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Fast automatic solution of the inverse resistivity problem
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Abstract. The paper presents a fast automatic approach to solve the inverse resisti-
vity problem, assisted by optimization, which is a non-linear model-fitting technique.
The selected inverse problems are ill-posed and the inverse solution is defined by
‘best fit’ in the sense of least-squares. Formulations are presented in a systematic
manner for Newton’s method, least squares method and Marquardt’s modification
(ridge regression) method based on local linearization of non-linear problem. The
convergence of least-squares method and Marquardt’s method, to provide a robust
solution, are first tested on a theoretical model and effectiveness of Marquardt's
method is demonstrated, and then two-field apparent resistivity curves from Banda
district, India are interpreted and discussed.
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1. Introduction

The conventional indirect methods of interpretation of resistivity sounding data
such as curve matching have very low resolving power. The more powerful direct
method of interpretation as suggested by Slichter (1933) is not easy to handle, how-
ever, because of the “ill-posed ' nature of the inverse problems and the associated
computational difficulties.

The direct interpretation consists of two steps—viz:

(i) extraction of Kernel function K(2) from the field measurement and (ii) decompo-
sition of Kernel function in terms of layer parameters. With the work of Ghosh
(1971), step (i) is perfected quite satisfactorily. However, the most important step
(ii) could not be improved earlier due to lack of computational facilities. Recently, a
number of workers have taken up the job of automatic interpretation of resistivity
data (Zohdy 1974; Bichara and Lakshmanan 1976; Inman et al 1973; Johanson
1977). Keofoed (1979) has given a brief account of all the work pertaining to direct
interpretation. However, only Bichara and Lakshmanan (1976) have used the resisti-
vity transform function T'(1/A) (a function related with Kernel function; Koefoed,
1970) as an intermediary step. The essential advantage of using the resistivity trans-
form function as an intermediary step lies in the fact that it has dimensions of resisti-
vity and is solely determined by the layer distribution and is independent of electrode
configuration. However, the resistivity transform function shows the same asymp-
totic behaviour as the apparent resistivity function, both for small and for large
abscisa values.
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The resistivity transform function can be extracted from the apparent resistivity
function by the application of a simple linear filter using Ghosh (1971) formula

=2}
Ty= Y & Rny 6))

j==
where,

T, is the resistivity transform at sample point m,

m is the number of sample points,

g, is the filter coefficients, number determined by the length of the filter to be
used, and

R, is the apparent resistivity value at sample point 7.

In the present paper, an initial earth model is assumed. The resistivity transform
function of this model is calculated and compared with the one calculated from
the field sounding curve. The differences of the transforms are used to auto-
matically modify the parameters of the earth model, with the use of Marquardt’s
algorithm,

2. Formulation of the problem
2.1 Inverse problem

The purpose of solving the resistivity inverse problem of a horizontally layered earth
is to obtain a model with layer parameters dj, dy,. . ., d,; (layer thicknesses) and
P1s Pas - -» P (layer resistivities) so that the computed resistivity transform function
T, (4, dyy + ., Gyegy P1s - +» p) fOr this model and the observed resistivity transform
function T, () will coincide for all values of u € u, Here u = 1/A and u, denotes
the set of all 4 for which the observed resistivity transform can be determined. Thus,
for the sought for model, the following equality is required.

Tc (u: dp dz; vy dn—l; P1s P2as o v Pn) = TO (u)! ue uj‘ (2)

However, to achieve the equality (2) is rather not possible as resistivity inverse
problem is a non-linear problem. Thus the methods based on the local linearization
of (2) can be adopted to exploit the well developed theories of linear operators on
Hilbert space. If the observed values of the resistivity transform T, () are determined
in a discrete set of u, = {uy, thy, Uy, - . ., U}, then (2) represents a system of m non-
linear equations in 27 — 1 unknown layer parameters dy, dy,. . ., dyg, P1s P2s - - -5 P
Let d{®, d©, ..., d%,, p{% p{®, ... pi, be an estimated solution of layer para-
meters close enough to the parameters of the true geoelectric structure d;, dj,. ..,
Ay 1y Py Pos - - - » P Bquation (2) can be linearized by expanding it in Taylor series
and retaining only the first derivative term.
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TO(”!) = Tc(ub d{ﬂ)’ déﬁ), e d,(l()_)l’ P(lms P(gm, ey Pfxm
n—1 .
— A0 (
+ .zl (d_, dj ) [3Tc(u,, d]_m: d;m:-", d,(lo_)p Pimn P;O)’
]=

n
rSIo 40T+ (s = £ [T, (, A d,...,
j=1 ‘

dr(lo_)ls Pims A P:.O) fopl,i=1,2 ... m ®

Introducing the m data values Tj (1), Ty (4p)... T, (4n) corresponding to m sample

points as the vector Ty (u) = [T, (), Ty (Ug), <y T (um)]T and the restricted earth
model, determined by 2n—1 free parameters as the vector P =[d,, d,, ..., dpy

P P2 en e p,,]T, we assume that the forward problem generates a set of model data for
each setting P which can be denoted as a vector function by T, (P) = [T, (i, P),

T, (uy, P), ..oy Te (tms P)IT where T indicates the operation of matrix transposition.
Now we can define an influence matrix 4[P] with the elements

aTc(ub P(O)) .

Ot V7)1, o n—1i=1,2,....
adj ] n 1 m,

fay] =

AT (u, P)
”_adi,T’ j=n+1l,n+2....,2n @)

Using this notion, if m = 2n — 1 we can then define an iteration process according
to (3),

P =PO L {A [P(m]}-l {To - T; [P(O)]}, (5)

where P is the initial estimation of the parameters of the geoelectric section under
investigation. The iterative method successively improves the old model to new
model until the error measure is small and the parameters are stable with respect to
reasonable changes in the model. Expression (5) represents the well-known Newton’s
method of solving inverse problems. The convergence of this iterative scheme very
much depends on the computed resistivity transform, on the choice of the set u, (here:
u, is restricted by m = 2n—1). However, in this process the condition (2) is diffi-
cult to achieve, and thus the iterative process is terminated as soon as,

Ty =||Ty = T. PO} |2 <, ©)

where ¢ is the measure of the chosen accuracy. Application of Newton’s method for
solving field cases are somewhat restricted in the sense that all the observed data sets
are not utilized (due to the condition m = 2n—1) and the method is sensitive to

the choice of initial estimation (Pek and Cerv 1979).
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The condition m = 21—1 can be modified to m > 2n—1 by applying the least.

squares method. Thus entire data set can be accommodated in the scheme. The
iteration process may be written in a modified form as

p—po 4+ {AT (PO 4 [P(Gl]}—l AT [P] {To - T, [P(O)]}_ )

The factual meaning of expression (7) simply lies in the sense that the system of
equations for the components of correction vector

AP = P - Pw), (8)
should be solved at every iteration step of
AP = {47 [PO] 4 [P} 4T [PO] {T, — T, [PO]}, o)

The system of equation (9) is obtained by setting the partial derivative of the objec-
tive function

Ih< ) (T, =T PO} (10)

A=

i

with respect to each unknown parameters to zero as

T

T _ , Jj=1,2 .., =1
op,

where 7 is the number of layers in the geoelectric section, In (9), { AT[P“”] AP}

AT[P“”] is known as ‘least-square estimator’, and AT[P“”] is the transpose of the
matrix A[P©].

Under this procedure we obtain the correction vector AP to minimise AT (=T,
— T, [P'"]) in the sense that

ATT AT < e (11)

If convergence is achieved after a few iterations, the final unknown parameters can
be obtained by the expression,

P; =P + AP, =12 ., =1 (12)

Although the region of convergence of this method is generally greater than that of
Newton’s method if the initial estimation of the solution is chosen in a close vicinity
of the true geoelectric section. However, if the initial estimation is not very close to
the true solution the obtained solution may attain a local minimum and thrown
away from the actual minimum and hence from the true solution.
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Marquardt (1963) presented an algorithm to improve the convergence properties
of the iteration scheme (9) to estimate non-linear parameters. Accordingly the
following system of equations

{AT[P®] A[P©] + TLAM. I} AP=AT[P®] {T,— T, [P®]}, (13)

is used for the components of correction vector AP to be solved at every 1teratlon
Equation (13) can be rewritten as

AP = {T[P®] A[P®] + TLAM.I}-1 AT[P)] {T, T, [PO]}. (14)

Here I is the (2n — 1) X (2n— 1) identity matrix and TLAM is a fixed value known
as Marquardt’s Lamda. In expression (14) the term {AT[P“”] AP + TLAM.I}
AT[P“”] is known as ‘ridge regression estimator’.

The steepest descend method guarantees the convergence to the true solution if the
initial estimation is within a reasonable range of true solution but the convergence is
extremely slow after the first few iterations. The least squares method yields rapid
rate of convergence but it requires the initial estimation to be very close to the true
~ solution. Marquardt’s method combines the advantages of the two methods provided

the value of TLAM is properly chosen at every iteration. If TLAM -0, Marquardt’s.
method reduces to the Newton’s least squares method and if TLAM - o it works
as the method of steepest descend, the optimum value of TLAM being 1-0 and 0-01.
However, Johanson (1977) modified this to permit an adaptive choice for the value of
TLAM in successive iteration.

2.2 Forward Problem

The expression for resistivity transform function for the n-layer geoelectric section
can be written following Koefoed (1970) which is utilized to compute T, [P‘], as,

T'(N) + T(N—-1)
T'(N) TN-1)’
Py

Ty PO = =2,..1 (15)

dy-
where T'(N) = py tanh( )and T(N—1) is the resistivity transform of the same

Us
n-layer section whose top layer is removed. When N = 1, resistivity transform: takes

the numerical value of resistivity of half-space. For successful use of (15) we start
building the layered model from bottom to top i.e. the bottom layer is considered
48 first layer and top layer as the nth layer.

To construct influence matrix 4 [P'?’], we need the partlal dernvatlve of re51st1v1ty
transform funcnon with respect to unknown parameters. Let us choose

Q € (py dy-2)

Proc.—3
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and RE (py, pgy +ovs Py-1s Gy +vvs dy-9), then from (15) we have the partial deri-
vative as

(16)

aTAN) liy PO] = or(N—-1) 1 /— T'*(V)ley i}
ok oR (1 +_T-§,_-M-T(N-1))
PN

and
oT'(N)
aTc(N) [u1 P(O)] = aQ
20

(il ’

(T'(N) + T(N— 1)) T(N —1) 5% ()] %)

(1 +.T_'@-T(N—1))2 o

P

3, Numerical results and discussion

On the basis of developed expression in §§ 2:1 and 2-2 a composite computer pro-
grame is developed to determine observed resistivity transform from the apparent
resistivity curve and subsequently to identify the resistivity transform function in
unknown layer parameters of geoelectric section. The developed algorithm is first
tested on theoretical resistivity sounding curve for the presumed model. Then two
field sounding from Banda district are interpreted.

3.1 Theoretical sounding curve

The resistivity sounding curve is obtained for Schlumberger configuration over the
presumed three layer model for half current electrode separation (AB/2) up to 1000 m.
The resistivities of the first (p;), second (py) and third (p;) layer are taken to be equal
to 100 Qm, 4 Qm and 20 Qm, whereas the thickness of first layer (d,) and second
layer (d,) are taken to be 10 m and 30 m respectively. The obtained resistivity curve
is given in figure 1. 'The resistivity transform functions are then extracted from the
apparent resistivity curve using the Ghosh (1971) 9-point filter and sampled values
of apparent resistivity with spacing 1/3 In (10). Here the formula used can be
written from (1) as
6
Tm = z a Rm.._,. (18)
==2
The extracted resistivity transform are also plotted vs. # (= 1/A) in figure 1.
To compare, this model is interpreted using both Marquardt’s method and least
squares method. The starting model for both the methods is taken as p, = 100 Qim,
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Figure 1. Plot of apparent resistivity curve, observed resistivity transform curve,
computed resistivity transform curve, starting model and mterpreted model using least
 squares. method and Marquardt’s method.

pa =T m, p; =20 Qm, d; = 8 mand d, = 35 m. These values are chosen by
visual observation of apparent resistivity curve and by noting the point of inflexion.
The estimation of starting model is certainly not difficult for experienced geophysi-
‘cists:The: initial value 6f TEAM-is taken ‘to ‘be umty and- four drﬁ”erent rate of
variation of TLAM in each advancing iterations’ viz. TLAM/ 12, TLAM/l S,
TLAM/3 and TLAM/4 are tested. The comparison of inverse solutions obtained
using these four rates of variation show that TLAM/1-5 and TLAM)/3 variation rates
can be accepted. However, the variation rate TLAM/1-5 gives marginally. better
results than the TLAM/3 but the time takenis considerably more. So, for the present
case the variation rate TLAM)3 is used. -

In the present scheme of obtaining inverse solution, the mltxally esumated layer
parameters of the geoelectric section are updated in each iteration and the T}, values

are minimised in the least square sense as

ATTAT = (T~ T, [PO]P =Ty < <. (19)
i

The graphical plot‘of T, valﬁes vs. iteration number (figure 2) shows that the ',

values in ridge regression method fall very rapidly from about 100 to a minimum
(0:022) in 5 iterations. After that the T, values start increasing to the highest value
of 0117 at 9th iteration, after which they again starts decreasing to a value of 0-0205
at 12th iteration. Beyond this the decrease rate is extremely slow as it reaches to a
stable value of 0-0191 at 15th iteration and afterward. - The variation of T, with

respect to iteration number for least squarés method is also presented in figure 2.
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Figure 2. Plotof Tp vs. iteration number for curve in figure 1 for Marquardt’s method
and least squares method.

Figure 3 represents the comparative plot of the convergence of the layer para-
meters py, Py, Py 4 and dy for least squares method and ridge regression method.
One can observe from figure 3 the smooth and perfect convergence of all the para-
meters in case of Marquardt’s method in comparison to the corresponding para-
meters in least squares method. One can observe from this figure, from table 1
and from figure 2 that convergence is better in Marquardt’s method in comparison to
least squares method. It is also evident from figure 3 that when parameter d, starts
converging, the parameter p, starts diverging and finally attains flat characteristics.
The convergence line of d, and p, are almost parallel to each other. This might be
due to a slight influence of equivalence as the resistivity of the intermediate layer is
extremely low. The observed resistivity transform, computed resistivity transform,
starting model and final inverse solutions are plotted in figure 1. :

3.2 Field sounding curve

After gaining confidence on the theoretical sounding curve, we would like to demon-
strate the application of Marquardt’s method to obtain the solution of two field
sounding curve. For inversion, two field resistivity sounding curve from the Pahari
Block of Banda district, India are considered. The area for geoelectric sounding
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Figure 3. Comparative convergence diagram of parameters py, pg, pg, dy and d, for
curve in figure 1 using least squares method and Marquardt’s method.

curves considered is located near villages Dewari (25° 28’ 54" N; 81° 10’ 25" E) and
Bhadedu (25° 26' 19" N; 81° 8 24" E). Geologically the area is occupied by the
sands/clays of Gangetic alluvium, beneath which Bundelkhand granites are expected.
The nearest exposure of granites are found at Pahari (25° 20'N 80° 58' E) the Block
headquarters and Chakaundh. (25° 16" N, 80° 56’ 30" E) village to the south of
Pahari. The alluvium mainly consists of clay and silts mixed with Kankar and varies
considerably in thickness. Bands of sands, fine to coarse grained, are also found to
be present. . S ’

On the basis of visual analysis of the two resistivity curves (figures 4, 5) the starting
models are chosen for use in Marquardt’s method. Table 2 represents the initial esti-
mation and interpreted model parameters for the considered two: field curves. In
figures 4 and 5 the starting model, the final model obtained and the computed resisti-
vity transforms in each case are displayed. The figures show that in both the cases
Marquardt’s method yields models whose resistivity transform curves coincide well
with the observed resisitivity transform.curve. -

The sounding curve near- village Dewari (figure 4) is interpreted using two diffe-
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Figure 4. Plot of apparent resistivity curve, observed resistivity transform curve,
starting model and interpreted model for sounding near village Dewari, district Banda.
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Figure 5. Plot of apparent resistivity curve, observed resistivity, transform curve,
starting model and interpreted model for sounding near village Bhadedu, district
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rent rates of variation of TLAM values in each advancing iteration, TLAM/1-5 and
TLAM]/3. The convergence is obtained in 12 iterations (T, = 5-02) and in 33 itera-

tions (T, = 0-0663) in the case of variation rate TLAM/3 and TLAM/1-5 respectively

which suggests that for more precision the variation rate of TLAM/1-5 may be chosen.
The same variation rates are used for sounding curve near Bhadedu (figure 5) and the
inverse solution is obtained in 17 iterations (T = 6:5). The interpreted data for
these two cases are tabulated in table 2.

4. Conclusion

On the basis of the above discussion we can conclude that the solution of the inverse
resistivity problem using resistivity transform function as an intermediary step and
based on the linearization of (2) can be most effectively obtained using Marquardt’s
method in comparison to steepest descend and least squares method. Marquardt’s
method enables the region of convergence for the initial estimation to be expanded in
comparison to least squares method and consequently the scope of the application
of the linearization methods is extended to the problem of investigation of geoelectric
structures. The essential advantage of using resistivity transform function as an
intermediary step lies in the fact that it does not depend on the electrode configura-
tion used, as it is the function of only layer parameters. Thus the present scheme can
be effectively employed for any electrode system with minor modification in pro-
gram pertaining to the extraction of resistivity-transform function from apparent
resistivity curve. However, the investigation pertaining to the limitation of the
method in case of very thin layer problem will be necessary and this is being further
studied by us.
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