [5], 

manganites [4] etc. This difference in the behavior of Hcr may be due to the fact that the 

metamagnetic transition in the former set of compounds is paramagnetic to ferromagnetic (FM) 

state while it is antiferromagnetic (AFM) to FM state in the latter set of compounds.  

The temperature variation of the critical field is found to be exponential in nature with the 

functional form, [Hcr = 51.765 – 0.56 exp [T/16.19]] (shown by the dotted curve in the inset of 

Fig.1). But below 25 K (close to tricritical point, Ref. 9), there is a deviation of Hcr from 

exponential behavior, which implies that the nature of the phase transition is different below 25 

K. However a careful look at the Arrott plots (log – log M
2
 vs. H/M plot), shown in Fig.2, reveals 

interesting features. It has been reported that negative slope or S-shaped curve is a signature of 

first order phase transition [6, 13] while usually observed positive slope refers to second-order 

magnetic phase transition. However it is fascinating to note that negative slopes are observed for 

Tb5Si3 in the entire temperature range below TN. Even near TN, the initial slope appears to be 
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negative. There is no qualitative change in the nature of the curves around the tricritical point. 

These findings are puzzling to us at the moment. 

We now focus on the behavior of M(H) in the high field state. The notable feature is that 

there is no complete saturation of magnetization following the metamagnetic transition. M(H) 

increases with further increasing H beyond Hcr as though paramagnetic fluctuations are 

superimposed over  ferromagnetic background. This indicates that the high field state is not a 

fully ferromagnetically ordered state.  As magnetocaloric effect (MCE) is useful to obtain the 

evidence of spin fluctuation/disorder in the system, it is pertinent to investigate the field-induced 

change in S.  

The isothermal entropy change is determined from M(H) data by using the relationships 

derived from the Maxwell‟s equation as follows: 

 

The results of S thus obtained from the above relationship as a function of T is shown in Fig. 3. 

We found that S is negative in the paramagnetic state and its magnitude increases 

monotonically with increasing H as expected due to the reduction of spin fluctuation. It shows a 

maximum at a temperature higher temperature than TN (~ 80 K). The interesting feature is that 

S changes sign exactly at TN mimicking inverse magnetocaloric effect (MCE). Although a 

moderate value of S is observed here on either side (+ve and –ve) of the magnetic transition 

temperature, the effective change in S around TN is 8 J/mol K for a field change of 50 kOe, 

comparable to the magnitude observed in many of the magneto-caloric compounds [1]. In the 

figure, we also note that the peak value of S at a given temperature just below TN increases 

with increasing H up to 40 kOe and then decreases for further increment in H. At low 

temperatures (below 25 K), S shows another peak near 7 K for H > 50 kOe. It may be recalled 

that the tricritical temperature falls in the vicinity 25 K for this compound [9] and it is possible 

that the applicability of Maxwell‟s equation to obtain S is questionable [14] in the first-order 

transition regime.   In order to get a better picture, the H-dependence of S is plotted in Fig. 4. At 

the lowest observable temperature, i.e. at 3.4 K, S exhibits a sharp jump at Hcr (= 60 kOe) very 

much similar to the behavior of M(H) and MR near this temperature. A correlation of M(H), MR 
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and S [15] is demonstrated in Fig. 5,  in which we have shown the influence of the magnetic 

field on these properties. Magnetoresistance generally have the contributions from the change in 

electronic orbit due to Lorentz force and the change in electron scattering due to spin fluctuation. 

The Lorentz force was ruled out in Ref. 9. Therefore the positive MR arises from the spin 

fluctuations only which is also reflected in the S behavior. The same trend of S has been 

observed at all temperatures below 25 K while the shape of S curve is different for T > 25 K. 

Looking at figure 5, it appears that S tends to increase beyond the critical field, whereas MR 

decreases. This may be attributed to the fact that the magnetization probes the bulk of the 

sample, whereas electrical resistivity might respond differently to local inhomogeneities in a 

subtle way. The main point of emphasis is that S gets even more positive following the field-

induced transition, even in the temperature regime where the transition is second-order, thereby 

implying an additional contribution of spin disorder. In the T range 67 – 25 K, S shows sluggish 

field dependence following a dramatic increase up to a characteristic field. This characteristic 

field coincides with Hcr, obtained from dM/dH vs. H curve at fixed T. Such a type of S behavior 

in a metamagnetic material is rare. It is important to note that the curves of S(H) above the peak 

in figure 4 for T < TN are parallel to those in the paramagnetic state, thereby rendering support to 

the idea of “inverse metamagnetism”. 

4. Conclusions 

We have investigated the isothermal entropy change behavior of Tb5Si3 exhibiting an unusual 

positive magnetoresistance following a field induced transition. We found that S is negative in 

the paramagnetic state and changes its sign near the AFM transition temperature. In the 

magnetically ordered state (even in the temperature range where the magnetic-field-induced 

transition is not first-order), S becomes more positive beyond certain magnetic fields, following 

the trend in MR behavior reported earlier [9].  But it is found to vary non-monotonically with H 

below TN and the curves interestingly are parallel to those of the paramagnetic state. This 

provides a support to the idea of inverse metamagnetism [10]. Another important finding is that 

the shapes of the Arrott plots are quite puzzling. 
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Fig. 1.:  (color online) Magnetization isotherms of Tb5Si3 at selected temperatures measured on 

increasing magnetic fields up to 70 kOe. Inset shows the critical field (Hcr) as a function 

of temperature. The dashed line in the inset shows exponential fit to the data. 
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Fig. 2.:  (color online) Arrott plots (log – log plot of M
2
 vs. H/M) of Tb5Si3 at selected 

temperatures.  
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Fig. 3.:  (color online) Isothermal entropy change (S) of Tb5Si3 as a function of 

temperature for magnetic fields up to 70 kOe. 
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Fig. 4.:  (color online) Isothermal entropy change (S) of Tb5Si3 as a function of magnetic fields 

at selected temperatures. 
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Fig. 5.:  (color online) Magnetization, magnetoresistance and magnetic entropy change as a 

function of magnetic field. 


