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ON INTERSECTIONS OF RANGES OF PROJECTIONS OF
NORM ONE IN BANACH SPACES

T. S. S. R. K. RAO

Abstract. In this short note we are interested in studying Banach

spaces in which the range of a projection of norm one whose kernel is

of finite dimension, is the intersection of ranges of finitely many projec-

tions of norm one, whose kernels are of dimension one. We show that

for certain class of Banach spaces X, the natural duality between X

and X∗∗ can be exploited when the range of the projection is of finite

codimension. We show that if X∗ is isometric to L1(µ), then any central

subspace of finite codimension, is an intersection of central subspaces of

codimension one . These results extend a recent result of Bandyopad-

hyay and Dutta [2] proved for continuous function spaces and unifies

some earlier work of Baronti and Papini, [4], [3].

1. Introduction

Let X be a real Banach space. Study of properties of ranges of projec-
tions of norm one has always been a central theme in theory of geometry of
Banach spaces. The current study is motivated by some results of Blatter
and Cheney [5], Baronti and Papini, [4], [3] and the more recent work of
Bandyopadhyay and Dutta [2] . In these papers for classical Banach spaces
like the space C(K) of continuous functions and the space of integrable
functions L1(µ), the authors give explicit description of projections of norm
one whose kernel is of dimension one and show that the any projection of
norm one whose kernel is of finite dimension is the intersection of ranges
of finitely many projections of norm one, whose kernels are of dimension
one. Even though proofs of some of these results use specific properties of
sequence spaces c0, `1 and `∞, it turns out that the basic duality that exists
between abstract L-spaces and M -spaces and certain types of projections
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in them can be exploited to obtain similar conclusions . We refer to the
monograph by Lacey, [9] for basic material on abstract L and M spaces and
Banach spaces X whose dual is isometric to L1(µ) for some positive measure
µ (the so called L1-predual spaces). Lacey’s book also has detailed study
of ranges of projections of norm one on these spaces. In particular we note
that the range of a projection of norm one in any of these classes is again
a space in the same class. See also the work of Kamińska et al [8] for the
study of ranges of norm one projections in Lorentz sequence space d(ω, 1)
and some subspaces of Musielak-Orlicz sequence spaces equipped with the
Luxembourg norm. It should be noted that there are examples of finite
dimensional spaces in which the only projections of norm one are the ones
with one dimensional range, see [6]. Examples from [4] show that the inter-
section of ranges of two projections of norm one, with kernels of dimension
one, need not be the range of a projection of norm one.

We next state the three theorems from the work of [4], [3] and a relevant
portion of Theorem 1. 1 in [2] that has motivated this work. We recall that
`∞∗

= `1
⊕

1 c⊥0 , so that any f ∈ `∞∗
can be written as f = h + g for h ∈ `1

and g ∈ c⊥0 with ‖f‖ = ‖h‖+ ‖g‖.

Theorem 1. Let Y ⊂ `∞ be a subspace of codimension n. Then Y is the
range of a projection of norm one if and only if there exists n different
indices t1, ..., tn and a basis f1, ..., fn in Y ⊥ so that fi = hi + gi for hi ∈ `1,
gi ∈ c⊥0 , for 1 ≤ i ≤ n,

‖fi‖ ≤ 2|(hi)ti | and Y = ∩1≤i≤nker(fi).

Theorem 2. Let Y ⊂ c0 be a subspace of codimension n. Then Y is the
range of a projection of norm one if and only if there exists n different
indices t1, ..., tn and a basis f1, ..., fn in Y ⊥ so that for 1 ≤ i ≤ n,

‖fi‖ ≤ 2|(fi)ti | and Y = ∩1≤i≤nker(fi).

Theorem 3. Let K be a compact Hausdorff space. Let Y ⊂ C(K) be a
subspace of codimension n. Then Y is the range of a projection of norm one
if and only if there exists n distinct isolated points t1, ..., tn in K and a basis
µ1, ..., µn in Y ⊥ so that for 1 ≤ i ≤ n,

‖µi‖ ≤ 2|µi(ti)| and Y = ∩1≤i≤nker(µi).
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Remark 4. Thus the spaces c0, `∞ and C(K) have the property, a) : for
any projection of norm one with finite dimensional kernel, the range is an
intersection of ranges of projections of norm one with kernels of dimension
one. Also of interest is property, b) : finite intersections of ranges of pro-
jections of norm one with one dimensional kernel is again the range of a
projection of norm one.

Thus even though one can not expect explicit description of such projec-
tions in general, one can still investigate spaces that have properties a) and
(or) b). We will be formulating our results for property a) . It is clear from
the example in [4] that , investigation of property b) in general will require
more information on the nature of the projections.

We now recall some concepts from M -structure theory from [7]. We
always embedded X in its bidaul X∗∗ under the canonical embedding.

A projection P : X → X is said to be a M (L)-projection if ‖x‖ =
max{‖P (x)‖, ‖x − P (x)‖} (‖x‖ = ‖P (x)‖ + ‖x − P (x)‖ ) for all x. The
range of such a projection is called a M (L)-summand. These projections
behave well w. r. t projections of norm one. We recall from [7] Proposition
I.1.2 that a M projection is a unique norm one projection onto its range and
uniqueness of a L-projection is similarly determined by the kernel.

A closed subspace Y ⊂ X is said to be a M -ideal, if there is a L-projection
P : X∗ → X∗ such that ker(P ) = Y ⊥. This notion has particularly rich
geometric significance when X is a M -ideal in its bidual. For any discrete
set Γ, c0(Γ) is a M -ideal in its bidual `∞(Γ). See Corollary III.3.7 in [7] for
several topological properties of these spaces. This property is in particular
preserved by subspaces and quotients. Also when X is a M -ideal in its
bidual, the canonical projection Q : X∗∗∗ → X∗ defined by Q(Λ) = Λ|X∗ is
a L-projection and one says, X∗ is a L-embedded space.

We show that for a Banach space X that is a M -ideal in its bidual,
any projection of norm one with weak∗-closed range whose kernel is finite
dimensional or reflexive, is the biadjoint of a similar projection in X. For
any Banach space X if in X∗∗ the range of any projection of norm one
with finite codimensional kernel and weak∗-closed range can be written as
intersection of biadjoints of similar projections with kernels of dimension
one, then similar result is true for X.
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We show that these properties determine c0(Γ) among preduals of L1. We
consider the property of being a central subspace of a Banach space (see [1])
, which is weaker than being the range of a projection of norm one. As an
application of Theorem 1.1 of [2] we show that any central subspace of finite
codimension in a L1-predual space, is an intersection of central hyperplanes.
We also show that every central subspace in c0(Γ) and with an additional
condition in `1, is always the range of a projection of norm one.

Part of this work was done during Rao’ stay at the University of Bologna
during June 2011 under a continuation of India4EU Fellowship. He thanks
the Department of Mathematics and Professor P. L. Papini for the hospital-
ity. He also thanks Professor K. Jarosz and the Department of Mathematics
at S. I. U. E for their hospitality, where he is currently a Fulbright-Nehru
Senior Research Fellow.

2. Main Results

We first address the natural duality that exists between X and X∗∗. We
recall that for any projection P : X → X with ‖P‖ = 1, P ∗ : X∗ → X∗

is a projection with ‖P ∗‖ = 1 and if Q : X∗ → X∗ is a weak∗-continuous
projection ( this is equivalent to the range and kernel being weak∗-closed)
with ‖Q‖ = 1, then there exists a projection P : X → X such that P ∗ = Q.
Further P ∗∗ : X∗∗ → X∗∗ is a projection of norm one and P ∗∗ = P on X.
We call P ∗∗, the biadjoint of P . In general ranges of projections of norm
one in dual spaces need not be weak∗-closed. It is known that P is a L

(M)-projection if and only if P ∗ is a M(L)-projection.
We next prove a theorem for Banach spaces which are M -ideals in their

bidual, which is the abstract idea behind various results of Baronti and
Papini [4], [3] . We recall that c0 is a M -ideal in its bidual `∞.

Theorem 5. Let X be a M -ideal in its bidual. Let P : X∗∗ → X∗∗ be a
projection of norm one such that kernel of P is finite dimensional and range
of P is a weak∗-closed subspace. Then there is a projection Q : X → X of
norm one , such that Q∗∗ = P . Thus weak∗-closed subspaces of X∗∗ of finite
co-dimension that are ranges of projections of norm one, can be completely
described in terms of similar objects from X.

Proof. Since the range and kernel of P are weak∗-closed subspaces, we get
that P is weak∗-continuous. Thus there is a projection R : X∗ → X∗ of
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norm one such that R∗ = P . Since ker(R)⊥ = P (X∗∗) , and X∗∗|ker(R)⊥ =
ker(P )∗ is finite dimensional, we get that ker(R) is finite dimensional and
hence weak∗-closed. Since X∗ is a L-embedded space, it follows from Propo-
sition IV.1.5 in [7] that R(X∗) is a L-embedded space. Now by Proposition
IV.1.10 in [7] we get that R(X∗) is weak∗-closed. Therefore R is weak∗-
continuous. Thus there exists a projection Q : X → X such that Q∗∗ = P .

¤

Since for any projection P : X → X, ker(P ∗) = P (X)⊥, P has finite
dimensional kernel if and only if P ∗ has. The following corollary is now easy
to prove.

Corollary 6. Let X be a M -ideal in its bidual, let Q : X∗ → X∗ be a
projection of norm one such that ker(Q) is finite dimensional, then there
exists a projection of norm one, R : X → X such that R∗ = Q. Thus finite
codimensional subspaces in X∗ that are ranges of projections of norm one
can be completely described in terms of similar objects in X.

Remark 7. This explains the c0-`1 duality that is evident in the results
(Theorem 5.5 , [4]) of Baronti and Papini and explains the nature of the
projection in the main Theorem of Baronti, [3], where the (c0)⊥ component is
zero. We conjecture that as in the main theorem of [3], finite codimensional
subspaces of X∗∗ that are determined only from functionals in X⊥ can not
be the range of a projection of norm one.

Remark 8. In the above proof we have used the fact that finite dimensional
subspaces are always weak∗-closed. Another such class of subspaces are re-
flexive subspaces. Recall that Y ⊂ X is said to be factor reflexive if the
quotient space X|Y is reflexive. Arguments similar to the ones given during
the proof of Theorem 5 show that if X is a M -ideal in its bidual and Y ⊂ X∗∗

is a weak∗-closed factor reflexive subspace, then any projection P : X∗∗ → Y

of norm one, is the biadjoint of a projection of norm one in X.

Remark 9. In the case of `∞, we recall that any complemented reflexive
subspace is finite dimensional, thus we need to consider only subspaces of
finite codimension.

We now formulate abstract version of the result from [4] and [3].
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Theorem 10. Let X be a M -ideal in its bidual. Suppose the range of every
projection of norm one with finite dimensional kernel in X can be written as
an intersection of ranges of projections of norm one with kernel of dimension
one. Then the range of every projection of norm one, that has weak∗-closed
range and finite dimensional kernel in X∗∗ can be written as an intersection
of ranges of projections of norm one with kernel of dimension one that are
biadjoints of projections in X. Converse statement holds for any Banach
space X.

Proof. Let X be a M -ideal in its bidual.
Let P : X∗∗ → X∗∗ be a projection of norm one with weak∗-closed range

and finite dimensional kernel.
From Theorem 5 we have that there is a norm one projection Q : X → X

with finite dimensional kernel such that Q∗∗ = P . By hypothesis there
exists finitely many projections Qi : X → X such that ‖Qi‖ = 1 for each i

and ker(Qi) is of dimension one and Q(X) = ∩Qi(X). Clearly Q∗∗
i ’s have

the required properties . To verify that P (X∗∗) = ∩Q∗∗
i (X∗∗) we note that

since the operators involved are weak∗-continuous and as X is weak ∗-dense
in X∗∗, it is enough to check the equation at elements of X. Let x ∈ X,
P (x) = Q∗∗(x) = Q(x) = Qi(xi) = Q∗∗

i (xi) for each i and for some xi ∈ X.
Thus P (x) ∈ ∩Q∗∗

i (X∗∗). The other direction is similarly seen.
Conversely let X be any Banach space. Let P : X → X be a projection

of norm one with finite dimensional kernel. P ∗∗ : X∗∗ → X∗∗ is such
that ‖P ∗∗‖ = 1, it has weak∗-closed range and finite dimensional kernel.
Since X∗∗∗ = X∗⊕

X⊥ by hypothesis there exists finite set of x∗i ∈ X∗ and
τi ∈ X⊥ such that P ∗∗(X∗∗) = ∩ker(x∗i +τi). Now since P ∗∗(X∗∗) is of finite
codimension and P ∗∗ is weak∗-continuous, we have that P ∗∗(X∗∗)⊥ ⊂ X∗.
Therefore x∗i + τi ∈ P ∗∗(X∗∗) ⊂ X∗. Thus τi = 0 for all i. It is now easy to
see that P (X) = ∩ker(x∗i ). ¤

Remark 11. When C(K) is a dual space or the second dual of a Banach
space X, it seems to be difficult to interpret the conditions in Theorem 1.1
of [2] in terms of X, excepting in the case of `∞(Γ). For a L1-predual X,
we have that X∗∗ is isometric to C(K) for some compact set K. We do not
know if in X, the range of a projection of norm one with finite dimensional
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kernel is an intersection of ranges of projections of norm one with kernels
of dimension one?

Our next set of results show that the properties considered here determine
c0(Γ) among L1-preduals.

Theorem 12. Let X be a L1-predual space. Suppose every weak∗-closed
subspace of codimension one of X∗∗ that is the range of a projection of
norm one is also the range of a biadjoint projection of norm one. Then X

is isometric to c0(Γ).

Proof. After identifying an extreme point and its negative, in the unit ball
of X∗, let Γ denote the set of extreme points of the unit ball. For any f ∈ Γ,
since X is a L1 predual, span{f} is a L-summand, i.e, X∗ = span{f}⊕

1 N ,
for some closed subspace N . Therefore if Y = ker(f) then Y is a M -ideal
and X∗∗ = Y ∗∗⊕

∞N⊥. By hypothesis, there is a projection of norm one
P : X → X with ker(P ) one dimensional and P ∗∗(X∗∗) = N⊥. Since P ∗∗ is
a projection of norm one, it now follows from our remarks in the Introduction
about the uniqueness of ranges of M -projections that P ∗∗ and hence P is
a M -projection . Clearly one can choose a xf ∈ X with f(xf ) = 1 = ‖xf‖
such that X = span{xf}

⊕
∞ ker(f). Using the uniqueness of the range of

a M -projection, it is easy to see that the unit vectors, {xf}f∈Γ are pair-wise
independent.

Now consider the c0-direct sum Y =
⊕

c0
span{xf} over Γ . Clearly Y is

a M -ideal in X. If it a proper M -ideal, Y ⊥ will be a non-trivial weak∗-closed
L-summand in X∗. Therefore there is a f0 ∈ Γ and Y ⊥. This contradicts
the fact that f0(xf0) = 1.

Thus X is isometric to c0(Γ).
¤

The interest in the study of ranges of projections of norm one stems from
the fact that several geometric properties of the domain space are passed on
to the range space. Some times simple geometric conditions on a subspace
can achieve the same effect without the subspace actually being the range
of a projection of norm one. We next recall one such notion studied in [1] .
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Definition 13. A closed subspace Y ⊂ X is said to be a central subspace
if for any finite set {yi}1≤i≤n ⊂ Y and x0 ∈ X, there exists a y0 ∈ Y such
that ‖y0 − yi‖ ≤ ‖x0 − yi‖ for 1 ≤ i ≤ n.

It is easy to see that this is equivalent to every finite collection of balls with
centres from Y that intersect in X, also intersect in Y . From Lindenstrauss’
characterization of L1-preduals in terms of, every collection of 4 pairwise
intersecting balls having non-empty intersection (see [11] page 58), it follows
that if Y ⊂ X is a central subspace and X is a L1-predual implies that Y is
a L1-predual. This notion is weaker than that of an existence set considered
in [10] where the inequalities in the definition should hold for all y ∈ Y .
Thus the following result extends Theorem 2.3 in [10].

Proposition 14. Let Y ⊂ c0(Γ) be a central subspace. Then Y is the range
of a projection of norm one.

Proof. From our remarks above we have that Y is a L1-predual.
If X is finite dimensional, then Y is isometric to `∞(k) and it is well

known that Y is one-complemented in any superspace.
Since Y is a L1-predual, Y ∗∗ has the property that it is the range of a

projection in any superspace (see [11], Chapter 3). Thus for the inclusion
Y ∗∗ ⊂ `∞(Γ) there is a projection P : `∞(Γ) → Y ∗∗ such that ‖P‖ = 1. But
this implies there is a projection Q : `1(Γ) → `1(Γ) such that ker(Q) = Y ⊥

and ‖Q‖ = 1. As Q is weak∗-continuous we get that Y is the range of a
projection of norm one.

¤

The following theorem can be proved using arguments similar to the ones
given earlier.

Theorem 15. Suppose X is a L1-predual space such that every central
subspace of co-dimension one, is the range of a projection of norm one.
Then X is isometric to c0(Γ) for some discrete set Γ.

Proof. As before let Γ denote the set of extreme points after identifying f

and −f . Let f ∈ Γ. Since X∗ = span{f}⊕
1 N for a closed subspace N

and as X∗ = L1(µ), one has that N is also an abstract L-space. Therefore
ker(f) is a L1-predual. It follows from Theorem 3.3 in [1] that ker(f)
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is a central subspace of X. Therefore by hypothesis there is a projection
P : X → ker(f) with ‖P‖ = 1. As ker(f) is also a M -ideal we get from
Corollary I.1.3 from [7] that P is a M -projection. Arguments similar to the
once given before now give that X is isometric to c0(Γ). ¤

We next show that certain central subspaces of `1 are ranges of projections
of norm one.

Proposition 16. Let Y ⊂ `1 be a central subspace that is isometric to the
range of a projection of norm one in some dual space. Then Y is the range
of a projection of norm one in `1 .

Proof. Let X be a Banach space and P : X∗ → X∗ be a projection of norm
one, such that Y is isometric to Range(P ). We will show that Y is an
existence set. It would then follow from Theorem 2.4 in [10] that Y is the
range of a projection of norm one. Let α ∈ `1. Consider the balls {B(y, ‖y−
α‖)}y∈Y Y . Since Y is a central subspace, any finite collection of balls from
this family has non-empty intersection in Y . Ignoring the embedding of Y

in X∗, consider the family of closed balls in X∗, {B∗
X(y, ‖y−α‖)}y∈Y . Since

these balls are now weak∗-compact such that any finite subcollection has
non-empty intersection we have that they intersect in Y and as Y is the
range of a projection of norm one, there is a y0 such that ‖y− y0‖ ≤ ‖y−α

for all y ∈ Y . Thus Y is an existence set.
¤

Remark 17. In particular we have that any weak∗-closed (w. r. t any
predual of `1) central subspace of `1 is the range of a projection of norm
one. We do not know if a central subspace of `1 is always the range of a
projection of norm one.

We now give an application of Theorem 1.1 from [2].

Theorem 18. Let X be a L1-predual space. Any central subspace of finite
codimension is the intersection of hyperplanes that are central subspaces.

Proof. Let Y ⊂ X be a central subspace and Y = ∩1≤i≤nker(fi) for fi ∈ X∗.
We denote by f̂i the canonical image of fi in X∗∗∗. As before Y ⊥⊥ =
∩1≤i≤nker(f̂i). We have that Y ⊥⊥ ⊂ X∗∗ and X∗∗ is isometric to C(K)
for some compact extremally disconnected space K (see [9] Section 11).
As noted before, Y is also a L1-predual space and thus Y ∗∗ = Y ⊥⊥ is
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isometric to C(K ′) for some comapct extremally disconnected space K ′. It
follows from Corollary 2 in Section 11 of [9] that Y ⊥⊥ is the range of a
projection of norm one in X∗∗. It now follows from Theorem 1.1 of [2] that
for 1 ≤ i ≤ n, there exists a projection of norm one, Pi : C(K) → ker(f̂i).
This in particular implies that ker(fi) is a L1-predual space.

We now show that ker(fi) is a central subspace of X. Let y1, .., yk ∈
ker(fi), x ∈ X and ε > 0. By the principle of local reflexivity applied
to the subspace span{y1, ..., yk, Pi(x)} ⊂ ker(f̂i), there is an operator T :
ker(f̂i) → ker(fi), ‖T‖ ≤ 1 + ε such that T (yj) = yj for 1 ≤ j ≤ k. Thus
for 1 ≤ j ≤ k,

‖T (Pi(x))−yj‖ = ‖T (Pi(x)−yj)‖ ≤ (1+ε)‖Pi(x)−yj‖ = ‖Pi(x−yj)‖ ≤ (1+ε)‖x−yj‖.

As ker(fi) is a L1-predual space, by Lemma 4.2 in [11] it follows that there
is a y ∈ ker(fi) such that ‖y − yj‖ ≤ ‖x − yj‖ for 1 ≤ j ≤ k. Therefore
ker(fi) is a central subspace. ¤

Corollary 19. Let X be a L1-predual space. Let Y ⊂ X be a central
subspace of codimension n. For any 1 ≤ k < n there is a central subspace Z

of codimension k with Y ⊂ Z ⊂ X.

Proof. It follows from the above theorem that Y ⊥⊥ = ∩1≤i≤nker(f̂i) where
f̂i’s satisfy the condition ii) in the (c) part of Theorem 1.1 in [2]. Now by
Theorem 1.1 of [2] again, for any 1 ≤ k < n, ∩1≤i≤kker(f̂i) is the range
of a projection of norm one in X∗∗. Thus Z = ∩1≤i≤kker(fi) is a central
subspace and Y ⊂ Z ⊂ X.

¤
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